Letter to the Editor

Comment on “A Topological Theory
of Domain Velocity in Semi-
conductors”

Abstract: Recently Gunn presented a simple formula for the
domain velocity in a “diffusion-controlled” semiconductor,
based on topological arguments. It is shown that these argu-
ments are generally not valid. The apparent agreement be-
tween Gunn’s formula and Hauge’s computer simulation is
briefly discussed.

Introduction
Recently Gunn’, using topological arguments, concluded
that the velocity for a “diffusion-controlled” domain is
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where v, is the outside drift velocity, n, is the net donor
density, D(E) is the field-dependent diffusion coefficient,
and E, is the electric field for which v(E,) = v, in the
negative slope region of the velocity-field characteristic
[see Fig. 1(a)]. Butcher et al.® have arrived at another
analytical expression for vp, written in terms of integrals
around a closed trajectory in the phase plane (E, n) (where
n is the carrier density). Preliminary attempts to show the
equivalence between the two expressions have failed.'®
Hence, Hauge® performed a computer simulation of
domain formation and propagation for different piece-
wise linear shapes of D(E), and concluded that the cal-
culated domain velocities were consistent with (1).

Jones et al.* have proved analytically that Gunn’s
condition, from which the domain velocity is derived, is
invalid. They perform an exhaustive computer study of the
McCumber and Chynoweth model to reach all the per-
tinent topological classes of solutions. We intend to show
that these solutions can be classified by topological argu-
ments alone. Qur analysis shows that Gunn’s topological
arguments are false.

Analysis
Steadily propagating solutions in the “diffusion-con-
trolled™ case are described by Poisson’s equation
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and the equation (see Ref. 5)
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Figure 1 (a) Average velocity v of electrons as a function
of electric field; (b) trajectories in phase plane when ¢ = ¢,
ie. a high-field domain exists; (c) trajectories for ¢ < cq;
(d) trajectories for ¢ > co, showing the limit cycle (heavy
line).

where c is the “excess velocity™, i.e. vp = v, + ¢. Equa-
tions (2) and (3) are equivalent to equations (7) in Gunn’s
paper. Division of (3) by (2) yields
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which is the convenient form for phase plane investigation.

The singular points for the system, with a saturated
velocity-field characteristic as shown in Fig. 1(a), are
S: = (Ey, ny) and S, = (Es, n,) [see Fig. 1(a) for notation].
The nature of the singular points is established by linear-
izing (2) and (3), and solving the characteristic equation.
The roots are (i = 1, 2):
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1t can be shown that S, is a saddle point, and S, a node
or a focus depending upon the value of ¢. Defining
e dD,
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and referring positive direction in the phase plane to
increasing values of x, we find that S, is stable if ¢ > cp,
and unstable if ¢ < cp.

As mentioned by Gunn, a high-field domain is obtained
for the value ¢ = ¢, which yields the separatrix emanating
from S;, encircling S,, and ending on S; [denoted T,
in Fig. 1(b)]. Gunn also points out that all trajectories
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crossing T, will flow out of T, for ¢ < ¢y, and into T,
for ¢ > ¢, [as shown in Fig. 1(¢) and (d)]. Then, according
to Gunn, this change from inward to outward flow of
trajectories as ¢ passes through ¢, shows that, for ¢ = ¢y,
the trajectories immediately inside 7, must be closed
curves. And further, citing Gunn: “Because all the func-
tions entering the problem are continuous, no limit cycle
can exist inside T, under these conditions. The nest of
closed curves must therefore continue inward to enclose a
singular point, which is thus seen to be a center wheun
c= ¢.”

The fallacy of Gunn’s reasoning is his statement that
a limit cycle cannot exist. His conclusion is that ¢, must
equal ¢p. Let us assume that this is not true, i.e. ¢, # cp.
Then the nature of S, will not change when ¢ is varied
through ¢,. First, let us assume that ¢, < c¢p, which means
that S, is unstable for ¢ = c¢,, as shown in Fig. 1(b). When
¢ < ¢y, the trajectories emanating from the source .S, may
flow continuously outward and cross T,. This is the situa-
tion shown in Fig. 1(c). When ¢, < ¢ < cp, trajectories
still flow out of S,, while trajectories crossing 7T, flow
inward. Then, according to the Poincaré-Bendixon theo-
rem, (at least) one stable limit cycle must exist inside
Ty, as shown in Fig. 1(d). Note that in Figs. 1(b) through
(d), S; is shown as a focus. However, the topological
arguments are also valid if S, is a node.

The limit cycles shrink when ¢ increases. This is shown
by considering the limit cycle T corresponding to a given
value of c¢. For a still larger ¢, say ¢, the trajectories cross-
ing the limit cycle T flow inwards. Hence, a limit cycle
T’ must exist inside T. When ¢ passes through c¢p, the
limit cycle disappears, because S, then becomes a stable
focus.

When ¢ approaches ¢, the limit cycle approaches T,
but T, itself is not a limit cycle according to the usual
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definition, since it does not correspond to a periodic
solution.

Thus, we have shown the existence of one limit cycle
for each value of ¢ in the region ¢y < ¢ < ¢p.

If ¢; > cp, similar arguments can be used to show that
one unstable limit cycle exists for each value of ¢ in the
region ¢p < ¢ < ¢q.

It is thus shown that the condition ¢, = c¢p is not
necessary to describe the topology properly. As exposed
by Jones et al., S, is in general not a center for ¢ = ¢p.
This is a necessary condition for a center, but not at all
a sufficient condition.

On similar reasons, Gunn’s formula for vp in the
transfer-controlled case is in general invalid.

The apparent agreement between Gunn’s formula and
the domain velocity computed by Hauge, is partly due to
the moderate doping levels (n, = 10™ to 10*° cm™).
By raising n, to 10*® em™ one obtains a greater deviation.

Einar J. Aas

Electronics Research Laboratory
Norwegian Institute of Technology
Trondheim, Norway

July 6, 1970
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