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Effect of Hammer  Length  and  Nonlinear  Paper- 
ribbon  Characteristics  on  Impact  Printing 

Abstract: An analysis of  the  impact  process  in a particular  type of high-speed  printer  was undertaken to determine  the  effect of hammer 
length on the contact  time.  The  hammer  is  modeled  as a one dimensional  wave propagation medium and the paper-ribbon  combination 
as a dissipative,  nonlinear  medium with hysteresis. The  integrated  macroscopic  viscoelastic  parameters  for a particular  impact  geometry 
and hammer  momentum were determined from a combination of the  analytical  model  and  the  experiments run on an instrumented 
printer robot. Permanent  deformation of the  paper-ribbon caused by character  penetration  was  also  determined  in  this  manner. The 
simulated  model  was  then  used to predict  the  change in dynamic behavior of such a system due to variations of the hammer length. 
The hammer length is  shown to have  only a tertiary effect on contact  time  in such a dissipative  deformable  nonlinear  system.  This 
result  demonstrates that the widely  discussed  use of hammer  length  as a design  parameter to control  contact  time  in  impact  printing 
is  invalid for such a dissipative  system. 

introduction 
Impact  printing, in  the mechanism studied in this  work, 
is a complex mechanical process involving a  hammer, 
a  paper-ribbon  combination and a typeslug. As in most 
high speed printers, the dynamics of this  print mechanism 
are a  major  determinant of the ultimate speed attainable. 
In particular, the  duration of contact between the paper- 
ribbon  combination and  the hammer is an  important 
design factor, affecting both mechanical speed and  the 
print  transfer process. Of the dynamic  parameters con- 
trolling  contact time, hammer  momentum is one  obvious 
concern but is strongly constrained by the energy and 
force requirements of print  transfer. Less obvious are 
the effects of elastic wave propagation  in the hammer 
and  the effects of the nonlinear, dissipative, deformable 
medium represented by the paper and ribbon. Discussions 
in recent times, based to a large extent on classical elastic 
wave propagation  arguments, have indicated that hammer 
length is especially significant. It is shown, however, 
that  the dissipative behavior of the paper-ribbon medium 
has considerably more effect than hammer length in  a 
printer of the type considered here. 

To evaluate the relative importance of the various 
dynamic properties, data were taken from a series of experi- 
mental measurements made on  an instrumented  printer 
robot, which was essentially an IBM 1403-11 with the 

108 chain at rest (for easier instrumentation). The analytical 
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Figure 1 IBM 1403-11 printer  hammer  mechanism. 

model was derived by considering the  functional mech- 
anisms that would be possible during  impact and com- 
bining their effects mathematically. 

1403-11 printing mechanism 
The mechanism under  study is shown in Fig. 1. The 
hammer is actuated by the  armature of a  magnet with 
an initial velocity of 100 in./sec. The hammer and  the 
typeslug each have  a mass of 2.2 g. The print  action takes 
place as  the paper-ribbon  combination is squeezed between 
the hammer and  the typeslug. The  stationary platen, 
a  laminate of steel and elastomer, is spaced about 0.001 
in. from  the typeslug. Each typeslug mounts  two char- 
acters and is fastened to a steel tape  that moves in a 
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direction perpendicular to the  hammer  motion. In  the 
robot  the  tape is at rest. 

Experimental method 
The  robot was constructed  in order  to determine  what 
happens  during  printing. Strain gages were used to 
monitor  the forces near the end of the hammer and  in 
the legs of the typeslug. Also, optical reflection techniques 
were used to continuously measure the displacement of 
the hammer.  This measurement was used to determine 
the velocity before and after  impact. 

To test the effect of the hammer length on  the printing 
process, six different hammers were constructed. Three 
hammers were straight rods with lengths of one,  two and 
three inches. The  other three  hammers were modeled 
after  IBM 1403-11 printer  hammers and  had  the same set 
of lengths. Each hammer had a mass of 2.2 g. 

A typical  record of force in the hammer and in the 
typeslug legs is shown in Fig, 2. This experiment was 
performed with the two-inch IBM 1403 printer hammer 
but  is typical of all the hammer configurations. In  all 
cases, the force-time curve for  the hammer had  the  double 
peak shown and  the maximum force in  the typeslug 
legs occurred between the two  hammer peaks. Also, 
note that there is no force in  the typeslug legs until about 
the time of the first maximum in the hammer force curve. 

Analytical model of the print mechanism 
In this  section, we describe the mathematical  model for 
simulating the force-time curves of the experiments. The 
hammer is considered to be a long, thin  rod capable of 
transmitting  longitudinal  stress waves. The  paper  and 
ribbon  are taken to be a highly nonlinear, dissipative 
medium. The typeslug is allowed to translate and  rotate 
but  is constrained  in  this  motion by the pressure of the 
platen. 

Hammer model 
An IBM 1403-11 printer  hammer (shown in Fig. 1) is 
assumed to be an elastic body capable of transmitting 
one-dimensional stress waves. While this is not strictly 
true because of the complicated geometry, the  assumption 
will allow us to show that contact  time  does not depend 
on wave propagation. A more exact theory would not 
alter this conclusion since the time scale of mechanical 
events will be shown to be long as  compared with wave 
propagation times. 

A portion of a  hypothetical  hammer is shown  in Fig. 3. 
The  hammer is taken  to be composed of several prismatic 
segments. If the thickness of each segment is small com- 
pared to  the wavelengths involved, a one-dimensional 
analysis is valid. 

The assumption of one-dimensional wave propagation 
leads to  the following equations, which govern the motion. 
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Figure 2 Strain  records  in  hammer  and  typeslug.  Upper 
trace:  strain  in legs of typeslug.  Lower  trace:  strain  near 
impacting  end of the  hammer. (20 gsec/division.) 

Figure 3 Segment of hypothetical  hammer and its  wave 
characteristics. 

I 

- = p . A .  --. d Fi d 2 U j  

d X j  I at’ 
Equation (1) is a statement of Hooke’s law in one 

dimension where Ai’ is the virtual  area of the  jth cross 
section, E j  Young’s modulus, F,  the  total force in the 
section, and u j  the displacement at  the point xi and time 1. 

A virtual area, instead of the  actual  area, is used to take 
into account the fact that a very short segment of the 
hammer will not have uniform stress over a cross section 
if the segments on either side are much smaller in cross 
section. Equation (2) results from Newton’s second law 
of motion. The quantity Ai is the area of the section and pi 
is the density of the material. 109 
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I If Eqs. (1) and (2) are combined, we obtain  the wave We now have expressions for all the quantities that 
equation  for  the  jth segment: occur in  the interface  conditions. The substitution of 

these expressions into  the interface  conditions yields the 
a2uj 1 a2u .  
ax; C; at2 
- - “1 - - 0, where c: = E; Ai’/pi A;.  (3) following relations: 

This equation must be solved subject to  the interface u;+( t )  + y ; + ( t )  = u;-(t> + Y;-(t);  

conditions, the  latter being that force Fi and velocity u, (Aj-l’Ei-I/~j-I)[ui-(t) - yi-(t)] 
are continuous  across segment interfaces. These conditions 
are expressed as 

u:(o,  t )  = uY(0, t ) ;  

A;-lfE;-l au,(o, t )  auT(0, t )  
= A,’E, ax, axj  ’ ( 5 )  y j + ( t )  = ~ ; + ~ , - ( t  - Axj/cj). 

where the + and - indicate values taken  just beyond These  conditions are valid because the  equations give 

and  just  in  front of the interface, respectively. the values of a velocity at two different points  on  the 

we express the solution to the wave equation as a same  characteristic.  Equations (12) and (13) can be solved 
D’Alembert solution; i.e., in  terms of forward  and back- for u; * in terms of ui+l*  at  an earlier  time by using Eqs. 
ward traveling waves, (14) and (15). This solution is 

where Vo is the initial velocity. 
The displacement ui can  be expressed as 

The quantities zi are impedances given by 

u;(x~, t )  = uj-(t + Xj/C;-J + w;-(t  - X;/Cj-J + Vot, (8) zj = (AiAj /Ejp; )* .  (1 8) 

where ui and w j  are  the displacement amplitudes of back- At the left-hand  boundary (where the impact  occurs) 
ward and forward traveling waves respectively. The the force is given  by 
strain is 

Fb = AIEl au, 1 . (1 9)  
au;(xj, t )  1 8x1 zl=o 

- [ U j ” ( t  + x;/cj-l) ax; Ci-1 The boundary values are 

+ w;-l’(t - xi/c;-l)l, (9) 

where the prime  denotes differentiation with respect to 
= c;‘[-ul+(t) + u2-(t - Axl/cl)l and (20) 

the argument. Similarly, the velocity can be written  as 
= ul+(t) f uz-(t - Axl/cl) + Vo. (21) 

uj  - = auf(xj, t ,  = u;”(t + xj/cj-l) 
at Therefore, combining Eqs. (19), (20) and (21), we can 

+ wj-’ ( t  - XJCj-1) + v,. (10) write 

Therefore, we can use the fact that u j -  = ui” and % 1 
yi- = wj-’ to  obtain  our desired expression, at Z > = o  

= Vo - ( ~ 1  F b /  AlE1) + 2u2-(t - Axl/cl). 

(22) 
au;(x;, t )  

ax The boundary  condition at  the right-hand end of the 
hammer  can be satisfied by setting the impedance  in the 

= cj-l[ui-(t + Xi/Ci-1) - J’i-(t - x;/ci-l)]* (11) Nth section (there are N - 1 actual sections) to zero. 
Therefore, the  boundary condition becomes 

- 1  

Of course,  there is an expression similar to  Eq. (11) for 
110 auyax,. u ~ - ( t )  = ~ N - I ,  +( t  - AXN-1,”cN-l).  (23) 
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Typeslug model 
The typeslug, shown in Fig. 4, is assumed to be a rigid 
mass with translational and  rotational degrees of freedom. 
The  rotation  is  about  an axis perpendicular to  the cross 
ribbon section combination,  shown. Before the  the typeslug hammer is about strikes 0.001 the  in. paper- from 2L;[t$ 
the platen. The force of impact drives the typeslug into 
the platen. There is assumed to be a spring restoring CG -3" 
force between the legs of the typeslug and  the platen. 
Also, in series with this  spring is a  dashpot that simulates 
the effect of energy carried away in  the  form of stress 
waves. The equations of motion for  the slug are 

\ - 

Fc 4" 
Fb U I 

i 
Hammer 

Platen Typeslug 

Ribbon Paper 

d urn Figure 4 Typeslug, ribbon, paper  and  platen  combination. 
" 

dt - Vm; (24) 

d e  
dt 
" - W ;  and 

- = [a,(F, - Fa) - Fbab - k t O ] / M m k 2 ,  (27) d W  
dt 

where Urn and V,  are  the displacement and velocity, 
respectively, of the  center of mass, M,,, is the mass of the 
slug and k is the radius of gyration. The constant kt 
is  the spring  constant for a torsional  spring. This spring 
represents the  rotational restraint of the steel tape  and 
neighboring typeslugs that tend to keep the typeslug 
from rotating. The displacement of the platen, Up, is 
governed by the  equation 

C,, - = F, = Fa + F, d UP 
dt (2  8) 

where the forces F, and F, in  the legs of the typeslug are 
functions of the displacements x ,  and x,. That is, 

x, = Urn - Oa, - Up. (32) 

The function kl represents a  nonlinear spring that  has 
zero  force when the slug is not in contact with the platen 
and behaves as a  linear spring when they are  in contact. 
This  can be expressed as 

where Urn, is the initial gap between the legs of the typeslug 
and  the platen and k l l  is the linear spring constant. 

Paper-ribbon combination 
A model of the impact  phenomena in this dissipative, 
nonlinear  deformable medium must describe the functional 
behavior of the events that can  be expected to  take place. 
The printing  impact clearly transfers ink, embosses the 
paper and transfers elastic energy to  other areas.  A 
number of physical events obviously take place: Air is 
squeezed out  from between paper and ribbon and  from 
among  paper fibers; ink is squeezed through fibers and 
surfaces; air is compressed, fibers are compressed and 
ink is compressed; and fibers are permanently deformed. 
Many of these events are similar in  nature  and can be 
described by the same functional representation;  there 
are viscous losses due  to  air  and ink flow; nonlinear 
elastic effects due  to  the compressible nature of air, ink 
and paper fibers; and permanent  deformation of paper 
and  ribbon fibers. Our model combines these similar 
effects together and deals only with the lumped parameters 
for such similar mechanisms. The model proposed  here 
consists of three  major parts  to describe the paper-ribbon 
combination  in  impact:  a  nonlinear  spring, viscous losses 
and permanent  deformation. In  the discussion that follows, 
a  heuristic  explanation is given for each of these aspects 
of the model. However, as noted, the model details should 
not be taken  too literally. For example, although the 
nonlinear  spring  characteristic is developed from  the 
compression of air between the paper-ribbon  combination 
and  the platen, several other mechafiisms could have 
produced similar nonlinear force-deflection curves. The 
effect of each one is included in the lumped  parameter 
for this  type of behavior. The same point can be made 
for  the viscous losses and permanent  deformation aspects 
of this  model. The  important  point is that  the behavior 
of the model supports  and explains the physically ob- 
servable results. 

The paper-ribbon  combination is taken  to be two 
large, flat parallel plates. Air is trapped between them 
but  can leak out  at  the ends. The configuration is shown 111 
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in Fig. 4. If we assume the process to be thermodynamically 
isothermal, the relationship among pressure P, volume V, 
and leakage Q is 

rdP= __  1 [c+Q]. 
P dt V dt 

The volume Vis related to  the displacement by 

v = 4 x 0  + x), 

(34) 

where A is the  area of the plates and x. is the initial  air 
gap. The force F on  the plates is related to  the pressure P by 

F = -A(P - Po), (36) 

where Po is the atmospheric pressure. If Eqs. (35) and (36) 
are substituted into Eq. (34), the following relation is 
obtained 

dF/dt = (POA - F)(dx/dt + Q / A ) / ( x ,  + X ) .  (37) 

In  the special case for which there is no leakage (Q = 0), 
this equation  can be integrated to yield 

F = PoAx/(xo + x). (38) 

If  we let k, = PoA/xo, then the relation can be  written as 

F = k2x/(l + x /xo) .  (39) 

The quantity k, has  the dimensions of a spring constant 
and,  in fact, is the spring  constant in  the limit of small 
displacement. As the paper is compressed, the value of x 
becomes more negative and  the “spring” becomes stiffer. 
This  compaction process fits a heuristic argument that 
attributes a stiffening of the equivalent spring to  an 
increase in density of the system. Thus we have a model 
for a two-parameter  nonlinear spring, and  the parameters 
have physical meaning. The spring constant kz is deter- 
mined from  the slope of the force-deflection curve at 
the origin and x. is the maximum deformation that  the 
paper-ribbon  combination  can  withstand. 

It is necessary to have a  relationship among  the leakage 
Q, the force and  the displacement. This  relationship 
states that  the leakage is proportional  to  the force F and 
proportional  to  the square of the gap between the ribbon 
and paper. These assumptions yield the relation 

where C, is a  damping  constant. 
The assumption that  the leakage is proportional  to 

the square of the paper-ribbon  separation is made on 
heuristic  grounds. It indicates that as the  ribbon  and 
paper come closer together it is harder  for  the  air  to leak 
out.  The leakage is therefore obviously related to  the gap 
between the ribbon and paper and decreases with de- 
creasing gap. That is, there are viscous losses that depend 
on velocity and these losses diminish as  the  point of 
maximum compression is reached. As noted,  other 112 
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Table 1 Parameters used in  numerical experiments. 

Parameter  Value  Units 

p 0.000736 (steel) lb s e ~ ~ / i n . ~  
p 0.000259 (aluminum) Ib ~ e c ~ / i n . ~  
E 30 X 106 (steel) lb/in.2 
E 10 x 106 (aluminum) lb/in.2 

M ,  1.182 X 10W lb sec2/in. 
vo 100 in. /sec 

or 2.1 grams 
Urn, 0.00065 in. 
a ,  0.09 
at, 0.06 
k 0.09 

in. 
in. 
in. 
Ib in. kt 2500 

Print Area of Virtual  area Incremental 
hammer section (in.2) of section ( i n z )  length (in.) 

1 in. A = 0.01645 A’ = 0.00987 A x  = 1.0 
2 in. A1 0.01476 A,’ = 0.009  AX^ 0.372 

A2 = 0.0041 A,‘ = 0.0041 Ax2 = 1.222 
AS 0.01476 A,‘ 0.009 Ax8 0.406 

3 in. 
(aluminum) A = 0.0157 A’ = 0.0157 A x  = 3.0 

microflow losses will have similar dependencies and their 
effects have been lumped  together in  the various param- 
eters of the model. 

One other loss factor is introduced that allows for  the 
crushing of the paper and  ribbon fibers. We let the spring 
constant k,  take  on different values depending on whether 
the paper-ribbon medium is being compressed or whether 
it is expanding. As the paper and ribbon are compressed, 
they act  as a relatively soft spring. During  this compres- 
sion, however, fibers are being permanently deformed 
and broken and there is permanent macroscopic deforma- 
tion. As the hammer and typeslug begin to separate, 
the compressed paper-ribbon  combination  acts as a 
harder spring. This effect is introduced in  the model by 
using two spring constants kzl and kzz.  The constant k,, 
is used during compression and kz2 is used during ex- 
pansion.  Therefore we set 

where k,, 2 kz l .  

Numerical experiments 
The model  as used in  the numerical experiments is defined 
by Eqs. (16), (17), (23-30),  (33) and (42); the parameters 
of the model are defined in Table 1. The initial  conditions 
are  that uj+( t )  = 0 when t 5 0. New velocities are com- 
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puted at each time step from Eqs. (16) and (17). Linear 
interpolation is used to find values of ui,(t) at earlier 
times when the characteristic  does not coincide with a 
point for which the velocity has been computed. The 
set of ordinary differential equations that describes the 
model was solved numerically by using a fourth-order 
Runge-Kutta scheme [l]  and  the IBM APL\360 terminal 
system. The use of a terminal system greatly facilitated 
program debugging. More importantly, the interactive 
nature of the terminal system allows one  to experiment 
numerically to determine realistic values for  the parameters 
involved. 

Results 
Most of the parameters in  the model could be determined 
from simple measurements or known values. These 
include the elastic modulus of the hammer, the mass 
of the typeslug and  the initial velocity of the hammer. 
A few of the parameters were determined from  the experi- 
ments run  on  the printer robot.  For example, the effective 
spring constant of the typeslug-platen combination was 
measured by determining the length of time the slug is 
in contact with the platen and using the relation 

180 
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2 0  

T = ~ d M ~ / k ~ , .  (42) 

It is well known that if a thin  prismatic bar traveling 
in the axial  direction strikes a rigid wall, the contact 
time is twice the length of time it takes for a wave to 
travel one length of the bar; that is, contact  time tc is 

tc = 2L/c,  (43) 

where L is the length of the  bar  and c is the wave speed. 
In  order  to test the model of the hammer, several numerical 
experiments were performed  in which the hammer  struck 
a fairly stiff spring. These results are shown in  Fig. 5. 
Note  that  for  the three-inch hammer, the contact  time 
is approximately 2L/c (30 psec). 

The shape of the two-inch hammer is not well ap- 
proximated by a prism. Because the mass is concentrated 
at  the ends, we obtain a force-time curve as shown  in 
Fig. 5(b). When the  bar is not a  prism,  there is not a 
simple relationship to predict the contact  time because 
of the many wave reflections at  the discontinuities. How- 
ever, it is clear that without losses the dynamics and 
thus  the contact time are indeed determined by the elastic 
wave propagation in  the hammer system if the impacted 
medium is stiff compared with the elasticity of the hammer. 

If,  instead of striking a stiff spring, the hammer  impacts 
on paper and a  ribbon that  are backed by a stiff spring, 
we obtain  the force-time curves shown in Fig. 6. Notice 
now that there is not a great  deal of difference in  the 
impact force-time relationships and contact times among 
hammers of zero, one, two  and three inches. Thus,  in 
contrast with the  above cases, the behavior of the soft 

'ime ( g sec) 

Figure 5 Force-time curves for (a) one-inch, (b) two-inch 
and (c) three-inch  hammer  striking stiff spring. ( k  = 5 X 1 0  
lb/in.). 

Figure 6 Force-time curve for (a) lumped mass, (b) one-inch 
hammer,  (c) two-inch hammer  and  (d) three-inch hammer 
striking  ribbon-paper  combination ( k ,  = 5000 lb/in., k ,  = 
10,000 lb/in., x. = 0.003 in., cz = 1 lb sec/in.). 

1 Time ( p sec ) 113 
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Figure 7 Hysteresis  curve.  Same  conditions  as Fig. 6.  

Figure 8 Force-time curves for hammer and typeslug ( k  = 
250,000 lb/in., kn = 10,000 Ib/in., k22 = 20,000 lb/in., c1 = 
100 lb  sec/in., cz = 0.2 lb sec/in., x. = 0.004 in.). 
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paper-ribbon  combination  dominates the dynamic so- 
lution. The parameters of the paper model were obtained 
by running the computer model several times and adjusting 
the parameters  until responses close to  the experimental 
results were obtained. It should  be  pointed out  that this 
is currently the only way to  obtain values for these pa- 
rameters and is the technique used in all the work reported 
here. These parameters, because of their macroscopic 
nature, depend on  the geometry of the contact area, 
and  on  the force and velocity curves of the system. This 
impact geometry dependence is easily envisioned if one 
considers the case of a dot or a period being the impact 
form  rather  than  the flat hammer face. The same initial 

114 and dynamic  conditions before impact would result in 
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markedly different viscous losses. The greater stresses 
under the  dot would caw.? much higher embossing or 
permanent  deformation ar:d fiber destruction and  the 
air flow and microflow losxs would be of different order. 
At the present time, no microscopic or point model of 
the impact process exists with parameters  independent 
of these factors. Thus, ally indcpendent  determination  of, 
say, the damping paramc.er would depend on  the con- 
ditions  under which the  exeriment was run.  In  order  to 
ascertain the value of ti% pavameter for  the ranges of 
force and displacement c wered in’ the simulation, the 
same experimental conditions and impact geometry must 
be used. A hysteresis curve lor  the case of a  lumped mass 
striking the ribbon and paper is shown in Fig. 7. These 
data were computed from  the same run  as shown in Fig. 
6(a). The force is plotted as a function of displacement 
in  the ribbon-paper  combination and  the  area inside the 
curve is equal  to  the energy extracted from  the hammer. 

The simulation with all  the elements in the model, i.e., 
the platen, typeslug, ribbon, paper  and hammer,  indicates 
that in  this case it does not matter significantly whether 
the hammer is considered as a lumped mass or a three- 
inch bar.  The effect  of the  paper  and ribbon,  along with 
the movable typeslug, completely dominates the wave 
propagation in  the hammer. The force-time curve com- 
puted using our model is compared with the experimental 
results  in Fig. 8. It is interesting to  note  that  the parameters 
that describe the behavior of the paper-ribbon com- 
bination in this case are not the same as when the typeslug 
is absent. This is due, as indicated, to  the fact that with 
the character present the stresses are much higher. The 
force is distributed over the area of the type  character 
instead of over the entire facc of the hammer. In fact, 
the force-time curve depends on  the particular  character 
being struck.  These experiments were all performed by 
striking the “8”. Other experiments performed by striking 
a  “period” occasioned much lower forces because there 
was more  penetration by the character. This observation 
underlines the fact that  the dissipative characteristics of 
the impact process are extremely sensitive to  the detailed 
geometries of the impacting surfaces. It  has been noted 
that there is a marked difference in impact losses even 
when gross geometries are kept the same but  surface 
conditions are changed, e.g., the impact in  air  on a  paper- 
ribbon-platen  combination by a rod, first with a polished 
end  and then with a scored end. To make engineering 
comparisons of the factors such as we have done,  care 
must be taken  to keep the interface characteristics and 
impact dynamics the same. Therefore, the momentum 
of the hammer was kept  constant throughout  all tests. 
This allowed us to duplicate the impact loss factors and 
make meaningful comparisons of the dynamic differences 
due  to changes in hammer  length.  Figure 8 is  the force- 
time  curve  computed for  the two-inch hammer. The 
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Figure 9 Hysteresis curve. Same run as  Fig. 8. 

results for a point-mass hammer,  a one-inch and a three- 
inch hammer essentially coincide with this curve. Again 
it is shown that  the behavior of the typeslug and  the 
paper-ribbon  combination have much more influence on 
the dynamic aspects of printing than does the length of 
the hammer. 

Figure 9 shows the hysteresis curve for  the case shown 
in Fig. 8. Much  more energy is absorbed by the paper- 
ribbon  combination in this case than  in  the case of the 
hammer only. This is  due  to  the presence of the type 
character, which causes more  permanent  deformation 
and different microflow losses. 

The double  peak in  the force-time curve in Fig. 8 and 
the spike-like reversal in  the hysteresis curve are due to 
the inertia of the typeslug as  it is accelerated from rest 
and before it hits the platen.  After  striking the platen, 
the typeslug rebounds at  about  the same speed as  that 
at which it hits. It then imparts this  momentum to  the 
hammer, causing the hammer to  rebound  and producing 
the second peak in  the force-time curve. 

Experimental  runs on multicopy printing  indicated, 
as expected, that  the prolongation of the contact  time 
further masked any  hammer effects. A generally less 
dissipative system was observed due  almost certainly 
to  the reduction  in embossing or permanent  deformation. 

Conclusions 
A model for  the impact print mechanism of a high-speed 
printer has been developed that describes all of the salient 
features of the process. This model has been used to 
determine the effect  of hammer length on contact time. 
It  is  found  that  the dynamic behavior of the  ribbon  and 
paper can be modeled as a lumped system characterized 
by a nonlinear spring, a  nonlinear dashpot,  and hysteresis. 
This  nonlinear, dissipative behavior completely masks 
the effect  of hammer length. Therefore, in analyzing 
the printing process, it is far more important  to accurately 
model the behavior of the  ribbon  and paper than it is 
to include the effect of wave propagation in  the hammer. 
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