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Effect of Hammer Length and Nonlinear Paper-
ribbon Characteristics on Impact Printing

Abstract: An analysis of the impact process in a particular type of high-speed printer was undertaken to determine the effect of hammer
length on the contact time. The hammer is modeled as a one dimensional wave propagation medium and the paper-ribbon combination
as a dissipative, nonlinear medium with hysteresis. The integrated macroscopic viscoelastic parameters for a particular impact geometry
and hammer momentum were determined from a combination of the analytical model and the experiments run on an instrumented
printer robot. Permanent deformation of the paper-ribbon caused by character penetration was also determined in this manner. The
simulated model was then used to predict the change in dynamic behavior of such a system due to variations of the hammer length.
The hammer length is shown to have only a tertiary effect on contact time in such a dissipative deformable nonlinear system. This
result demonstrates that the widely discussed use of hammer length as a design parameter to control contact time in impact printing

is invalid for such a dissipative system.

Iintroduction

Impact printing, in the mechanism studied in this work,
is a complex mechanical process involving a hammer,
a paper-ribbon combination and a typeslug. As in most
high speed printers, the dynamics of this print mechanism
are a major determinant of the ultimate speed attainable.
In particular, the duration of contact between the paper-
ribbon combination and the hammer is an important
design factor, affecting both mechanical speed and the
print transfer process. Of the dynamic parameters con-
trolling contact time, hammer momentum is one obvious
concern but is strongly constrained by the energy and
force requirements of print transfer. Less obvious are
the effects of elastic wave propagation in the hammer
and the effects of the nonlinear, dissipative, deformable
medium represented by the paper and ribbon. Discussions
in recent times, based to a large extent on classical elastic
wave propagation arguments, have indicated that hammer
length is especially significant. It is shown, however,
that the dissipative behavior of the paper-ribbon medium
has considerably more effect than hammer length in a
printer of the type considered here.

To evaluate the relative importance of the various
dynamic properties, data were taken from a series of experi-
mental measurements made on an instrumented printer
robot, which was essentially an IBM 1403-II with the
chain at rest (for easier instrumentation). The analytical
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Figure 1 IBM 1403-II printer hammer mechanism.

model was derived by considering the functional mech-
anisms that would be possible during impact and com-
bining their effects mathematically.

1403-Hl printing mechanism

The mechanism under study is shown in Fig. 1. The
hammer is actuated by the armature of a magnet with
an initial velocity of 100 in./sec. The hammer and the
typeslug each have a mass of 2.2 g. The print action takes
place as the paper-ribbon combination is squeezed between
the hammer and the typeslug. The stationary platen,
a laminate of steel and elastomer, is spaced about 0.001
in. from the typeslug. Each typeslug mounts two char-
acters and is fastened to a steel tape that moves in a
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direction perpendicular to the hammer motion. In the
robot the tape is at rest.

o Experimental method

The robot was constructed in order to determine what
happens during printing. Strain gages were used to
monitor the forces near the end of the hammer and in
the legs of the typeslug. Also, optical reflection techniques
were used to continuously measure the displacement of
the hammer. This measurement was used to determine
the velocity before and after impact.

To test the effect of the hammer length on the printing
process, six different hammers were constructed. Three
hammers were straight rods with lengths of one, two and
three inches. The other three hammers were modeled
after IBM 1403-II printer hammers and had the same set
of lengths. Each hammer had a mass of 2.2 g.

A typical record of force in the hammer and in the
typeslug legs is shown in Fig. 2. This experiment was
performed with the two-inch IBM 1403 printer hammer
but is typical of all the hammer configurations. In all
cases, the force-time curve for the hammer had the double
peak shown and the maximum force in the typeslug
legs occurred between the two hammer peaks. Also,
note that there is no force in the typeslug legs until about
the time of the first maximum in the hammer force curve.

Analytical model of the print mechanism

In this section, we describe the mathematical model for
simulating the force-time curves of the experiments. The
hammer is considered to be a long, thin rod capable of
transmitting longitudinal stress waves. The paper and
ribbon are taken to be a highly nonlinear, dissipative
medium. The typeslug is allowed to translate and rotate
but is constrained in this motion by the pressure of the
platen.

o Hammer model

An IBM 1403-11 printer hammer (shown in Fig. 1) is
assumed to be an elastic body capable of transmitting
one-dimensional stress waves. While this is not strictly
true because of the complicated geometry, the assumption
will allow us to show that contact time does not depend
on wave propagation. A more exact theory would not
alter this conclusion since the time scale of mechanical
events will be shown to be long as compared with wave
propagation times.

A portion of a hypothetical hammer is shown in Fig. 3.
The hammer is taken to be composed of several prismatic
segments. If the thickness of each segment is small com-
pared to the wavelengths involved, a one-dimensional
analysis is valid.

The assumption of one-dimensional wave propagation
leads to the following equations, which govern the motion.
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Figure 2 Strain records in hammer and typeslug. Upper
trace: strain in legs of typeslug. Lower trace: strain near
impacting end of the hammer. (20 usec/division.)

Figure 3 Segment of hypothetical hammer and its wave
characteristics.
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Equation (1) is a statement of Hooke’s law in one
dimension where A4, is the virtual area of the jth cross
section, E; Young’s modulus, F; the total force in the
section, and u; the displacement at the point x; and time .
A virtual area, instead of the actual area, is used to take
into account the fact that a very short segment of the
hammer will not have uniform stress over a cross section
if the segments on either side are much smaller in cross
section. Equation (2) results from Newton’s second law
of motion. The quantity A; is the area of the section and p;
is the density of the material.
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If Egs. (1) and (2) are combined, we obtain the wave
equation for the jth segment:

3 — 5= =0, where ¢ = E;4,'/p; 4;. (3)

This equation must be solved subject to the interface
conditions, the latter being that force F; and velocity v,
are continuous across segment interfaces. These conditions
are expressed as

v3(0, 1) = v(0, 1); 4

9u; (0, 1) ;o 0u; (0, )
(?xf - Ai Ei (‘)x,- ’

A, 'E;_, (&)
where the 4+ and — indicate values taken just beyond
and just in front of the interface, respectively.

We express the solution to the wave equation as a
D’Alembert solution; i.e., in terms of forward and back-

ward traveling waves,

oh(x;, 1) = v;.(F — x;/¢))

+ vt + x;/e) 4 Vs, x; > 05 (6)
vi(xg, ) = vt + x;/¢)
+ yi-(t — xi/ci—l) + Vo, x; <0, @)

where ¥V, is the initial velocity.
The displacement u; can be expressed as

wix;, )= u (0 x;/ci-0) + wi(t — x;/¢i )+ Vot, (8)

where u; and w; are the displacement amplitudes of back-
ward and forward traveling waves respectively. The
strain is

Qui (x;,8) 1 ’
T . [u; "t 4 x;/ci-1)
T+ wio (= x;/c;-0)], 9

where the prime denotes differentiation with respect to
the argument. Similarly, the velocity can be written as

- Ouilx, t
by = u,_((;c,___) = u; "t + x;/c;-1)
t
+ wi'(t = xi/cia) + V. (10)
Therefore, we can use the fact that v, = u,_’ and
y;- = w;_' to obtain our desired expression,
Ou; (x;, 1)
ax,-

= Ci_—11[Uf-(t + xi/cio) — yi-(t = x;/e;2)]. (A1)

Of course, there is an expression similar to Eq. (11) for
ou’/dx;.
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We now have expressions for all the quantities that
occur in the interface conditions. The substitution of
these expressions into the interface conditions yields the
following relations:

0; (D) + ¥ () = v;-() + y;-(®); (12)
(A "Ej-i/e;-)lwi- () — y;-(1)]

= A/E/c)l—v; () + y;u(O].  (13)
We now observe that
Yi-(®) = vje1, ot — Dximi/ei0); 14
Yis() = vy, -(t — Ax;/c)). 15)

These conditions are valid because the equations give
the values of a velocity at two different points on the
same characteristic. Equations (12) and (13) can be solved
for v;, in terms of v;,,. at an earlier time by using Egs.
(14) and (15). This solution is

v;-(t) = (z;-y + 2,) " [22;0;1,-(t — Ax;/c;)
+ @1 — 20, — Ax;y/eil)) (16)
vi () = (zio1 + 2;) (22050, — Axia/ci)
+ @i =z, (¢ — Ax;/c))]. a7n
The quantities z; are impedances given by
z = (4,4/E;p))’. (18)

At the left-hand boundary (where the impact occurs)
the force is given by

om

F, = A\E, ox
1

(19)

z1=0

The boundary values are

9 | () 4 pa(t — Axi/e)] and (20)
axl z1=0

duy .

Tl =0 e = an/e) + Ve QD

Therefore, combining Egs. (19), (20) and (21), we can
write

9y
ot

= Vo — (@1 Fo/ A E) + 20,_(t — Axi/cy).
z,=0
(22)

The boundary condition at the right-hand end of the
hammer can be satisfied by setting the impedance in the
Nth section (there are N — 1 actual sections) to zero.
Therefore, the boundary condition becomes

On-(t) = Uy-y,+(t — Axy_1/cx-1). (23)
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o Typeslug model

The typeslug, shown in Fig. 4, is assumed to be a rigid
mass with translational and rotational degrees of freedom.
The rotation is about an axis perpendicular to the cross
section shown. Before the hammer strikes the paper-
ribbon combination, the typeslug is about 0.001 in. from
the platen. The force of impact drives the typeslug into
the platen. There is assumed to be a spring restoring
force between the legs of the typeslug and the platen.
Also, in series with this spring is a dashpot that simulates
the effect of energy carried away in the form of stress
waves. The equations of motion for the siug are

dU,

P Vs (24)
—"ddljm = (F, — F, — F)/My; (25)

dé

it and (26)
ddt = [aa(Fc — Fa) - Fbab — kt 0]/Mmk27 (27)

where U, and V,, are the displacement and velocity,
respectively, of the center of mass, M,, is the mass of the
slug and k is the radius of gyration. The constant k,

is the spring constant for a torsional spring. This spring

represents the rotational restraint of the steel tape and
neighboring typeslugs that tend to keep the typeslug
from rotating. The displacement of the platen, U, is
governed by the equation

=F,=F,+ F. (28)

where the forces F, and F, in the legs of the typeslug are
functions of the displacements x, and x,. That is,

F, = ki(x.); 29)
Fc = kl(xc)3 (30)
where

x, = U, + 6a, — U, and (31
X, = Uy — fa, — U, (32)

The function k, represents a nonlinear spring that has
zero force when the slug is not in contact with the platen
and behaves as a linear spring when they are in contact.
This can be expressed as

k(x) = (x + Unodkiis x < — Uno

=09 xZ—UmO’

(33)

where U, is the initial gap between the legs of the typeslug
and the platen and k,, is the linear spring constant.
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Figure 4 Typeslug, ribbon, paper and platen combination.

o Paper-ribbon combination
A model of the impact phenomena in this dissipative,
nonlinear deformable medium must describe the functional
behavior of the events that can be expected to take place.
The printing impact clearly transfers ink, embosses the
paper and transfers elastic energy to other areas. A
number of physical events obviously take place: Air is
squeezed out from between paper and ribbon and from
among paper fibers; ink is squeezed through fibers and
surfaces; air is compressed, fibers are compressed and
ink is compressed; and fibers are permanently deformed.
Many of these events are similar in nature and can be
described by the same functional representation; there
are viscous losses due to air and ink flow; nonlinear
elastic effects due to the compressible nature of air, ink
and paper fibers; and permanent deformation of paper
and ribbon fibers. Our model combines these similar
effects together and deals only with the lumped parameters
for such similar mechanisms. The model proposed here
consists of three major parts to describe the paper-ribbon
combination in impact: a nonlinear spring, viscous losses
and permanent deformation. In the discussion that follows,
a heuristic explanation is given for each of these aspects
of the model. However, as noted, the model details should
not be taken too literally. For example, although the
nonlinear spring characteristic is developed from the
compression of air between the paper-ribbon combination
and the platen, several other mechanisms could have
produced similar nonlinear force-deflection curves. The
effect of each one is included in the lumped parameter
for this type of behavior. The same point can be made
for the viscous losses and permanent deformation aspects
of this model. The important point is that the behavior
of the model supports and explains the physically ob-
servable results.

The paper-ribbon combination is taken to be two
large, flat parallel plates. Air is trapped between them
but can leak out at the ends. The configuration is shown
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in Fig. 4. If we assume the process to be thermodynamically
isothermal, the relationship among pressure P, volume V,
and leakage Q is

1 dP 1 {dV
Fa= TV [zw]' ¢Y

The volume ¥ is related to the displacement by
V= A(x, + x), (35)

where A is the area of the plates and x, is the initial air
gap. The force F on the plates is related to the pressure P by

F= —AP — Py, (36)

where P, is the atmospheric pressure. If Egs. (35) and (36)
are substituted into Eq. (34), the following relation is
obtained

dF/dt = (oA — F)dx/dt + Q/A4)/(x, -+ x). 37

In the special case for which there is no leakage (Q = 0),
this equation can be integrated to yield

F = PyAx/(xo + x). (38)
If we let k, = P,A/x,, then the relation can be written as
F = kox/(1 + x/x,). 39

The quantity k, has the dimensions of a spring constant
and, in fact, is the spring constant in the limit of small
displacement. As the paper is compressed, the value of x
becomes more negative and the “spring” becomes stiffer.
This compaction process fits a heuristic argument that
attributes a stiffening of the equivalent spring to an
increase in density of the system. Thus we have a model
for a two-parameter nonlinear spring, and the parameters
have physical meaning. The spring constant k, is deter-
mined from the slope of the force-deflection curve at
the origin and x; is the maximum deformation that the
paper-ribbon combination can withstand.

It is necessary to have a relationship among the leakage
Q, the force and the displacement. This relationship
states that the leakage is proportional to the force F and
proportional to the square of the gap between the ribbon
and paper. These assumptions yield the relation

0 = F(l + x/x0)°/Cs, (40)

where C, is a damping constant.

The assumption that the leakage is proportional to
the square of the paper-ribbon separation is made on
heuristic grounds. It indicates that as the ribbon and
paper come closer together it is harder for the air to leak
out. The leakage is therefore obviously related to the gap
between the ribbon and paper and decreases with de-
creasing gap. That is, there are viscous losses that depend
on velocity and these losses diminish as the point of
maximum compression is reached. As noted, other
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Table 1 Parameters used in numerical experiments.

Parameter Value Units

1b sec?/in.4

p 0.000736 (steel)

p 0.000259 (aluminum) 1b sec?/in.t

E 30 X 108 (steel) Ib/in.2

E 10 X 10% (aluminum) 1b/in.?

Vo 100 in. /sec

M, 1.182 X 10-8 Ib sec?/in.
or 2.1 grams

Un  0.00065 in.

a, 0.09 in.

ay 0.06 in.

k 0.09 in.

ke 2500 b in.

Print Area of Virtual area Incremental

hammer section (in.2)  of section (in.?) length (in.)

1 in. A =0.01645 A" = 0.00987 Ax = 1.0

2 in. A, = 0.01476 4/ = 0.009 Ax, = 0.372
A, = 0.0041 Ay = 0.0041 Ax, = 1.222
A; = 0.01476 A4y = 0.009 Ax; = 0.406

3in.

(aluminum) 4 = 0.0157 4’ = 0.0157 Ax = 3.0

microflow losses will have similar dependencies and their
effects have been lumped together in the various param-
eters of the model.

One other loss factor is introduced that allows for the
crushing of the paper and ribbon fibers. We let the spring
constant k, take on different values depending on whether
the paper-ribbon medium is being compressed or whether
it is expanding. As the paper and ribbon are compressed,
they act as a relatively soft spring. During this compres-
sion, however, fibers are being permanently deformed
and broken and there is permanent macroscopic deforma-
tion. As the hammer and typeslug begin to separate,
the compressed paper-ribbon combination acts as a
harder spring. This effect is introduced in the model by
using two spring constants k,, and k,,. The constant k,,
is used during compression and kj, is used during ex-
pansion. Therefore we set

ko = ks,
ko = ko,

dx/dt < 0;
dx/dt > 0; 1)

where koy 2> ko

Numerical experiments

The model as used in the numerical experiments is defined
by Eqgs. (16), (17), (23-30), (33) and (42); the parameters
of the model are defined in Table 1. The initial conditions
are that v; .(f) = 0 when ¢ < 0. New velocities are com-
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puted at each time step from Eqgs. (16) and (17). Linear
interpolation is used to find values of v;.(¢) at earlier
times when the characteristic does not coincide with a
point for which the velocity has been computed. The
set of ordinary differential equations that describes the
model was solved numerically by using a fourth-order
Runge-Kutta scheme [1] and the IBM APL\360 terminal
system. The use of a terminal system greatly facilitated
program debugging. More importantly, the interactive
nature of the terminal system allows one to experiment
numerically to determine realistic values for the parameters
involved.

Results

Most of the parameters in the model could be determined
from simple measurements or known values. These
include the elastic modulus of the hammer, the mass
of the typeslug and the initial velocity of the hammer.
A few of the parameters were determined from the experi-
ments run on the printer robot. For example, the effective
spring constant of the typeslug-platen combination was
measured by determining the length of time the slug is
in contact with the platen and using the relation

T =7 My/ky,. (42)

It is well known that if a thin prismatic bar traveling
in the axial direction strikes a rigid wall, the contact
time is twice the length of time it takes for a wave to
travel one length of the bar; that is, contact time 7. is

te = 2L/c, @3)

where L is the length of the bar and c is the wave speed.
In order to test the model of the hammer, several numerical
experiments were performed in which the hammer struck
a fairly stiff spring. These results are shown in Fig. 5.
Note that for the three-inch hammer, the contact time
is approximately 2L/c (30 usec).

The shape of the two-inch hammer is not well ap-
proximated by a prism. Because the mass is concentrated
at the ends, we obtain a force-time curve as shown in
Fig. 5(b). When the bar is not a prism, there is not a
simple relationship to predict the contact time because
of the many wave reflections at the discontinuities. How-
ever, it is clear that without losses the dynamics and
thus the contact time are indeed determined by the elastic
wave propagation in the hammer system if the impacted
medium is stiff compared with the elasticity of the hammer.

If, instead of striking a stiff spring, the hammer impacts
on paper and a ribbon that are backed by a stiff spring,
we obtain the force-time curves shown in Fig. 6. Notice
now that there is not a great deal of difference in the
impact force-time relationships and contact times among
hammers of zero, one, two and three inches. Thus, in
contrast with the above cases, the behavior of the soft
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Figure 5 Force-time curves for (a) one-inch, (b) two-inch
and (c) three-inch hammer striking stiff spring. (k = 5§ X 10°
1b/in.).

Figure 6 Force-time curve for (a) lumped mass, (b) one-inch
hammer, (¢) two-inch hammer and (d) three-inch hammer
striking ribbon-paper combination (kx = 5000 1b/in., k2 =
10,000 1b/in., xo = 0.003 in., ¢z = 1 1b sec/in.).
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Figure 7 Hysteresis curve. Same conditions as Fig. 6.

Figure 8 Force-time curves for hammer and typeslug (k =
250,000 1b/in., k= = 10,000 Ib/in., k= = 20,000 1b/in., ¢; =
100 1b sec/in., c2 = 0.2 1b sec/in., x, = 0.004 in.).
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paper-ribbon combination dominates the dynamic so-
lution. The parameters of the paper model were obtained
by running the computer model several times and adjusting
the parameters until responses close to the experimental
results were obtained. It should be pointed out that this
is currently the only way to obtain values for these pa-
rameters and is the technique used in all the work reported
here. These parameters, because of their macroscopic
nature, depend on the geometry of the contact area,
and on the force and velocity curves of the system. This
impact geometry dependence is easily envisioned if one
considers the case of a dot or a period being the impact
form rather than the flat hammer face. The same initial
and dynamic conditions before impact would result in
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markedly different viscous losses. The greater stresses
under the dot would cause much higher embossing or
permanent deformation and fiber destruction and the
air flow and microflow losscs would be of different order.
At the present time, no raicroscopic or point model of
the impact process exists with parameters independent
of these factors. Thus, any indcpendent determination of,
say, the damping parame.er would depend on the con-
ditions under which the ezperiment was run. In order to
ascertain the value of this parameter for the ranges of
force and displacement cvared in the simulation, the
same experimental conditions and impact geometry must
be used. A hysteresis curve ior the case of a lumped mass
striking the ribbon and paper is shown in Fig. 7. These
data were computed from the same run as shown in Fig.
6(a). The force is plotted as a function of displacement
in the ribbon-paper combination and the area inside the
curve is equal to the energy extracted from the hammer.

The simulation with all the elements in the model, i.e.,
the platen, typeslug, ribbon, paper and hammer, indicates
that in this case it does not matter significantly whether
the hammer is considered as a lumped mass or a three-
inch bar. The effect of the paper and ribbon, along with
the movable typeslug, completely dominates the wave
propagation in the hammer. The force-time curve com-
puted using our model is compared with the experimental
results in Fig. 8. It is interesting to note that the parameters
that describe the behavior of the paper-ribbon com-
bination in this case are not the same as when the typeslug
is absent. This is due, as indicated, to the fact that with
the character present the stresses are much higher. The
force is distributed over the area of the type character
instead of over the entire face of the hammer. In fact,
the force-time curve depends on the particular character
being struck. These experiments were all performed by
striking the ‘8", Other experiments performed by striking
a “period” occasioned much lower forces because there
was more penetration by the character. This observation
underlines the fact that the dissipative characteristics of
the impact process are extremely sensitive to the detailed
geometries of the impacting surfaces. It has been noted
that there is a marked difference in impact losses even
when gross geometries are kept the same but surface
conditions are changed, e.g., the impact in air on a paper-
ribbon-platen combination by a rod, first with a polished
end and then with a scored end. To make engineering
comparisons of the factors such as we have done, care
must be taken to keep the interface characteristics and
impact dynamics the same. Therefore, the momentum
of the hammer was kept constant throughout all tests.
This allowed us to duplicate the impact loss factors and
make meaningful comparisons of the dynamic differences
due to changes in hammer length. Figure 8 is the force-
time curve computed for the two-inch hammer. The
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Figure 9 Hysteresis curve. Same run as Fig. 8.

results for a point-mass hammer, a one-inch and a three-
inch hammer essentially coincide with this curve. Again
it is shown that the behavior of the typeslug and the
paper-ribbon combination have much more influence on
the dynamic aspects of printing than does the length of
the hammer.

Figure 9 shows the hysteresis curve for the case shown
in Fig. 8. Much more energy is absorbed by the paper-
ribbon combination in this case than in the case of the
hammer only. This is due to the presence of the type
character, which causes more permanent deformation
and different microflow losses.
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The double peak in the force-time curve in Fig. 8 and
the spike-like reversal in the hysteresis curve are due to
the inertia of the typeslug as it is accelerated from rest
and before it hits the platen. After striking the platen,
the typeslug rebounds at about the same speed as that
at which it hits. It then imparts this momentum to the
hammer, causing the hammer to rebound and producing
the second peak in the force-time curve.

Experimental runs on multicopy printing indicated,
as expected, that the prolongation of the contact time
further masked any hammer effects. A generally less
dissipative system was observed due almost certainly
to the reduction in embossing or permanent deformation.

Conclusions

A model for the impact print mechanism of a high-speed
printer has been developed that describes all of the salient
features of the process. This model has been used to
determine the effect of hammer length on contact time.
It is found that the dynamic behavior of the ribbon and
paper can be modeled as a lumped system characterized
by a nonlinear spring, a nonlinear dashpot, and hysteresis.
This nonlinear, dissipative behavior completely masks
the effect of hammer length. Therefore, in analyzing
the printing process, it is far more important to accurately
model the behavior of the ribbon and paper than it is
to include the effect of wave propagation in the hammer.
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