668

D. J. Henderson
J. A. Barker
R. O. Watts

The Percus-Yevick Theory and
the Equation of State of the 6:12 Fluid*

Abstract: The Percus-Yevick theory can be used to calculate the pair distribution function and from this the equation of state. The
conventional method is to calculate the pressure of compressibility directly, unfortunately yielding poor results for the 6:12 fluid at low
temperatures. In this paper results are obtained using an indirect method, in which the energy is calculated from the pair distribution
function, and the equation of state is obtained by thermodynamic identities. These results are virtually in exact agreement with the
machine calculation results for the 6:12 potential and with experimental results for argon.

Introduction
Previous attempts to apply the theory of Percus and
Yevick' to the fluid state have been successful at high
temperatures but were not satsifactory at low tempera-
tures. In the present paper we will show a new computa-
tional method, based on the energy equation, for obtaining
the equation of state for the 6:12 potential with excellent
accuracy over a wide range of temperatures and densities.
Consider a fluid of N molecules at a temperature 7
and occupying a volume ¥V, If the total potential energy,
®, results solely from the additive contributions of a
pair potential, #(R), i.e.,
D, o) = 2 R, ()
1<
where the ry, are the positions of the molecules and R;; =
|r; — 1;|, then the thermodynamic properties of the fluid
can be calculated from either

pV_ _ . 2mp [Tdu 3

NeT L Tk ), ug ERORAR, @
dp\ ® 2

kT\Z2) =1+ 4rp | [e(R) — 11R%R, (3)
ap T o

or

U= ENkT + 2xNp f u(R)g(R)R*dR . )

0
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In the above equations, k is Boltzmann’s constant,
p = N/V, and p and U are the pressure and energy of
the fluid. The function g(R) is called the radial distribution
function and is proportional to the probability of finding
two molecules separated by a distance R. The constant
of proportionality is chosen so that g(R) — 1 as R— o,

We call (2), (3) and (4) the pressure, compressibility
and energy equations, respectively.

In this paper we assume that u(R) is given by the 6:12
potential:

o= - 2}

There is now considerable evidence,” for a real system
such as argon, that (1) is not valid and that the 6:12
potential is not a close approximation to u(R). Thus, the
most meaningful comparison of theoretical results based
on (5) is not with experimental results but with the quasi-
experimental direct simulation (Monte Carlo and molec-
ular dynamics) results.*"® If the experimental results for
argon are reduced by means of the parameters ¢/k =
119.8 K and ¢ = 3.405 A then the simulation results and
the experimental results are, in general, in good agree-
ment for both liquid and solid argon. This is to some
extent accidental and does not imply that u(R) is an
accurate pair potential. However, it does provide a justi-
fication for making comparisons with experimental results
for argon. We will consider more accurate pair potentials
in later publications.
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Figure 1 Pressure and compressibility curves giving results of our calculations. The curves are isotherms labelled with the appropriate
reduced temperatures. (a) Pressure, calculated from Eq. (2). The points given by X and @ give the results of Levesque (Ref. 9) and
Mandel et al. (Ref. 11), respectively, also calculated from Eq. (2). (b) Compressibility from Eq. (3). Points give results of Levesque
(Ref. 9), also calculated from Eq. (3). (c) Pressure calculated from Eq. (10). Points are results of Mandel et al. (Ref. 11), also calculated

from Eq. (10).

The most widely used theory for obtaining g(R) is that
of Percus and Yevick' (PY). In the PY theory, g(R)
satisfies the integral equation:

yi2) =1+ p f faA3)y(13)[e(23)y(23) — 1] drs, (6)

where e(R) = exp {—Bu(R)}, B = 1/kT) 0]
f(R) = e(R) — 1, and ®)
Y(R) = g(R)/e(R). ®

For convenience we use the notation y(12) = y(R,,) etc.
At this point we might mention that, if exact results for
g(R) are used, then (2), (3) and (4) will yield the same
exact equation of state. However, the PY g(R) is not
exact and, as a result, the consistency of these equations
is lost.

Previously, several authors® *® have solved (6) for g(R)
assuming Eq. (5) and then used (2) and (3) to calculate
the equation of state. At high temperatures, the results
obtained from (2) and (3) are consistent and are in good
agreement with the simulation and experimental results.
However, at the low temperatures characteristic of the
liquid phase, (2) and (3) yield results which differ widely
from each other and which are in poor agreement with
the simulation and experimental results.”'"'® As a re-
sult the PY theory has come to be regarded as an unsatis-
factory theory of the liquid state.

This view is no longer justified. Recently, Chen et al.,'*
as a result of considerations based on the perturbation
theory of liquids,'® have shown that the PY values for
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g(R) may be used with (4) to obtain values for the equa-
tion of state. This method involves more computation
than the conventional method based on (2) and (3),
because it involves a temperature integration to evaluate
the free energy from the energy. The PY equation is then
solved for many temperatures. However, the method leads
to excellent results. In this paper we present the results
of our calculations, based on the energy equation, for
the 6:12 potential. A preliminary account of these re-
sults has appeared elsewhere.*®

Solution of PY equation

Rather than solve (6) directly we have used the method
developed by Baxter.'” Our procedure is the same as that
described by Watts'® except that we follow his most
recent procedure'® and do not truncate #(R) until R > 60.
In addition, since y(R) varies much less rapidly than either
u(R) or e(R), we have interpolated additional values of
¥(R) before calculating the thermodynamic properties
from (2), (3) or (4).

Inasmuch as our method, which is based on the energy
equation, involves numerical integrations and differ-
entiations to obtain the thermodynamic properties, we
need as much accuracy as possible. In this regard it is
of interest to compare our results with those of other
investigators since one measure of the accuracy of both
our computational procedures and those of the other
investigators is the degree of consistency of the different
results. Thus, we have compared our results, calculated
from (2) and (3), with those of Levesque’ and Mandel
et al.,'" in Figs. 1(a) and 1(b). The agreement is good.
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Figure 2(a) Internal energy calculated from Eq. (4). The
curve gives the results of our calculations for p* = 0.85.
The points given by X give the results of the calculations
of Mandel et al. (Ref. 11), also calculated from Eq. (4),
and points given by () give the simulation results of Verlet
(Ref. 5).

Figure 2(b) Internal energy calculated from Eq. (4). The
curves are isotherms and are labelled with the appropriate
reduced temperatures. The broken portion of the lowest
temperature isotherm lies inside the two-phase region of the
energy equation of state. The points given by O, @, and O
are simulation results taken from Refs. 3, 4 and 3,
respectively. The point given by & was calculated from ex-
perimental data in Refs. 20 and 21 and the points given by
X are experimental results taken from Ref. 23.
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Figure 2(c) Internal energy at saturated vapor pressures.
The curve gives the results calculated from Eq. (4) using
the experimental argon densities. The points given by © and
@ are simulation results taken from Refs. 4 and 5, respec-
tively. The points given by (O were calculated from experi-
mental data in Refs. 20 and 21 and the points given by @
are experimental results taken from Ref. 22.

The reduced temperature and density are T* = kT/¢ and
p* = po’, respectively.

At low temperatures there is, for a given temperature,
a range of densities for which (6) has no solution. Thus,
the compressibility-equation pressures cannot be obtained
by a simple numerical integration of the compressibilities
obtained from (3). However, Baxter'® has shown that if
the pressure is calculated from

= =14 27p fw R%(R){g(R) — 2}dR

)

+ e [ dlinll — &)l + f@lda, (10)

[

where ¢(R) is the direct correlation function which is
given, in the PY theory, by

c(R) = f(R)y(R), an

and the Fourier transform of ¢(R) and is given by

. 4r 7 .

éq) = —q— f Re(R) sin gRdR, (12)
0

then the compressibility obtained from these pressures is
identical to those given by (3). The results which we have
obtained using (10) are in good agreement with those of
Mandel et al.'* This agreement may be seen in Fig. 1(c).

Finally in Fig. 2(a) we compare our results for the
energy, calculated from Eq. (4), with those calculated by
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Mandel et al.'* The reduced internal energy is defined as
U* = U/Ne— 5T* 13)

The agreement is good.

From these comparisons we see that all the calcula-
tions of the PY thermodynamic properties are in good
agreement. Khan’s results” are an exception and appear
to be seriously in error.’

Energy and heat capacity

We have calculated U,;* from (4) for 0.69 < T* < 2.74
in steps of 0.01 in (7*)"* and for 0.05 < p* < 1.00 in
steps of 0.025. This wide range of temperatures and
densities includes the entire liquid state and most of the
gaseous state for which simulation results or experimental
results'*~*° are available.

In Figs. 2(a), (b), and (c) we have shown the results
of our calculations for the energy. The agreement with
the simulation and the reduced experimental results for
argon is excellent. We have obtained the reduced internal
heat capacity at constant density,

C.* = C,/Nk — %, 14)

by means of a three-point numerical differentiation. These
results are shown in Figs. 3(a) and (b) and are seen to
be in good agreement with the simulation and the reduced
experimental results for argon.

The most interesting feature of our calculations of the
PY heat capacity is that the heat capacity becomes large
in the critical region. It is difficult to reach definitive con-
clusions since we have only numerical results. The heat
capacity, however, appears to be infinite at the compressi-
bility equation critical point. This conjecture is supported
by the fact that Baxter has found the heat capacity to be
a system of adhesive hard spheres, for which analytic
calculations can be made in the PY approximation, to
be infinite at the critical point in the compressibility
equation.

As we have already mentioned, the singularity in the
heat capacity occurs at the compressibility equation crit-
ical point and, as we shall see, not at the energy equation
critical point. This inconsistency in the PY theory does
not seem too important when one considers that the PY
theory is, to our knowledge, the first approximate theory
to predict an infinity in the heat capacity at constant
density of a liquid at the critical point.

It should be kept in mind that, for the system of adhe-
sive hard spheres, the PY critical exponent for the heat
capacity singularity is not in good agreement with the
experimental value for real liquids. No doubt the PY
critical exponents for the 6:12 potential are also not
reliable.

At first sight it may seem unrealistic to use Baxter’s
adhesive hard sphere model to support our conjectures
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Figure 3(a) Internal heat capacity calculated from Eq. (4).
The curves are isotherms and are labelled with the ap-
propriate reduced temperatures. The broken part of the
lowest temperature isotherm lies inside the two-phase re-
gion of the energy equation of state. The points given
by © and @® are simulation results taken from Refs. 3 and
4, respectively.

Figure 3(b) Internal heat capacity at saturated vapor pres-
sures. The curve gives the results calculated from Eq. (4)
using the experimental argon densities. The points given
by © are simulation results taken from Ref. 4 and the points
given by (O are experimental results taken from Ref. 21.
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Figure 4(a) Equation of state of 6:12 fluid at T* = 2.74.
The solid curve gives the perturbation theory results which
are used to obtain 4o, and the broken curves marked P
and C give the PY pressure and compressibility results. The
points given by @ and O are simulation results taken from
Refs. 3 and 5, respectively. The points given by X are ex-
perimental results taken from Ref. 23.

concerning the infinity in the heat capacity at the critical
point, but critical exponents appear not to depend strongly
on the nature of the system.

Baxter’s calculation, however, must be considered as
providing only weak support for the above conjecture
because a potential of Baxter’s type is somewhat unphys-
ical. It is possible that his model may not answer delicate
questions about C, correctly. Also, as Baxter points out,
there are unresolved difficulties in taking the limit that
must be taken preparatory to calculating C,. Thus the
question as to whether the PY value for C, at the critical
point is still open.

Bearman et al.>® have investigated the extrema in the
heat capacity and found good agreement with experiment
away from the critical point. Thus one heretofore un-
known success of the PY theory is its ability to give
good results for the heat capacity away from the critical
point and to give results for the heat capacity at the
critical point that are better than those of other approxi-
mate theories of liquids.
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Figure 4(b) Equation of state of 6:12 fluid at T* = 1.35.
The curves give the theoretical results. The points given by
O and @ give the simulation results taken from Refs. 5§
and 37, respectively, and the points given by X give experi-
mental results taken from Ref. 23.

Figure 4(c) Equation of state of 6:12 fluid at 7+ = 0.72.
The curves give the theoretical results. The points given by
@® and O give the simulation results taken from Refs. 4
and 5, respectively, and the points given by © are experi-
mental results taken from Ref. 24.
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Energy equation of state
Our procedure is to integrate (4) with respect to 1/T
to obtain the Helmholtz free energy:

A= 4y _ _, "
Ni T 2P ﬁ“Gd(ﬁe), (15)
where
eG(T, p) = —4r f g(RYu(R)R’dR (16)
0

and A4, is the Helmholtz free energy at the reference
temperature Bye. The pressure may be obtained by dif-
ferentiating (15) with respect to p. For the reference
temperature we chose 8,6 = 1/2.74, which is high enough
so that the PY theory is reliable. This may be seen from
Fig. 4(a). At T* = (Be) ' = 2.74 both the pressure and
compressibility isotherms are in good agreement with the
simulation and experimental argon results. We could use
either the PY pressure or compressibility isotherm to
provide A,. However, we chose to use perturbation theory
to obtain A,. In Fig. 4(a) we see that the perturbation
theory result is virtually in exact agreement with the
simulation and experimental results.

In Fig. 2(a) we have plotted the internal energy as a
function of 1/T* for p* = 0.85. The function is smooth
and thus there is no difficulty in performing the numerical
integration. For comparison we have plotted the simula-
tion results. The PY results lie somewhat higher than the
simulation results at the lower temperatures. This might
lead one to anticipate that poor results would be obtained
from (15) at low temperatures. However, the area between
the PY and simulation is small and, as we will see, does
not cause any appreciable errors.

In Figs. 4(b) and (c) we have compared the PY results
obtained from the pressure, compressibility and energy
equations with virial expansion,”® simulation and argon
experimental results. As the temperature is lowered the
pressure (and, to a lesser extent, the compressibility)
results become seriously in error. On the other hand the
energy equation results are virtually in exact agreement
with the simulation and experimental results.

In fact, as may be seen from Fig. 4(b), the PY energy
results are better than the pressure or compressibility
results obtained from the more complex second-order
PY2 theory.””? In Fig. 4(c) we have included the per-
turbation theory results (using the exact second-order
term) for T* = 0.72. Although the perturbation theory
result is better than the PY pressure or compressibility
results, it is inferior to the PY energy result. One might
be tempted to generalize and conjecture that the PY
energy equation is superior to perturbation theory. We
feel that this is a premature conclusion because we have
some indication, based on calculations using other poten-
tials, that the relative merits of the PY theory and per-
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turbation theory may vary somewhat with the potential
used.

One further virtue of this approach based on the energy
equation is that we obtain results for the free energy. The
free energy cannot be calculated directly from the pressure
or compressibility equations because such a calculation
of the free energy involves a density integration. This
presents no problem at high temperatures. However, at
low temperatures there is a range of densities for which
the PY equation has no solution. As a result the density
integration cannot be performed. Thus, we can calculate
the properties of the 6:12 liquid in equilibrium with its
vapor. These results are shown in Figs. 5(a), (b), and (c).
The PY energy results are virtually in exact agreement
with the machine results—even in the critical region.
Since the simulation calculations are made for finite sys-
tems, they do not take account adequately of the long-
range correlations characteristic of the critical region.
Thus, the critical point of the 6:12 fluid is almost cer-
tainly at a lower temperature than the machine calcula-
tions indicate. Hence, the PY energy estimates of the
critical point are almost certainly in error. However, it is
interesting that they are as accurate as the simulation
results. This may be seen from Table 1. We have included
the PY pressure critical constants in Table 1. Since these
constants are determined by extrapolation into the region
where the PY theory has no solution, we do not regard
the numbers as having much meaning. However, we do
include them because they are widely quoted.

We have calculated the entropy from the energy equa-
tion and (15). In Figs. 6(a) and (b) we have plotted the
results for the internal entropy defined by

Si* = S1/Nk

= S§/Nk—%—3%In (2”2';”> —Inpe. (A7)
The agreement with the simulation and experimental
results is excellent.

Finally, we have considered the solidification of the
6:12 fluid for which simulation results** and experimental
results are available.”’ The PY theory, as formulated in
(6), assumes the fluid to be isotropic and thus is not able
to treat solidification. However, we can adopt the pro-
cedure of Henderson and Barker®” and use a separate
theory to calculate the free energy of the solid phase.
As may be seen from Table 2, if the cell model®® is used
for the 6:12 solid, reasonable results are obtained for
the triple-point properties. If simulation results** for the
6:12 solid are used, excellent results are obtained.

Discussion
In this paper we have shown that the PY theory is an
excellent theory of the liquid state when used with the
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Figure 5(a) Equation of state of 6:12 fluid. The solid curves
are isotherms calculated from Eq. (15) and are labelled with
the appropriate reduced temperatures. The reduced volume
is v* = V/Nd*

Figure 5(c) Reduced vapor pressures for 6:12 fluid. The
solid curve gives results calculated from (15) and the broken
curve gives perturbation theory results calculated using the
exact second-order term. The points are reduced experi-
mental values for Ar (Ref. 21) and the large cross gives the
simulation estimate, together with error bounds, of the
critical point (Ref. 5).
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Figure 5(b) Densities of coexisting phases of 6:12 fluid.
The solid curve gives the theoretical results calculated from
Eq. (15) and the broken curve gives the perturbation theory
results calculated using the exact second-order term. The
points given by © and (@ are machine calculation results
taken from Refs. 4 and 5, respectively, and the points given
by O and @ are experimental results for liquid and solid
argon and are taken from Refs. 19 and 20, respectively.
The large cross gives the machine calculation estimate,
together with error bounds, of the critical point and is
taken from Ref. 5.

energy equation. Insight into why the energy equation is
the preferred route to thermodynamics may be found by
using perturbation theory.'® If a perturbational expansion
of g(R), using hard spheres as the reference system, is
undertaken then it can easily be established'* that the
nth order perturbation term for g(R) gives rise to the nth
order perturbation term in the thermodynamic properties
if either the pressure or compressibility equation is used.
However, if the energy equation is used then the nth
order perturbation term in g(R) gives rise to the (z + 1)th
order perturbation term in the thermodynamic properties.

The success of perturbation theory, not only in our
formulation'® but also alternative formulations,*>*® has
shown that the structure of a dense fluid is determined
primarily by the repulsive forces, which are well repre-
sented by a hard-sphere potential, with the attractive
forces merely providing the ‘‘internal pressure” which

IBM J. RES. DEVELOP.
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Figure 6(a) Internal entropy calculated from Eq. (15). The
curves are isotherms and are labelled with the appropriate
reduced temperatures. The broken portion of the lowest tem-
perature isotherm lies inside the two-phase region of the
energy equation of state. The points given by X are experi-
mental results taken from Ref. 23 and the point given by &
was calculated from experimental data in Refs. 20 and 21.

Table 1 Critical constants for 6:12 potential.

Tc* Pc* Pc* Pch/Nch
Expt 1.26 0.316 0.117 0.293
MD 1.32-1.36 | 0.32-0.36 | 0.13-0.17 | 0.30-0.36
Present 1.34 0.34 0.14 0.31
PY(P) 1.25» 0.29= 0.11= 0.30
PY(C) 1.32 0.28 0.13 0.36
PY2(P) 1.36 0.36 0.15 0.31
PY2(C) | 1.33 0.33 0.15 0.34
Pert 1.41 0.32 0.17 0.38

= Determined by extrapolation

maintains the high density. The PY theory is an excellent
theory of hard spheres and thus gives a good value for
the zeroth-order perturbation term in the expansion of
g(R). From this term, good estimates for the zeroth-order
contributions to the thermodynamic properties will be
obtained when the pressure and compressibility equations
are used and a good estimate of the first-order contribu-
tion will be obtained when the energy equation is used.
It is hard to comment on the higher-order terms in the
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Figure 6(b) Internal entropy at saturated vapor pressures.
The curve gives the results calculated from Eq. (4) using
the experimental argon densities. The points given by O
were calculated from experimental data in Refs. 20 and 21
and the points given by @ are experimental results taken
from Ref. 22.

Table 2 Triple-point properties for 6:12 potential.

T it
Expt 0.699 0.00163
Machine Calc 0.68 + 0.02

Present» 0.64 0.0006
Present® 0.704 0.0020

a Using cell model for solid phase
b Using machine calculation results for solid phase

expansion of g(R). However, explicit calculations using
the square-well potential indicate that they are not too
accurately described by PY theory.* Thus if an accurate
expression for A4, is used in (15), the energy equation of
state will be accurate in both the zeroth- and first-order
perturbation terms, whereas the pressure and compressi-
bility equations of state will be accurate only in zeroth
order. This difference is highly significant because the
zeroth- and first-order terms are important and of the
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same order of magnitude, the second- and higher-order
terms being small.'®®” Thus the energy equation will
yield more reliable results.

Furthermore, since the values of the integrals (2) and
(3) are small residues resulting from differences in large
quantities, small errors in g(R) can cause large errors in
thermodynamic quantities. On the other hand, the inte-
grand in (4) is predominantly negative, so the (4) is less
sensitive to errors in g(R).

When used with the energy equation, the PY theory is
at least comparable in accuracy to the perturbation
theory of liquids. The reason we refrain from making
the conclusion that the PY theory is more accurate than
perturbation theory is that the reliability of a theory
depends on the order to which it is taken. The PY theory is
a first-order theory and there is some evidence [see Fig.
4(b)], that the PY2 theory will be less successful than the
PY theory. The perturbation results we have shown are
calculated including the effects of the second-order term.
Had first-order perturbation results been displayed, per-
turbation theory would have been about as accurate as
the PY theory. Perturbation theory has the virtue of
being easier to use and of providing a simple physical
picture. On the other hand the PY theory is, at least for
the 6:12 fluid, more accurate and gives more informative
results for the heat capacity.
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Note added in proof

Our recent work has supported our conjectures concerning
the nature of critical point singularities in the PY theory.
We have developed an analytical proof that at the critical
density the PY heat capacity at constant density has the
form

C = constant
T Ir—-T.F

near the critical point. In addition, we have made detailed
numerical studies confirming the above result.

Also, our recent calculations of the second-order per-
turbation term using longer computer runs have shown
our previous results to be somewhat in error at the
highest densities. If the revised second-order term is used,
the second-order perturbation equation of state is as good
as the PY energy equation of state.
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