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H. Kobayashi

Application of Probabilistic Decoding to
Digital Magnetic Recording Systems

Abstract: A digital madgnetic recording system is viewed in this paper as a linear system that inherently includes a correlative level
encoder, This encoder can be regarded as a linear finite-state machine like a convolutional encoder. The maximum likelihood decoding
method recently devised by Viterbi to decode convolutional codes is then applied to digital magnetic recording systems. The decoding

algorithm and its implementation are discussed in detail.

Expressions for the decoding error probability are obtained and confirmed by computer simulations. It is shown that a significant
improvement in the performance with respect to other methods is achievable by the maximum likelihood decoding method. For
example, under the Gaussian noise assumption the proposed technique can reduce raw error rates in the 102 to 10~ range by a factor
of 50 to 300. These results indicate that the maximum likelihood decoding method gains as much as 2.5 dB in signal-to-noise ratio

over the conventional bit-by-bit detection method.

1. Introduction

In an earlier paper [1] it was shown that a digital magnetic
recording channel can be viewed as a partial-response
channel. The partial-response signalling or the correlative
level coding is a technique recently developed by Lender
[2], Kretzmer [3], van Gerwen [4] and by others in data
communication systems, in which a controlled amount
of intersymbol interference is intentionally introduced to
improve the information rate [5]. In a digital magnetic
recording system, on the other hand, the differentiation
operation inherent in the read-back process generates,
in effect, a correlative level coded sequence. Since the
representation of a digital magnetic recording channel
in terms of its equivalent partial-response channel is
essential to the development of the present paper, a brief
review of some earlier results [1, 6, 7] is given.

In the ordinary digital magnetic recording system
saturation recording is performed, i.e., two stable states
of magnetization represent binary data to be stored. Let
{a,} represent an information sequence of “0” and “1”
to be recorded on the magnetic surface. The magnetiza-
tion pattern m(t) recorded by the NRZ (Non-Return-to-
Zero) method is representable as

mt) = 2 Qa, — Du(t — kT) — U=, M
k=0

where u(r) is a rectangular pulse of duration T seconds:
1, 0<:t<T

u(®) = { - - 2
0, elsewhere,
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and 1(¢) is a unit step function:

10) = {1’ 120 3)
0, t < 0.

Here the amplitude of m(¢) is normalized by its saturation
levels, i.e., 41 and —1 represent two saturation levels
corresponding to “1” and “0” of the sequence {a}.
We assume in Eq. (1) that m(f) = —1 for ¢+ < 0, ie.,
the magnetic surface has been magnetized to the —1
saturation level before the arrival of data stream {a,}.

In the read-back process the relationship between the
output voltage e(f) and magnetization pattern m(z) is
given by

& = [ L mo | + 50, @

where * means convolution and A(¢) represents the mag-

netic head field distribution characterized by the response

due to a unit step function in m(?). Figure 1 illustrates

waveforms at various stages in the NRZ recording method.
On substituting Eq. (1) into (4) we obtain

e(t) = h(r) * [i Qa, — D{é@t — kT)
— 80t — kT — D} + a(t)]

=2 i xph(t — kT), (%)
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Figure 1 Waveforms at various stages in the NRZ record-
ing system.

where

— >
x, = {ak dr_1, k - 1 (6)
Ao, k = 0.

As seen from Eq. (6), the sequence {x,} is a three-level
sequence of —1’s, 0’s and +1’s. Unlike the situation in
data communication systems, the sequence {x,} per se
is not generated nor clearly observed in any part of the
recording system. What we actually observe is e(?), a
linear function of the sequence {x,} as shown in Eq. (5).
In other words, we consider for analytical convenience
that the magnetic recording channel contains some
imaginary correlative level encoder as a part of the system.
If {a,} takes on “1” and “0” equally likely and is inde-
pendent from bit-to-bit, the sequence {x,} possesses the
following statistical properties:

Pr{x,=0}=%Pri{x,=—1}=Pri{x,=+1}=1%
9
and
3, k=1
Elxx] = -1, e — 1] =1 ®
1 0, elsewhere.

Equation (8) shows that adjacent digits are highly cor-
related and hence {x,} is called a correlative level coded
sequence. In other words {x,} is a sequence that contains
redundancy.

Let e(r) be passed into a linear filter f(¢), the output of
which is denoted by #(?):

1) = e(®) * (o). ®

JANUARY 1971

Data {a} Correlative ER } i {
+

source level
encoder

YT AT A~

(a ) Two-state machine

12
D ; % & 4 Correlative x
so:rt:e Precoder ek > level 12} e}
encoder
a;(Eak$ “;c—l xk=“;(_a}(_l

(b) Two-state machinc

Figure 2 Discrete system representations of (a) the NRZ
recording system and (b) the NRZI recording system.

If the total response function g(r) = A(¢) * f(¢) satisfies
the condition

g(kT) = 6k,0’ k= 05 :l:l, :i:za Tt (10)

then the sampled value of the filter output is
r(kT) = 2x,. an

Equation (10) is satisfied if the filter f(#) includes an
equalizer so that the effect of intersymbol interference is
removed. However, the sampled voltage cannot be exactly
equal to 2x, because of the noise and the residue of inter-
symbol interference. Therefore, what we actually observe
at a sampling instant is represented by the following
random variable y,:

Ve = X+ 2z (12)
where z;, represents the total disturbance.

From Egs. (6) and (12) we obtain the block diagram of
Fig. 2(a), which is a linear discrete system representation
of a magnetic recording system. Here {a,} is a sequence
of “1” and “0”, {x,} is a sequence of —1’s, 0’s and +-1’s,
whereas {y,} is a random sequence that may take on any
real number. In earlier papers [1, 6, 7] we described a de-
cision scheme that quantizes {y,} into a three-level se-
quence {q,}. The data sequence {a;} can be estimated on
the basis of this “hard” decision output {g,} by solving Eq.
(6). However, an erroneous decision in {g,} would result
in the propagation of error in decoding the data sequence
{a,}. To avoid such error propagation, {a,} is transformed
into another binary sequence {al} by the following
relation before being passed into a correlative level
encoder:

a, = ;@ a}_, mod 2 (13a)
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Figure 3 State transition diagrams of (a) the NRZ record-
ing system and (b) the NRZI recording system.

Figure 4 Trellis picture representations of the state tran-
sition in (a) the NRZ recording system and (b) the NRZI
recording system,
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and @', = 0. (13b)

This transformation is usually called precoding in data
communication systems [2]. It has been shown [1] that the
so-called NRZI (Non-Return-to-Zero-Inverse) recording
method is equivalent to a precoding operation followed
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by the NRZ recording method. Figure 2(b) is an equivalent
discrete system representation of the NRZI system.

An algebraic method of error detection proposed in
References 1, 6 and 7 makes full use of the inherent
redundancy of the three-level sequence {x,}. This algebraic
approach has been further extended to the case in which the
receiver makes a ‘“‘soft” decision, i.e., the number of
quantization levels is increased from three to five or seven
including ambiguity levels [6, 7].

The present paper describes a completely different
approach to decoding the magnetic recording output.
This decoding method is a very simple scheme to realize
the maximum likelihood decoding (MLD) rule and is a
probabilistic decoding scheme rather than the algebraic
one discussed earlier. It will be shown that a significant
improvement in the performance is obtainable by the
proposed decoding scheme.

2. Maximum likelihood decoding

In 1967 Viterbi [8] devised a new nonsequential decoding
algorithm for convolutional codes. Forney [9] showed
that this algorithm is in fact the maximum likelihood
decoding rule. Omura [10] discussed the algorithm in a
state-space context and showed its equivalence to the
dynamic programming.

A correlative level encoder can be viewed as a simple
type of linear finite-state machine over the real number
field as opposed to a Galois field over which a convolu-
tional encoder is defined [11]. Now that we know the
equivalence between a magnetic recording channel and a
correlative level encoder, it is not difficult to show that
the Viterbi decoding rule is applicable to our problem.

We define s,, the state of the imaginary correlative level
encoder by the latest encoder input, ie., s, = a, in the
NRZ recording system and s, = a] in the NRZI recording
system. A precoder defined by Eq. (13) is also a two-state
machine; hence we can combine the precoder and cor-
relative encoder in the state representation of the NRZI
system. Figures 3(a) and (b) show the state transition
diagrams of the NRZ and NRZI recording systems,
respectively, where 1 and 0 in small circles represent two
possible states. Each time the machine receives a new bit,
“1” or “0”, a state transition takes place depending on the
input and the current state. Numbers —1, 0 or +1 attached
to arrows represent the encoder output {x,}. Although
the diagram of Fig. 3 completely describes our system,
the description in terms of the trellis picture introduced
by Forney [9] will provide a better understanding of the
decoding rule to be discussed.

The trellis picture of Fig. 4 shows the transition of the
encoder state as a function of time ¢. Here the input <“1”
or “0” and the corresponding output —1, 0 or 41 are
attached to each branch connecting two states. Starting
from s, = 0 the encoder follows a particular path according
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to the input sequence {a,}. Let us consider an input
sequence of length L, [aa; - -+ a.]. If each bit g, can take
on “1” or “0” with no restriction, there are 2" different
sequences. These result in 2” different paths on the trellis
of Fig. 4. An optimum decoder will be the one that
chooses, on the basis of the observation sequence {y,},
the most likely single path out of the 2* possible can-
didates.

In the present section we assume that the noise {z.}
is independent from digit to digit. This means that the
channel has no memory besides the one-digit memory
introduced by the correlative level encoder (i.e., one digit
memory due to the inherent differentiation of the reading
head). A more general case in which the disturbance
{z.} is correlated is considered in a later section.

Under the present assumption, for a given output
sequence [y;¥, - -+ y.], the likelihood function of a path
[s0; awas - - - a.] is given by the product of the likelihood
function of L transitions:

‘L
ag) = H (i [ Sk—15 @x)s
k=1 (14)

pye o vy | Sos @uay ¢

where

Sp—1 = Qp—

(NRZ system) (15a)

S =4a, = a_, P s, (NRZI system).  (15b)

On taking the logarithm we obtain
L
(s = o | sos @as -+ a) = 2 1 | sisrs @)
o (16)

where
1 )=TInpC |-) an

Equation (16) means that the log-likelihood function of a
given path is representable as the sum of the log-likelihood
function of all branches.

In the rest of the present and following sections we
limit ourselves to the NRZ recording method. All these
results can be interpreted for the NRZI system by simply
referring to the trellis picture of Fig. 4(b). Consider in
Fig. 4(a) two paths A, and A, defined by

M=I[n=0a=0a=0,aa - al 13)

N=1[0=0a=1a=0,aa - al, 19)

in which asa, --- a; are arbitrary but are common to
two paths A, and A,. Clearly A; and X, diverge at t = 1,
remerge at ¢+ = 2 and remain together beyond that.
Then for any output sequence y = [y,y, - -+ y.] the dif-
ference of the log-likelihood functions of two paths
A and A, is simply given, due to the relation (16), by

Iy | M) — i | M) = l(ny2 | 0; 00) — I(ny, | 0; 10). (20)
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Therefore, if I(y,y, | 0; 00) > I(y,y, | 0; 10), then path
Az can never be the most likely path, hence we might as
well discard path A\, at r = 2.

The MLD algorithm proceeds as follows: Starting from
the known initial state s,, the decoder considers two paths
emanating from s, and computes log-likelihood functions
I(y1 | s0; 0) and Iy, | so; 1). We define the metric of the
nodes s; = O and s, = 1 by

mi(0) = Iy, | 503 0) (21a)
and
m() = Iy | 503 1) ' 1b)

Then at r = 2, the decoder compares the log-likelihood
functions of two different paths leading to s, = 0, i.e.,
m(0) 4 iy, | 0; 0) and m;(1) + I(3, | 1; 0). Let the path
with a larger likelihood function be called the ““survivor”
[8], since this path possesses the possibility of being a
portion of the maximum likelihood path and hence should
be preserved. In like manner the decoder compares two
paths ending at s, = 1. To each of the nodes, s, = 0 and
s, = 1, the decoder assigns the metric which is the log-
likelihood function of the survivor:

my(0) = max {m;(0) + Ky, | 0; 0), my(1) + U(y2 | 1; 0)}

(22)
and
my(1) = max {m,(0) + y. | 0; 1), m(1) + K2 | 1; D}.
(23)

At time ¢t = k, in general, the decoder compares the log-
likelihood functions of two different paths leading to the
node s,= 1, i.e., m,_1(0)+1(y; | 0; ) and . (D)+ (v | 159
and discards the less likely path, where i = 0, 1. The metric
of the node s, = i, i = 0, 1 is the entire log-likelihood
function of the survived path and is given by

my(i) = max {mlc—l(o) + O | 05 ),

m (1) + 1 | 1; D, i=0,1. (24)

As is already clear from the above argument, for a given
time ¢+ = k two different paths have survived; one ending
at node s, = 0 and the other ending at node s, = 1. Thus
it seems as though the decoder had always to store the
two most-likely sequences from ¢t = 1 up to ¢t = k. If
that were the case, the decoder would need a huge memory
capacity. Fortunately such difficulty is resolved by the
following observation. Each time an event occurs such
that

m(i) = m_ () + Iy | S = Jr @, = 1) (25)

holds for both i = 0 and 1, then the most likely path up
to t = k — 1 is uniquely determined independently of the
succeeding digits. That is, the survivor ending at node
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Figure 5 An implementation example of the maximum likelihood decoder for the NRZ system.

s,—1 = j must be a portion (for 0 < 1 < k — 1) of the
maximum likelihood solution. Therefore, the decoder
can send out this portion of the sequence as the final
output and this part need no longer be stored in the
decoder.

Now we are in a position to derive a practical scheme
for implementing the maximum likelihood decoder. We
denote the actual signal levels in the channel by 44, 0
and — A4 instead of —1, 0 and +1. Let us assume here that
{z,} of Eq. (12) is a Gaussian random variable with zero
mean and variance ¢°. The log-likelihood functions of
Eqgs. (24) are now given by

Iy, | 0;0) = iy, | 1;1) = —y}/26° — In /270, (262)
Iy | 0;1) = — (e — 4)*/26° — In /270, (26b)
Iy, | 1;0) = —(v + A)°/26° — In \/270. (26c)

Notice that the terms —y?/2¢” — In +/ 27r¢ are common
to all the log-likelihood functions and hence can be deleted.
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Furthermore by dividing all terms by a constant A/2<72,
we have a simplified version of the maximum likelihood
decoding rule:

m,(0) = max {;’hk—l(o)’ ’:hk—l(l) - Yk — A/Z} (27a)
and

(1) = max {Fﬂk—l(o) + e — A/Z, 77’!1:—1(1)},
(27b)

where 71,(j) represents the modified metric of state j at
time 7 = k, where j = 0, 1. Note that ¢°, the variance of
the noise, does not appear in Eq. (27); i.e., the decoder
structure is independent of the signal-to-noise ratio.
Figure 5 shows the maximum likelihood decoder diagram-
matically based on the rule of Eq. (27).

Let [+ Gy_1 **° @p_saw2, 0] be the survivor ending
at state O at time 1t = k — 1. Similarly, let [ -+ &4y, - -
an-sar2, 1] be the survivor path ending at state 1 at time
t = k — 1. These two sequences are stored in the shift
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registers, Storage 0 and 1, respectively. If the size L of
the storages is sufficiently large, the digits a,-, and @,y
almost always agree: the agreement of a,-, and g,
is assured if and only if an event defined by Eq. (25)

has occurred at least once during the interval between

t = k — L and t = k. If it has not, we say that a buffer
overflow has taken place and the decoder will send out
ar_r if my0) > m(1) and g, otherwise. The problem
of buffer overflows is considered in a later section.

For a given channel output y, a new pair of surviving
paths is determined according to Eq. (27) along with the
new values of metrics 71,(0) and #1,(1). The switch SW 0
is to be connected to the position “0” if

m,(0) = max {’ﬁk—l(o)a (1) — ye — A/Z}
= my-1(0) (28)

and to “1”° otherwise. Similarly the switch SW 1 is to be
connected to 17" if

m(1) = max {’hk—1(0) + v - A/Z, ;”k—l(l)}
= Mp-1(1) (29)

and to “0” otherwise.

If SW 1 is set on the position “0”, the information
content of Storage 0 is written into Storage 1. Likewise
if SW 0 is connected to 17, the sequence of Storage 1 is
copied into Storage 0. Then the sequences in Storage 0
and Storage 1 are to be shifted to the right by one unit,
sending out the rightmost digit g, as the decoder output,
and at the same time “0” and ““1”" are fed into the leftmost
registers of Storages 0 and 1, respectively. Then the decoder
waits for the arrival of the next channel output y,..

3. Performance analysis and simulation

In the present section we present analytical results on the
performance of the MLD algorithm and the confirmation
of these results by computer simulations. Before we start
the performance analysis, an important remark should
be given. The MLD algorithm discussed in the previous
section is an optimum decoding rule only when 1) all
possible 2"V paths (where N is the total length of “message”
sequences) are a priori equally likely and when 2) the
criterion for optimality is minimization of message error
probability. Clearly condition 1) is satisfied in most cases,
since we usually assume that the information sequence
{a,} takes on “1” and “0” equally likely and indepen-
dently. The condition 2, however, is not always true.
Instead, information bit error rate rather than the message
error probability will be a more appropriate performance
measure in many cases. Under such a criterion the MLD
rule given above is not necessarily the optimum decoding
rule. In other words, the most likely coded message
sequence [£,%, - -+ £,] determined by the MLD does not
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t=j t=j+1, r=j+2 t=j+1—1 t=j+1

State |—» = O (e

~—— Correct path
— — Incorrect path

Figure 6 A correct path and its adversary path.

necessarily correspond to the decoded information se-
quence [aia; ‘- ay] that contains, on the average, the
minimum number of erroneous bits. Of course, if [£,£; - - -
Ry is error-free, so is [a,az - - ayl-

We see from the trellis picture of Fig. 4 that in the
maximum likelihood decoding algorithm an error occurs
when and only when the decoded path diverges from the
correct path at some time ¢ = j. They remerge at some time
later,say att = j-+ I, /> 2. Now we make an important
observation which will simplify our analysis. If a correct
path changes its state from s,_, = 0 to s, = 1, it generates
-+A as the channel sequence x,. Then under a high SNR
(signal-to-noise ratio) condition any path which includes
a transition from state s,_, = 1 to s, = 0 rarely remains as
a survivor, since such a transition represents the opposite
extreme level, — A, in the signal level. In other words,
it is very unlikely under a high SNR that the correct path
and the decoded path cross each other in the trellis picture.
So we may neglect such rare cases and yet be able to com-
pute the decoding error probability with satisfactory
accuracy.

Suppose that at time ¢ = j the decoder is located at the
correct state s; and we assume without loss of generality
that s; = 0. In Fig. 6 the solid line represents the correct
path and the broken line shows the incorrect path which
remerges for the first time at t = j -+ [,/ > 2. Note that
the state of the correct path remains unchanged (so does
the state of the incorrect path) between ¢t = j + 1 and
t = j+ I — 1. Figure 6 shows the case in which s;,; =
Sivp = ++- = §;,,;, 1 = 1. If the state of the correct path
ever changedat t = k(G + 1 < k< j+ [ — 1), then
remerging must have taken place at ¢ = & or before because
of the remark just made. In other words, if the correct path
changes the state at + = k, there exists no unmerged
“adversary” beyond ¢ = k. It is also important to notice
that for a given correct path there exists only one adversary
path that diverges at + = ; and remerges for the first
timeat t = j+ /L.

Consider the true path of Fig. 6. The adversary path
diverges from a given correct path at r = j and remerges
at ¢t = j -+ [ Take the likelihood ratio of that adversary
with respect to the correct path:
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A(y)

=P(y1'+1' yinsi=0a;00=-"-=4a;,,.1=0,a;,,=0)
PWYivr-- 'yi+l|si=0;ai+1= cr=a;a=1,a;,,=0)

_PUiaalsi=0; ;51 =0) p(yisi]sivi-1=0; @, =0)
P(yi+1|Sf=0§ a;j1=1) P(yi+t|sa‘+z—1=1, a;;=0)
(30)

The last expression is obtained using the fact that x, = 0
for j+ 2 < k < j+ I — 1 in both the correct and ad-
versary paths; hence these branches do not contribute to
the likelihood ratio function. We define random variable
w; which is proportional to the log-likelihood ratio func-
tion:

2
a

W1=A

In A(y). (31)

On substituting Egs. (17) and (26) into (31), we obtain
Wy = —Yi+ v+ A (32)

Since y;,; and y,,; are Gaussian random variables with
means A and — 4, respectively, and with variance ¢,
w, is also a Gaussian random variable with the mean
—A and variance 2¢°. Note that Eq. (32) could have
been obtained directly from Eq. (27). Although the likeli-
hood function of (30) was defined for the particular choice
of a correct path represented by Fig. 6, it can be shown
that the random variable w; defined by Eq. (31) holds
the same distribution when we interchange the correct
path and adversary, or when we let these two paths end
at state s;.; = 1 rather than at state s,,;, = 0.

As is clear from the decoding rule discussed in the
previous section, a decoding error occurs at t = j + /
when the random variable w, exceeds zero. The probability
that w, exceeds zero, with the conditions that the particular
correct path is selected at the information source and that
the correct path has survived at the decoderuptot= j+ I,
is given by

7 (w4 aw
Pe(’)‘fo"s( vza>\/z‘a

=1 — &d) = &(—d), 33

where ¢(-) is the unit normal density distribution function,
() is the complementary error function defined by

P(x) = /: o(1) dt (34)

and & is SNR in the channel:
d’ = E[x’l/¢* = A%/24°. (35)

This error event causes decoding error in (/ — 1) successive
information bits [a;,1a;.2 *** a;.;-1] in the NRZ record-
ing system. In the NRZI recording system the two digits
a;+, and a;,, are erroneously decoded and / — 2 digits
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between them are decoded correctly which is due to the
precoding operation. The expected number of decoding
error bits due to all possible incorrect paths which diverge
attr = jis

Povip = i (I — D27 P() = 48(—d) (36)
-2

for the NRZ system and the corresponding expression
for the NRZI system is

P.uLp = WZ (2)2"“"PP(l) = 48(—d), (37)

which is the same as (36). In Egs. (36) and (37) the weight-
ing factor 2~ % which is included gives the probability
that the correct path maintains the same state at least
during the interval from ¢+ = j 4 1 through r = j 4+
I— 1.

It should be remarked here that the expression given by
Eqg. (35) is not exactly the decoding error probability.
To be precise we should have defined P.(/) as the prob-
ability of the event that the correct path is beaten by the
adversary path diverging at ¢ = j for the first time at t =
j + 1. It can be shown after some manipulation that the
precise expression for P.(/) is given by

P.(D) = f_w &2 ()(—u)dp(w — V2 d) du. (38)

It is not hard to show that Eq. (38) is reduced to Eq. (33)
for d >> 1. For the numerical evaluation we use the
approximate solution (36) or (37), since the union bound
provides a satisfactory approximation under a high SNR
condition. Recall that we already adopted some approxi-
mating assumption concerning adversary paths at the
very beginning of the present section.

An impressive, but not totally unexpected, result .is
the fact that P.(/) of Eq. (33) is exactly equal to the
probability of error in a binary antipodal signalling
system with the same signal-to-noise ratio, i.e., i Equa-
tion (36) shows that the decoding error rate for the NRZ
system is asymptotically (i.e., as SNR goes to infinity)
four times the error rate in an optimum binary system
with the same SNR. Curve A of Fig. 7 is a plot of Eq.
(36) or (37), where the horizontal ordinate is SNR in dB,
i.e., 20 log;, d.

The performance represented by Curve A is now com-
pared with that of the conventional bit-by-bit detection
method for the NRZI system in which precoding elim-
inates the propagation of errors. If the thresholds of the
detector are set at —A4/2 and A/2, the bit error rate is
given by

P, g = $®(—d/2). (39)

If the variance o° of the noise is known in advance,
A/2 and —A/2 are not the optimum thresholds, since
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Figure 7 Probability of error vs SNR: (A) the maximum
likelihood decoding. (B) the bit-by-bit detection with thres-
holds ‘at —4/2 and A/2. (C) the bit-by-bit detection with
the optimum thresholds.

the channel symbol x; takes on A4, 0, and — 4 with prob-
abilities, 1, £ and %, respectively. The optimum thresholds
are t,,,, and —t,,,, where ¢, is the solution of the equation

%qs(topt/o') = %d)[(topt - A)/U-L (40)
which yields

¢ —4+”—21n2 “n
vt T T4 :

Thus the bit error rate with these optimum threshold
values is given by

d V2
Plpir = ‘I><-\/—2— — _d— ln2>
1 d V2
+3 4’(‘77 togm 2)' “42)

Curves B and C in Fig. 7 are plots of Egs. (39) and (41),
respectively. Their difference is fairly small. We can see,
however, a substantial difference between Curves A and
C. For example, at SNR = 13 dB P/, = 1.1 X 107°
whereas P, yrp = 1.8 X 107° ie., improvement by a
factor of 70. The performance improvement is even higher
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10 1 12 13 14 15 16 17

SNR(dB)

Figure 8 Simulation results of the maximum likelihood de-
coding method and the bit-by-bit detection method.

for a higher SNR: the decrease in the error probability
by a factor of several hundred is possible beyond SNR =
14 dB. In terms of SNR, the maximum likelihood decoding
method gains as much as 2.5 dB in the range of raw error
rate 107% to 10°*.

Now we shall report the computer simulation results
and confirm the analytical results obtained above. The
discrete channel models of Figs. 2(a) and (b) are assumed.
The data sequence {a,} was generated through the random
number generator program, and the noise sequence {z}
was generated by transforming the random variable with
a uniform distribution through a polynomial approxima-
tion formula of the mapping ® '(-) [12]. It will be worth
mentioning here that most existing subroutine programs
under the name “Gaussian Random Generator” are not
appropriate to this type of simulation, in which a high
accuracy is required at the tail of the probability density
distribution.

The simulation results are plotted in Fig. 8, where
decoding error rates for the NRZ and NRZI recording
methods are marked by X and O, respectively. The size
N of data is 10° for SNR = 10 to 11.5 dB, and 10° for
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Figure 9 Plot of Eq. (43) and simulation results for SNR =
10 dB and 13 dB.

SNR > 12 dB. Although the simulation data size N
should be even higher for a more reliable measurement
we may safely conclude that the analytical curve and
the experimental result agree satisfactorily. The NRZI
method gives a slightly better performance than the NRZ
method. This difference can be explained if we go back
to Eq. (38) and realize that the term &' *W)(< 1) in
Eq. (38) becomes non-negligible for a large / and hence
the error rate of the NRZI system is less than that of the
NRZ system.

In the simulation performed above the buffer length
L = 25 was chosen to avoid a possible overflow. As was
mentioned earlier a buffer overflow occurs when and
only when events defined by Eq. (25) are separated by
more than L time units. Let £ and k' (k' > k) be two
consecutive times at which Eq. (25) holds. Then the dis-
tribution of the separation s = k' — k is given by

-2 L | o1,
P(s) = 2 [S S+1]~s2 : (43)

The derivation of Eq. (43) will be found elsewhere [13].
Figure 9 shows the simulation results for SNR = 10 dB
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Figure 10 Probability of decoding error vs SNR when the
maximum likelihood decoder is preceded by a quantizer
with a uniform spacing A/N, where N = 4, 8, 16 and 32.

and SNR = 13 dB along with the analytical result of
(43). A satisfactory agreement is observed here also, and
for L > 13 the probability of buffer overflow is less than
107° per digit.

Thus far we have assumed that the decoder input y,
is a sampled but unquantized value (or, equivalently,
quantized into infinite number of levels). In an actual
implementation, presumably in a digital circuit, the
channel output y, must be quantized into a finite number
of levels before entering the decoder. Let us assume a
typical analog-to-digital converter, i.e., a uniformly
spaced quantizer with spacing 4/N, where A is the signal
level spacing as was defined in the previous section.
Figure 10 shows the variation of decoding error rate for
different quantization spacings and we may conclude that
N = 16 achieves almost the same performance as the
infinite quantization levels (less than 0.1 dB loss in SNR).
Thus if we quantize uniformly between —2A4 and 24,
a 6-bit analog-to-digital converter is sufficient to perform
the MLD satisfactorily, and the computation of metrics
mi0) and (1) is performed simply by addition and
subtraction of integers.
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Figure 11 Effects of correlated noise on the performance of
the maximum likelihood decoder. r = the correlation coef-
ficient of the noise.

4. Remarks and conclusions

Throughout our discussion it has been assumed that the
noise {z,} is an independent Gaussian random variable
and that the channel is memoryless. We include here a
few remarks concerning the behavior of the maximum
likelihood decoder under the circumstances where this
idealized assumption does not hold. The effect of cor-
relatedness of the noise sequence {z,} can be observed
from Eq. (32); that is, if the noises z;,, and z;,, are
highly correlated and have a positive correlation, then the
noises effectively cancel each other and the error event
will occur less frequently. On the other hand if two noises
z;., and z,,, are correlated negatively, the result will be
the reverse. Figure 11 is a plot of the curve P, vs SNR
when the noise is correlated according to the relation

Elz;2i.:] = Flo’, 44)
where lr < 1. 45)

As expected from the above discussion a better per-
formance is obtained for » > 0 than for the uncorrelated
case, i.e.,, r = 0.
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If the probability density function of the noise p,(-)
is not Gaussian, the simple structure of Fig. 5 is no
longer the maximum likelihood decoder. However Eq.
(32), which is the key to this superb decoding algorithm,
still holds and the performance can be computed exactly
in the same way as for a Gaussian case simply by replacing
Eq. (33) with

P(l) = f PP w4 A) dwi, (46)

where p‘¥(-) is the autocorrelation of the function p,(-):

@

pP0 = [ pone + w ax. )

The intersymbol interference, which is the major
obstacle to high-density recording reduces in effect the
margin of signal level separation against the random
noise. It is then clear that the MLD performs better than
the bit detection method in the presence of intersymbol
interference also. The probability of decoding error in the
presence of the intersymbol interference will be accord-
ingly increased. An upper bound for the decoding error
rate is given by

Peyip < 49[—d(1 — D)), (48)

where D (0 < D < 1) is the distortion coefficient due to
intersymbol interference given by

1
D=—2 lal (49)

8o k=0
where g, = g(kT) is the sampled response function of
the channel [see Eq. (10)].
We have shown in this paper the following results.

1) An analogy between convolutional coding and cor-
relative level coding (or the partial-response signalling)
is clarified, and a linear finite machine description of the
magnetic recording system has been derived.

2) The maximum likelihood decoding algorithm has been
applied to the NRZ and NRZI recording system. The
decoding rule and its practical implementation (Fig. 6)
are discussed in detail.

3) Asymptotic expressions for the decoding error prob-
ability [Egs. (36) and (37)] have been obtained. The
superb performance of the maximum likelihood decoder
has been shown and confirmed by computer simulations.
The maximum likelihood decoding method gains approxi-
mately 2.5 dB in SNR compared with the bit detection
method and the error rate is reduced by a factor of 50
to 300 in the raw error rates in the 10~° to 10™* range.
The improvement factor further increases for a higher
SNR.

4) Important problems associated with the maximum
likelihood decoding algorithm are discussed. These include
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the problem of buffer overflow, the number of quantiza-
tion levels required, the effects of correlatedness and non-
Gaussianness of the noise on the decoder performance,
and the degradation in the presence of intersymbol
interference.

Although our discussion has been limited to the NRZ
and NRZI recording methods, the MLD algorithm is
immediately applicable to the Interleaved NRZI, a high
density recording scheme recently proposed [1]. Extensions
to other types of recording systems such as MFM (modified
frequency modulation) and the double-frequency modula-
tion are rather straightforward. Under current investiga-
tion is an extension of the MLD algorithm to concatenated
or hybrid schemes, i.e., correlative level coding plus some
other coding such as the run-length limited coding, burst
error correcting codes, etc.
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