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Application of Probabilistic  Decoding  to 
Digital  Magnetic  Recording  Systems 

Abstract: A digital  magnetic  recording  system  is  viewed  in this paper as a linear  system that inherently  includes a correlative  level 
encoder.  This  encoder  can  be  regarded  as a linear  finite-state  machine  like a convolutional  encoder.  The  maximum  likelihood  decoding 
method  recently  devised by  Viterbi to decode  convolutional  codes  is  then  applied to digital  magnetic  recording  systems.  The  decoding 
algorithm  and its implementation  are  discussed  in  detail. 

Expressions for  the  decoding  error  probability  are  obtained  and  confirmed by computer  simulations. It is  shown that a significant 
improvement in the  performance  with  respect to other  methods is  achievable by the maximum  likelihood  decoding  method. For 
example,  under  the  Gaussian  noise  assumption  the  proposed  technique  can  reduce  raw  error  rates  in the 10-3 to 1 0 - 4  range by a factor 
of 50 to 300. These  results  indicate that the maximum  likelihood  decoding  method  gains  as  much  as 2.5 dB  in signal-to-noise ratio 
over the  conventional  bit-by-bit  detection  method. 

1. Introduction 
In  an earlier  paper [l] it was shown that a digital magnetic 
recording  channel  can be viewed as a  partial-response 
channel. The partial-response signalling or  the correlative 
level coding is a  technique recently developed by Lender 
[2], Kretzmer [3], van Gerwen [4] and by others in  data 
communication systems, in which a  controlled amount 
of intersymbol interference is intentionally  introduced to 
improve the information rate [5 ] .  In a digital magnetic 
recording system, on  the  other  hand,  the differentiation 
operation inherent in  the read-back process generates, 
in effect, a correlative level coded sequence. Since the 
representation of a  digital magnetic recording  channel 
in terms of its equivalent partial-response  channel is 
essential to  the development of the present paper, a brief 
review of some earlier results [l, 6, 71 is given. 

In  the ordinary digital magnetic recording system 
saturation recording is performed, i.e., two  stable  states 
of magnetization reptesent  binary data  to be stored. Let 
( a k }  represent an information sequence of “0” and “1” 
to be recorded on  the magnetic surface. The magnetiza- 
tion pattern m(t) recorded by the NRZ (Non-Return-to- 
Zero)  method is representable as 

m 

~ ( t )  = (2ak - l ) ~ ( t  - k T )  - l(- l) ,  (1) 
k = O  

where u(t)  is a  rectangular pulse of duration T seconds: 

OstsT u(t)  = ( 2 )  
64 elsewhere, 

and l ( t )  is a  unit  step function: 

l ( t )  = 1’ t > o  
(3)  

lo 9 t < 0 .  

Here  the amplitude of m(t) is normalized by its  saturation 
levels, i.e., “1 and -1 represent two saturation levels 
corresponding to “1” and “0” of the sequence { u k ) .  
We assume in  Eq. (1) that m(t) = -1  for t < 0, Le., 
the magnetic surface has been magnetized to  the -1 
saturation level before the  arrival of data stream { u k ] .  

In  the read-back process the relationship between the 
output voltage e(t)  and magnetization pattern m(t) is 
given  by 

4 t )  = [$ m(t)]  * hO), (4) 

where * means convolution and h(t)  represents the mag- 
netic head field distribution characterized by the response 
due  to a  unit  step  function in m(t). Figure 1 illustrates 
waveforms at various stages in  the  NRZ recording method. 

On substituting Eq. (1) into (4) we obtain 

e(t> = h( t )  * ( 2 4  - I ){  s(t  - k ~ )  [LO 
- s(t  - k T  - T ) }  + s ( t )  1 

m 

= 2 X k h ( t  - k T ) ,  
k = O  
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Figure 1 Waveforms  at  various  stages  in  the  NRZ  record- 
ing system. 

where 

x, = (6) 
k > l  

k = 0 .  

As seen from Eq. (6), the sequence {xk} is a three-level 
sequence of -l’s, 0’s and  +l’s. Unlike the situation  in 
data communication systems, the sequence {xk} per se 
is not generated nor clearly observed in  any part of the 
recording system. What we actually observe is e(t), a 
linear  function of the sequence {x,) as shown in Eq. (5). 
In other words, we consider for  analytical convenience 
that  the magnetic recording  channel  contains  some 
imaginary correlative level encoder as a part of the system. 
If { ak ) takes on “1” and “0” equally likely and is inde- 
pendent from bit-to-bit, the sequence {x,) possesses the 
following statistical properties: 

Pr {xk = O }  = 3,Pr  {x, = -1) = Pr {x lc  = + I )  = $ 
(7) 

and 

i 
1 

k = l  

E [ x ~ x ~ ]  = -;, Ik - I 1  = 1 (8) 

0, elsewhere. 

Equation (8) shows that adjacent digits are highly cor- 
related and hence { xk ) is called a correlative level coded 
sequence. In  other words { xk) is a sequence that contains 
redundancy. 

Let e(t) be passed into a linear filter f(t), the  output of 
which is denoted by r(t): 

r(t) = e(t) * f(t). (9) 

( a )  Two-state machine 

Data 
source level Precoder __c 

{ a ;  1 Correlative {.xk[ 

encoder 

(b)  Two-state rnachinc 

Figure 2 Discrete  system  representations of (a) the  NRZ 
recording  system  and (b) the  NRZI  recording  system. 

If the  total response function g(t)  = h(t) * f ( t )  satisfies 
the condition 

d k T )  = 6 k , 0 ,  k = 0, f l ,  f 2 ,  . . .  , (10) 

then the sampled value of the filter output is 

r(kT) = 2xk. (1 1) 

Equation (10) is satisfied if the filter f ( t )  includes an 
equalizer so that  the effect of intersymbol interference is 
removed. However, the sampled voltage cannot be exactly 
equal  to 2xk because of the noise and  the residue of inter- 
symbol interference. Therefore,  what we actually observe 
at a sampling instant is represented by the following 
random variable yk:  

y k  = xk + z k ,  (12) 

where zk represents the  total disturbance. 
From Eqs. (6) and (12) we obtain  the block diagram of 

Fig. 2(a), which is a linear discrete system representation 
of a magnetic recording system. Here { a, ) is a sequence 
of “1” and “O”, {x,) is a sequence of -l’s, 0’s and +1k, 
whereas ( yk  ) is a random sequence that may take  on any 
real number. In earlier papers [ l ,  6, 71 we described a de- 
cision scheme that quantizes { y ,  } into a three-level se- 
quence { qk } . The  data sequence { a, } can be estimated on 
the basis of this “hard” decision output { q k )  by solving Eq. 
(6). However, an erroneous decision in { q k )  would result 
in the propagation of error  in decoding the  data sequence 
{ a k } .  To avoid such error propagation, { a k }  is transformed 
into  another binary sequence { a : )  by the following 
relation before being passed into a correlative level 
encoder: 

a: = a,, @ mod 2 (1 3a) 65 
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“0” 
“1” by the  NRZ recording  method.  Figure 2(b) is an equivalent 

discrete system representation of the  NRZI system. 
An algebraic method of error detection proposed in 

References 1, 6 and 7  makes full use of the inherent 

approach has been further extended to  the case in which the 
receiver makes a “soft” decision, i.e., the number of 
quantization levels is increased from three to five or seven 
including ambiguity levels [6, 71. 

The present paper describes a completely different 
approach  to decoding the magnetic recording output. 
This decoding method is a very simple scheme to realize 
the maximum likelihood decoding (MLD) rule  and is a 
probabilistic decoding scheme rather  than  the algebraic 
one discussed earlier. It will be shown that a significant 
improvement in  the performance is obtainable by the 
proposed decoding scheme. 

2. Maximum likelihood decoding 
In 1967 Viterbi [SI devised a new nonsequential decoding 

Figure State transition diagrams of (a)  the NRZ record- that this  algorithm is in  fact the maximum likelihood 
ing system and (b) the  NRZI recording system. decoding rule. Omura [lo] discussed the  algorithm  in a 

state-space context and showed its equivalence to  the 

Figure 4 Trellis  picture  representations of the  state tran- dynamic  programming. 
sition  in (a)  the NRZ recording system and (b) the NRZI A correlative level encoder can be viewed as a simple 
recording system. type of linear finite-state machine over the real  number 

field as  opposed to a Galois field over which a convolu- 

“ l y  + l  c‘ly + ’21y +1 + equivalence between a magnetic recording channel and a 
correlative level encoder, it is not difficult to show that 

We define st, the  state of the imaginary correlative level 
encoder by the latest encoder input, i.e., sk = ah in the 
NRZ recording system and sh = a; in the  NRZI recording 
system. A precoder defined by Eq. (13) is also a  two-state 
machine; hence we can  combine the precoder and cor- 

system. Figures 3(a) and (b) show the  state transition 
diagrams of the  NRZ  and  NRZI recording systems, 

possible states. Each time the machine receives a new bit, 
“1” or “0”, a state transition  takes place depending on  the 

“0” redundancy of the three-level sequence (xk}. This algebraic 

(a )  

x 
(b)  

“0:’ “1” : Input, { ak 1 
-1,0,+1 : Output,{xkt 

@, 0 : State algorithm for convolutional codes. Forney [9] showed 

State0 - *c “0:’ 0 “0:’ 0 “o:’ “o:’ tional encoder is defined [ll]. Now that we know the 

State 1 - 0 ‘“0:’ -1 “0:’ -1 “0:’ - 1  “0:’ - 1 the Viterbi decoding rule is applicable to  our problem. 

“1:’ 0 “1:’ 0 ##1: ‘‘ly 

( a )  

State 0 * ~~ relative encoder in the  state representation of the  NRZI 

State 1 ”+ 0 

“1:’ f l  “1:’ f l  “? + 1  

-1: -1 -1:’ - 1 ‘‘1: -1 ‘‘1: - 1 respectively, where 1 and 0 in small circles represent two 

“0:’ 0 “0:’ 0 ‘y):’ “o:’ 

(b )  input  and  the current  state.  Numbers - 1,O or + 1 attached 

- l ,O,+l :Output ,{x , j  the diagram of Fig. 3 completely describes our system, 
“ 3, “ ,. 0, 1 : Input, {ak[ to arrows represent the encoder output ( xh} . Although 

the description in terms of the trellis picture  introduced 
by Forney [9] will provide  a  better  understanding of the 

and a!, = 0. (1 3b) 
decoding rule to be discussed. 

The trellis picture of Fig. 4 shows the transition of the 
This transformation is usually called precoding in  data encoder state  as a  function of time t .  Here  the  input “1” 
communication systems [2]. It  has been shown [l]  that  the or “0” and  the corresponding output - 1, 0 or +1  are 
so-called NRZI (Non-Return-to-Zero-Inverse) recording attached to each branch connecting two  states.  Starting 

66 method is equivalent to a precoding operation followed from so = 0 the encoder follows a  particular path according 
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to  the  input sequence { a k } .  Let us consider an  input 
sequence of length L,  [alaz . . . aL]. If each bit uk can take 
on “1” or “0” with no restriction,  there are  2” different 
sequences. These result in 2L different paths on  the trellis 
of Fig. 4. An optimum decoder will be the one that 
chooses, on  the basis of the observation sequence { y k }  , 
the most likely single path  out of the 2’’ possible can- 
didates. 

In  the present section we assume that  the noise {zk} 
is independent from digit to digit. This means that  the 
channel has  no memory besides the one-digit memory 
introduced by the correlative level encoder (i.e., one digit 
memory due  to  the inherent differentiation of the reading 
head). A  more general case in which the disturbance 
{ zk is correlated is considered in  a  later section. 

Under the present assumption,  for a given output 
sequence [y,y,  . . . y L ] ,  the likelihood function of a path 
[so; ala2 . . . aL] is  given by the product of the likelihood 
function of L transitions: 

L 

P(Y1Yz . . . YL I so; ala2 . . . U L )  = n P(Yk I S k - l ;  a,), 
k = l  

(14) 

where 

S.k-1 = Uk-1 (NRZ system) (1 5a) 

sg-1 = a:-, = Uk-1  @ Sk-2 (NRZI system). (15b) 

On taking the logarithm we obtain 
L 

l(YIY2 . . . Y L  I $ 0 ;  ala2 . . . aL) = c l(Yk I Sk-1; 4 
k = l  

(16) 

where 

I(. 1 .) = lnp(.  I .). (17) 

Equation (16) means that  the log-likelihood function of a 
given path is representable  as the sum of the log-likelihood 
function of all branches. 

In  the rest of the present and following sections we 
limit ourselves to  the  NRZ recording  method. All these 
results can be interpreted for  the  NRZI system by simply 
referring to  the trellis picture of Fig. 4(b). Consider  in 
Fig. 4(a) two paths hl and Xz defined by 

XI  = [so = 0; a1 = 0, a, = 0, a3a4 . . . U L l  (1 8) 

X, = [so = 0; a, = 1, a, = 0, a3a4 . . . U L I ,  (1 9) 

in which a,a4 . . . aL are  arbitrary but are common to 
two paths X, and X,. Clearly X, and Xz diverge at t = 1 ,  
remerge at t = 2 and remain together beyond that. 
Then  for any output sequence y = [y,y, . . . yl,] the dif- 
ference of the log-likelihood functions of two paths 
X, and Xz is simply given, due to  the relation (16), by 

KY I X,) - 4y I X,) = I(Y,Y, I 0;  00) - I(y,y, I 0; 10). (20) 

Therefore, if I(y,yz 1 0; 00) > I(yly,  1 0; lo), then path 
X, can never be the most likely path, hence we might as 
well discard path Xz at t = 2. 

The MLD algorithm proceeds as follows: Starting from 
the  known  initial state so, the decoder considers two paths 
emanating from so and computes log-likelihood functions 
f ( y ,  j s,; 0) and l(y, I so; 1). We define the metric of the 
nodes s1 = 0 and s, = 1 by 

mdO> = 0 1  I so; 0) (21 a) 

and 

rnI(1) = I(Yl I so; 1). (21b) 

Then  at t = 2, the decoder compares the log-likelihood 
functions of two different paths leading to sz = 0, i.e., 
m,(O) + I(yz I 0; 0) and  m,(l) + I(y, 1 1; 0). Let the  path 
with a larger likelihood function be called the “survivor” 
[ S I ,  since this path possesses the possibility of being a 
portion of the maximum likelihood path and hence should 
be preserved. In like manner the decoder compares two 
paths ending at s, = 1 .  To each of the nodes, s, = 0 and 
s, = 1 ,  the decoder assigns the metric which is the log- 

At  time t = k,  in general, the decoder compares the log- 
likelihood functions of two different paths leading to  the 
node sk= i, i.e., mk-l(0)+l(yk j 0; i) and mk-l( l )+l(yk [ 1; i) 
and discards the less likely path, where i = 0, 1 .  The metric 
of the node sk = i, i = 0, 1 is the entire log-likelihood 
function of the survived path  and is given  by 

mdi) = max {mk-do)  + I (Y ,  I 0; 9 ,  

mk-l(1) + 4Y.k I 1;  9 1 ,  i = 0, 1.  (24) 

As is already clear from  the above  argument, for a given 
time t = k two different paths have survived; one ending 
at node sk = 0 and  the  other ending at node sk = 1. Thus 
it seems as  though the decoder had always to store the 
two most-likely sequences from t = 1 up to t = k .  If 
that were the case, the decoder would need a huge memory 
capacity. Fortunately such difficulty  is resolved by the 
following observation. Each time an event occurs such 
that 

mk(i> = mk-dj)  + I sk-1 = j ;  a k  = 4 (25) 

holds  for  both i = 0 and 1, then the most likely path  up 
to t = k - 1 is uniquely determined independently of the 
succeeding digits. That is,  the survivor ending at node 67 
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Figure 5 An  implementation  example of the maximum  likelihood decoder for the NRZ system. 

= j must be a portion (for 0 5 t 5 k - 1) of the 
maximum likelihood solution.  Therefore, the decoder 
can send out this portion of the sequence as the final 
output  and this part need no longer be stored in  the 
decoder. 

Now we are in a position to derive a  practical scheme 
for implementing the maximum likelihood decoder. We 
denote the  actual signal levels in the channel by + A ,  0 
and - A  instead of - 1 , O  and + 1. Let us assume here that 
{ zk} of Eq. (12) is a Gaussian random variable with zero 
mean and variance a’. The log-likelihood functions of 
Eqs. (24) are now given  by 

I(y, I 0;   0)  = I(y, I 1; 1) = -yE/2a2 - In dG, (26a) 

l(y, 1 0; 1) = - ( yk  - ~)‘/2a’ - In dG, (26b) 

~ ( y ,  I 1; 0)  = - ( yk  + ~)‘/2a’ - In dG. (26c) 

Notice that  the terms -yi/2a2 - In d2a(r are common 
68 to all the log-likelihood functions and hence can  be deleted. 

Furthermore by dividing all  terms by a  constant  A/2a2, 
we have a simplified version of the maximum likelihood 
decoding rule: 

h,(O) = max { hk-l(0), rik-l(l)  - y ,  - A/2)  (27a) 

and 

= max { hk - l (o )  + Y ,  - 4 2 ,  h k - l ( l ) l ,  

(27b) 

where &(j)  represents the modified metric of state j at 
time t = k ,  where j = 0, 1. Note  that a’, the variance of 
the noise, does not appear in  Eq. (27); i.e., the decoder 
structure is independent of the signal-to-noise ratio. 
Figure 5 shows the maximum likelihood decoder diagram- 
matically based on  the rule of Eq. (27). 

Let [ . . .  ;ik-L . . .  ~ k - 3 ~ k - 2 ,  01 be the survivor ending 
at  state 0 at time t = k - 1. Similarly, let [. . . . 
~ k - 3 ~ k - 2 ,  11 be the survivor path ending at  state 1 at time 
t = k - 1. These two sequences are stored in  the shift 

v v  
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registers, Storage 0 and 1, respectively. If the size L of 
the storages is sufficiently large, the digits & - L  and & - L  

almost always agree: the agreement of &-L and ; Ik -L  

is assured if and only if an event defined by Eq. (25) 
has occurred at least once during the interval  between 
t = k - L and t = k .  If it has not, we say that a buffer 
overflow has  taken place and  the decoder will send out 
;k-L if m,(O) 2 rn,(l) and &-L otherwise. The problem 
of buffer overflows is considered in a  later section. 

For a given channel output y ,  a new pair of surviving 
paths is determined according to  Eq. (27) along with the 
new values of metrics hk(0) and &(I). The switch SW 0 
is to be connected to  the position “0” if 

k,(O) = max { kk-l(0), kk- l ( l )  - y ,  - A / 2 )  

= mii-l(o) (28) 

and  to “1” otherwise. Similarly the switch SW 1 is to be 
connected to “1” if 

hdl) = max {%-1(0> + Y ,  - A / 2 ,  hk-l(l)} 

= h,-l(l) (29) 

and  to “0” otherwise. 
If SW 1 is set on  the position “0”, the information 

content of Storage 0 is written into Storage 1. Likewise 
if SW 0 is connected to “l”, the sequence of Storage 1 is 
copied into Storage 0. Then  the sequences in  Storage 0 
and Storage 1 are  to be shifted to  the right by one unit, 
sending out  the rightmost digit as the decoder output, 
and  at  the same time “0” and “1” are fed into  the leftmost 
registers of Storages 0 and 1, respectively. Then the decoder 
waits for  the arrival of the next channel output y,,,. 

3. Performance  analysis  and  simulation 
In the present section we present analytical results on  the 
performance of the MLD algorithm and  the confirmation 
of these results by computer simulations. Before we start 
the performance analysis, an  important remark  should 
be given. The MLD algorithm discussed in the previous 
section is an optimum decoding rule  only when 1) all 
possible 2~v  paths (where N is the  total length of “message” 
sequences) are a  priori equally likely and when 2) the 
criterion for optimality is minimization of message error 
probability. Clearly condition 1) is satisfied in  most cases, 
since we usually assume that  the information sequence 
{ u k ]  takes on “1” and “0” equally likely and indepen- 
dently. The condition 2, however, is not always true. 
Instead,  information  bit error  rate  rather  than the message 
error probability will be a  more appropriate performance 
measure in  many cases. Under such a  criterion the MLD 
rule given above is not necessarily the optimum decoding 
rule. In  other words, the most likely coded message 
sequence El,?z . . . a,] determined by the  MLD does  not 

t = j + l ,  r= j+2  r = j + / - 1  t = j + /  -e-+ ......... +- 

State 1 ”Q . . . . . . . . . 

”-+ Correct path 
- -D Incorrect path 

Figure 6 A correct  path  and  its  adversary path. 

necessarily correspond to  the decoded information se- 
quence [a& . . . a,] that contains, on  the average, the 
minimum number of erroneous bits. Of course, if [&& . . . 
a,] is error-free, so is [alaz . . . ;,I. 

We  see from  the trellis picture of Fig. 4 that in the 
maximum likelihood decoding algorithm an  error occurs 
when and only when the decoded path diverges from  the 
correct  path at some time t = j .  They remerge at some time 
later, say at t = j + I, 12 2. Now we make an  important 
observation which  will simplify our analysis. If a correct 
path changes its state  from s,-, = 0 to s, = 1, it generates 
+ A  as  the channel sequence x,. Then  under  a high SNR 
(signal-to-noise ratio)  condition any  path which includes 
a  transition from state sk-l = 1 to sk = 0 rarely remains as 
a survivor, since such a  transition represents the opposite 
extreme level, - A ,  in  the signal level. In  other words, 
it is very unlikely under  a high SNR  that  the correct path 
and the decoded path cross each other in the trellis picture. 
So we may neglect such rare cases and yet be  able to com- 
pute the decoding error probability with satisfactory 
accuracy. 

Suppose that  at time t = j the decoder is located at  the 
correct state s, and we assume without loss of generality 
that si = 0. In Fig. 6 the solid line represents the correct 
path  and the  broken line shows the incorrect path which 
remerges for the first time at t = j + I ,  1 2 2. Note  that 
the  state of the correct  path  remains unchanged (so does 
the  state of the incorrect path) between t = j + 1 and 
t = . j  + 1 - 1. Figure 6 shows the case in which si+l = 

= . . . = s , + ~ - ~  = 1. If the  state of the correct path 
ever changed at t = k ( j  + 1 5 k 5 j + I - l),  then 
remerging must have taken place at t = k or before because 
of the remark just made. In  other words, if the correct path 
changes the  state  at t = k,  there exists no unmerged 
“adversary” beyond t = k .  It is also important  to notice 
that for  a given correct  path  there exists only one adversary 
path that diverges at t = j and remerges for  the first 
time at t = , j  + 1. 

Consider the  true  path of Fig. 6. The adversary path 
diverges from a given correct path  at t = j and remerges 
at t = j + 1. Take  the likelihood ratio of that adversary 
with respect to the  correct  path: 
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U Y )  

- - l ) ( y i + l ~ ~ ~ y i + ~ ~ S ~ = O ; a ~ + l = ~ ~ ~ = a ; + ~ - l = O , a i + ~ = O )  ___" 
~ ( y i + l ~ ~ ' y j + ~ ~ S ~ = O ; a ~ + l = ~ ~ ~ = a ~ + ~ - l = l , a i , z = O )  

P ( Y ~ + ~ I s ~ = O ;  a i+ ,=l )p(y i+l lS i+l - ,=1 ,  ai+z=O) 
- - P(yi+lIsi=O; ai+1=0) P b i + l l S i + l - l = O ;  ai+l=O). 

(30) 

The last expression is obtained using the fact that xk = 0 
for j + 2 5 k 5 j + 1 - 1 in  both  the correct and  ad- 
versary paths; hence these branches do  not contribute to 
the likelihood ratio function. We define random variable 
wz which is proportional to  the log-likelihood ratio func- 
tion: 

2 
U 

w z  = - In A(y). (31) 

On substituting Eqs. (17) and (26) into (31), we obtain 

A 

wz = -Yi+1 + YjtZ + A .  (32) 

Since yi+l  and y i+l  are Gaussian  random variables with 
means A and --A, respectively, and with variance u2, 
w z  is also a Gaussian random variable with the mean 
"A and variance 2u2. Note  that Eq. (32) could have 
been obtained directly from Eq. (27). Although the likeli- 
hood function of (30) was defined for  the particular choice 
of a correct path represented by Fig. 6, it can be shown 
that  the  random variable w z  defined by Eq. (31) holds 
the same distribution when we interchange the correct 
path and adversary, or when we let these two paths end 
at state s i+z  = 1 rather  than  at state = 0. 

As is clear from  the decoding rule discussed in  the 
previous section, a decoding error occurs at t = j + 1 
when the  random variable w 1  exceeds zero. The probability 
that w z  exceeds zero, with the conditions that  the particular 
correct path is selected at the  information source and  that 
the correct path  has survived at the decoder up  to t = j + 1, 
is given  by 

= 1 - @(d) = @(- d), (33) 

where +(. ) is the unit normal density distribution  function, 
%( .) is the complementary error  function defined by 

@(x) = 1' +(t)   dt  
- m  

(34) 

and d2 is SNR  in the channel: 

d2 = E[x:]/u2 = A2/2u2. (35) 

This  error event causes decoding error in (1 - 1) successive 
information bits [ai+lai+2 . . ai+2-1]  in the NRZ record- 
ing system. In the NRZI recording system the two digits 

70 ai+l  and ai+l  are erroneously decoded and 1 - 2 digits 

between them are decoded correctly which is due to the 
precoding operation. The expected number of decoding 
error bits due to  all possible incorrect paths which diverge 
at t = j is 

m 

P e M L D  = (1 - 1)2-(z-2)Pe(1) = 4@(-d) (36) 
z = 2  

for  the NRZ system and  the corresponding expression 
for the NRZI system is 

m 

P ,  M L D  (2)2-('-')~~(~) = 4@(-d), (37) 
1 = 2  

which is  the same as (36). In Eqs. (36) and (37) the weight- 
ing factor 2- ('-') which is included gives the probability 
that  the correct path maintains  the same state  at least 
during  the  interval  from t = j + 1 through t = j + 
1- 1. 

It should be remarked here that  the expression given by 
Eq. (35) is not exactly the decoding error probability. 
To be precise we should have defined P,(l) as  the prob- 
ability of the event that the correct path is beaten by the 
adversary path diverging at t = j for the first time at t = 

j + 1. It can be shown after some manipulation that  the 
precise expression for P,(l) is given by 

P, ( l )  = Im P ( u ) @ ( - u ~ ( u  - v2 d )  du. (38) 
-m 

It is not  hard  to show that Eq. (38) is reduced to Eq. (33) 
for d >> 1.  For the numerical evaluation we use the 
approximate  solution (36) or (37), since the union bound 
provides a satisfactory approximation under a high SNR 
condition. Recall that we already  adopted some approxi- 
mating assumption concerning adversary paths  at the 
very beginning of the present section. 

An impressive, but not totally unexpected, result is 
the  fact that P,(1) of Eq. (33) is exactly equal to  the 
probability of error  in a binary antipodal signalling 
system with the same signal-to-noise ratio, i.e., d2. Equa- 
tion (36) shows that  the decoding error rate  for the NRZ 
system is asymptotically (i.e., as  SNR goes to infinity) 
four times the  error  rate  in  an optimum  binary system 
with the same SNR. Curve A of Fig. 7 is a plot of Eq. 
(36) or (37), where the horizontal  ordinate  is SNR  in dB, 
Le., 20 log,, d. 

The performance represented by Curve  A  is now com- 
pared with that of the conventional bit-by-bit detection 
method for  the  NRZI system in which precoding elim- 
inates the propagation of errors. If the thresholds of the 
detector are set at - 4 2  and 4 2 ,  the bit error  rate is 
given by 

P, BIT = 3@(-d/2). (39) 

If the variance u2 of the noise is known in advance, 
A/2 and "A/2 are  not the  optimum thresholds, since 
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Figure 7 Probability of error vs SNR: (A)  the  maximum 
likelihood  decoding. (B)  the  bit-by-bit  detection  with  thres- 
holds 'at - A / 2  and A / 2 .  ( C )  the bit-by-bit detection  with 
the  optimum  thresholds. 

the channel symbol xk takes on A ,  0, and "A with prob- 
abilities, 2, 3 and $, respectively. The optimum  thresholds 
are tODt and - topt, where to,, is the  solution of the equation 

34(to,tl(.> = $4[(Lpt - A)/( . ] ,  (40) 

which yields 

tOpt = - + - In 2. A n2 

2 A  

Thus  the bit  error rate with these optimum  threshold 
values is  given  by 

Curves B and C in  Fig. 7 are plots of Eqs. (39) and (41), 
respectively. Their difference is fairly small. We can see, 
however, a substantial difference between Curves A and 
C. For example, at  SNR = 13 dB PLBIT = 1.1 X 
whereas P, M L D  = 1.8 X i.e., improvement by a 
factor of 70. The performance improvement is even higher 

10- 

10- 

10- 

10- 

10- 

e 10- 

o NRZI recording method 

x NRZ recording method 

10 11 12 13 14 15 16 1 
I I I 

10 11 12 13 14 15 16 1 

SNR(dB) 

Figure 8 Simulation  results of the  maximum  likelihood  de- 
coding  method  and  the bit-by-bit detection  method. 

for a higher SNR:  the decrease in the  error probability 
by a  factor of several hundred is possible beyond SNR = 
14 dB. In terms of SNR,  the maximum likelihood decoding 
method gains as much as 2.5 dB  in the range of raw  error 
rate 10-~   to  

Now we shall  report the computer  simulation results 
and confirm the analytical results obtained  above. The 
discrete channel models of Figs. 2(a) and (b) are assumed. 
The  data sequence { ak 1 was generated through the  random 
number  generator  program, and  the noise sequence { zk 1 
was generated by transforming the  random variable with 
a uniform  distribution  through a polynomial  approxima- 
tion formula of the mapping a"(.) [12]. It will be  worth 
mentioning here that most existing subroutine  programs 
under the name "Gaussian Random Generator" are  not 
appropriate  to this  type of simulation, in which a high 
accuracy is required at  the  tail of the probability density 
distribution. 

The simulation results are plotted in Fig. 8, where 
decoding error  rates for  the  NRZ  and  NRZI recording 
methods are marked by X and 0, respectively. The size 
N of data is lo5 for  SNR = 10 to 11.5 dB, and lo6 for 71 
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Figure 9 Plot of Eq. (43)  and simulation results for SNR = 
10 dB and 13 dB. 

SNR 2 12 dB. Although the simulation data size N 
should be  even higher for a more reliable measurement 
we may safely conclude that  the analytical curve and 
the experimental result agree satisfactorily. The  NRZI 
method gives a slightly better performance than  the  NRZ 
method. This difference can be explained if  we go back 
to Eq. (38) and realize that the  term &'((u)(< 1)  in 
Eq. (38)  becomes non-negligible for a large 1 and hence 
the error rate of the NRZI system is less than  that of the 
NRZ system. 

In the simulation performed above the buffer length 
L = 25 was chosen to avoid a possible overflow. As was 
mentioned earlier a buffer  overflow occurs when and 
only when events defined by Eq. (25) are separated by 
more than L time units. Let k and k' (k' > k)  be two 
consecutive times at which Eq. (25) holds. Then the dis- 
tribution of the  separation s = k' - k is given  by 

(43) 

The derivation of Eq. (43)  will  be found elsewhere [13]. 
72 Figure 9 shows the simulation results for SNR = 10 dB 
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12 13 14 15 16 

Figure 10 Probability of decoding error vs SNR when the 
maximum likelihood decoder is preceded by a quantizer 
with a  uniform spacing A / N ,  where N = 4, 8, 16 and 32. 

and  SNR = 13 dB along with the analytical result of 
(43). A satisfactory agreement is observed here also, and 
for L 2 13 the probability of buffer  overflow is less than 

Thus far we have assumed that the decoder input y ,  
is a sampled but unquantized value (or, equivalently, 
quantized into infinite number of  levels). In  an actual 
implementation, presumably in a digital circuit, the 
channel output y k  must be quantized into a finite number 
of  levels before entering the decoder. Let us assume a 
typical analog-to-digital converter, i.e., a uniformly 
spaced quantizer with spacing A / N ,  where A is the signal 
level spacing as was  defined in the previous section. 
Figure 10 shows the  variation of decoding error rate for 
different quantization spacings and we may conclude that 
N = 16 achieves almost the same performance as  the 
infinite quantization levels  (less than 0.1 dB loss in SNR). 
Thus if  we quantize uniformly between -2A and 2A, 
a 6-bit analog-to-digital converter is sufficient to perform 
the MLD satisfactorily, and  the computation of metrics 
iszk(0) and iszk(l) is performed simply by addition and 
subtraction of integers. 

per digit. 
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Figure 11 Effects of correlated noise on the  performance  of 
the maximum  likelihood  decoder. Y = the correlation coef- 
ficient of the  noise. 

4. Remarks and  conclusions 
Throughout  our discussion it has been assumed that  the 
noise { z,) is an independent  Gaussian random variable 
and  that  the channel is memoryless. We include here  a 
few remarks concerning the behavior of the maximum 
likelihood decoder under the circumstances where this 
idealized assumption  does not hold. The effect  of cor- 
relatedness of the noise sequence { z,] can  be observed 
from Eq. (32); that is, if the noises zi+l  and z ; + ~  are 
highly correlated and have a positive correlation,  then the 
noises effectively cancel each other  and  the  error event 
will occur less frequently. On  the  other  hand if two noises 
z +1 and z +1  are correlated negatively, the result will be 
the reverse. Figure 11  is a  plot of the curve P ,  vs SNR 
when the noise is correlated  according to  the relation 

E[zkzk+ll = r u , 1 2  (44) 

where Irl 5 1. (45) 

As expected from  the above discussion a better per- 
formance is obtained for r > 0 than  for  the uncorrelated 
case, i.e., r = 0. 

If the probability density function of the noise p , ( . )  
is not  Gaussian, the simple structure of Fig. 5 is no 
longer the maximum likelihood decoder. However Eq. 
(32), which is the key to this  superb decoding algorithm, 
still holds and  the performance  can be computed exactly 
in the same way as for a Gaussian case simply by replacing 
Eq. (33) with 

P A 0  = /*' P Y ( W 1  + A )  dw1, (46) 

P j " ( W )  = S_",..(X)P.(X + w) d x .  (47) 

where pj"(.) is the autocorrelation of the function p E ( . ) :  

The intersymbol interference, which is the major 
obstacle to high-density recording reduces in effect the 
margin of signal level separation  against the  random 
noise. It is then clear that  the MLD performs  better than 
the bit detection  method in  the presence of intersymbol 
interference also. The probability of decoding error in the 
presence of the intersymbol interference will  be accord- 
ingly increased. An upper bound  for  the decoding error 
rate is given  by 

p e  M L D  5 4@.["d(l - D)17 (48) 

where D (0 5 D < 1) is the  distortion coefficient due to 
intersymbol interference given by 

D = - l g k l ,  
1 

(49) 

where g,  = g(kT) is  the sampled response function of 
the channel [see Eq. (lo)]. 

We have shown in  this  paper the following results. 

1) An analogy between convolutional coding and cor- 
relative level coding (or the partial-response signalling) 
is clarified, and a linear finite machine description of the 
magnetic recording system has been derived. 
2) The maximum likelihood decoding algorithm has been 
applied to  the  NRZ  and  NRZI recording system. The 
decoding rule and  its practical  implementation (Fig. 6) 
are discussed in detail. 
3) Asymptotic expressions for  the decoding error  prob- 
ability [Eqs. (36) and (37)] have been obtained. The 
superb performance of the maximum likelihood decoder 
has been shown and confirmed by computer simulations. 
The maximum likelihood decoding method gains approxi- 
mately 2.5 dB  in SNR compared with the bit detection 
method and  the  error  rate is reduced by a factor of 50 
to 300 in the raw error rates in  the  to range. 
The improvement factor further increases for a higher 
SNR. 
4) Important problems associated with the maximum 
likelihood decoding algorithm are discussed. These include 73 
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the problem of buffer overflow, the number of quantiza- 
tion levels required, the effects of correlatedness and non- 
Gaussianness of the noise on the decoder performance, 
and  the degradation in the presence of intersymbol 
interference. 

Although our discussion has been limited to  the  NRZ 
and  NRZI recording methods, the  MLD algorithm is 
immediately applicable to the Interleaved NRZI, a high 
density recording scheme recently proposed [l]. Extensions 
to other types of recording systems such as  MFM (modified 
frequency modulation) and  the double-frequency modula- 
tion are rather straightforward. Under  current investiga- 
tion is an extension of the MLD algorithm to concatenated 
or hybrid schemes, Le., correlative level coding plus some 
other coding such as  the run-length limited coding, burst 
error correcting codes, etc. 
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