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The  Percus-Yevick  Theory  and 
the  Equation of State of the 6:12 Fluid" 

Abstract: The Percus-Yevick  theory  can  be  used to calculate  the  pair  distribution  function and from  this  the  equation of state.  The 
conventional  method  is to calculate the pressure  of  compressibility  directly,  unfortunately  yielding  poor  results  for  the 6:12 fluid at low 
temperatures. In this  paper  results are obtained using an  indirect  method,  in  which  the  energy  is  calculated  from  the  pair  distribution 
function, and the equation of state is obtained by  thermodynamic  identities.  These  results are virtually in exact  agreement  with the 
machine  calculation  results for the 6:12 potential  and with  experimental  results  for  argon. 

Introduction 
Previous attempts  to apply the theory of Percus and 
Yevick' to  the fluid state have been successful at high 
temperatures but were not satsifactory at low tempera- 
tures. In  the present paper we will show a new computa- 
tional method, based on  the energy equation, for obtaining 
the equation of state  for  the 6: 12 potential with excellent 
accuracy over a wide range of temperatures and densities. 

Consider a fluid of N molecules at a temperature T 
and occupying a volume V. If the  total potential energy, 
a, results solely from  the additive  contributions of a 
pair  potential, u(R), i.e., 

where the rx are  the positions of the molecules and Rii = 
Iri - ri 1, then  the thermodynamic  properties of the fluid 
can be calculated from either 

~- PV 27rp du 
Nk T -'-zL - dR  g(R)R3dR, 

k T @ )  = 1 + 47rp Jrn [g(R)  - 1]R2dR,  (3) 

or 

U = Q NkT + 27rATp u(R)g(R)R2dR. Lrn ( 4 )  
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In  the above  equations, k is Boltzmann's constant, 
p = N/V,  and p and U are  the pressure and energy of 
the fluid. The function g(R) is called the radial distribution 
function and is proportional  to  the probability of finding 
two molecules separated by a distance R. The constant 
of proportionality is chosen so that g(R) --+ 1 as R -+ 00. 

We call (2), (3) and (4) the pressure, compressibility 
and energy equations, respectively. 

In this  paper we assume that u(R) is given  by the 6: 12 
potential: 

u(R)  = 4 ~ { ( : ) ~ *  - (i)'}. 
There is now considerable evidence,' for a real system 

such as  argon,  that (1) is  not valid and  that  the 6:12 
potential is not a close approximation to u(R). Thus, the 
most meaningful comparison of theoretical results based 
on ( 5 )  is not with experimental results but with the quasi- 
experimental direct simulation (Monte  Carlo  and molec- 
ular dynamics)  result^.^-^ If the experimental  results for 
argon  are reduced by  means of the parameters t /k  = 

119.8 K and CT = 3.405 A then  the simulation  results and 
the experimental results  are, in general, in  good agree- 
ment for  both liquid and solid argon. This is to some 
extent accidental and does not imply that u(R) is an 
accurate pair potential. However, it does  provide  a  justi- 
fication for making  comparisons with experimental results 
for argon.  We will consider more accurate  pair potentials 
in  later publications. 
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res are isotherms  labelled  with  the  appropriate Figure 1 Pressure  and  compressibility  curl - I 

reduced  temperatures.  (a)  Pressure,  calculated  from  Eq. (2). The  points  given by x and give the  results of Levesque (Ref. 9)  and 
Mandel  et al. (Ref. ll), respectively,  also  calculated from Eq. (2). (b) Compressibility  from  Eq. (3). Points give  results  of  Levesque 
(Ref. 9), also  calculated  from  Eq. (3). (c)  Pressure  calculated  from Eq. (10). Points  are  results of Mandel  et  al. (Ref. 1 l), also calculated 
from Eq. (10). 

The most widely used theory for obtaining g(R) is  that 
of Percus and Yevick’ (PY). In  the  PY theory, g(R) 
satisfies the integral  equation: 

~ ( 1 2 )  = 1 + P f(l3>y(l3>[e(23>~(23) - 11 dr3, ( 6 )  

where e(R) = exp { -Pu(R)},  (p = l/kT) (7) 

f(R) = e (R)  - 1 ,  and (8) 

Y(R) = g(R)/e(R). (9) 

For convenience we use the  notation y(12) y(Rl,) etc. 
At this point we might mention that, if exact results for 
g(R) are used, then (2),  (3) and (4) will yield the same 
exact equation of state. However, the  PY g(R) is not 
exact and,  as a  result, the consistency of these equations 
is lost. 

Previously, several authors6-13 have solved (6) for g(R) 
assuming Eq. ( 5 )  and  then used (2) and (3) to calculate 
the  equation of state. At high temperatures, the results 
obtained from (2) and (3) are consistent and  are  in good 
agreement with the simulation and experimental results. 
However, at  the low temperatures  characteristic of the 
liquid  phase, (2) and (3) yield results which differ  widely 
from each other  and which are  in  poor agreement with 
the simulation and experimental  result^.^'^^' l 3  As a re- 
sult the  PY theory has come to be  regarded as  an unsatis- 
factory  theory of the liquid state. 

This view is no longer justified. Recently, Chen et al.,14 
as a  result of considerations based on  the  perturbation 
theory of l i q ~ ~ i d s , ’ ~  have  shown that  the  PY values for 

g(R) may be used with (4) to obtain values for the equa- 
tion of state. This  method involves more  computation 
than  the conventional method based on (2) and (3), 
because it involves a  temperature  integration to evaluate 
the free energy from  the energy. The  PY  equation  is  then 
solved for many temperatures. However, the method  leads 
to excellent results. In this paper we present the results 
of our calculations, based on  the energy equation, for 
the 6: 12 potential. A preliminary account of these re- 
sults has appeared elsewhere.16 

Solution of PY equation 
Rather  than solve (6) directly we have used the method 
developed by Baxter.17 Our procedure is  the same as  that 
described by WattsI2 except that we follow his most 
recent procedure” and  do  not truncate u(R) until R > 6u. 
In addition, since y(R)  varies much less rapidly than either 
u(R) or e(R), we have interpolated additional values of 
y ( R )  before calculating the thermodynamic  properties 
from (2),  (3) or (4). 

Inasmuch as our method, which is based on  the energy 
equation, involves numerical  integrations and differ- 
entiations to obtain  the thermodynamic  properties, we 
need as much accuracy as possible. In this  regard it is 
of interest to compare our results with those of other 
investigators since one measure of the accuracy of both 
our  computational procedures and those of the  other 
investigators is  the degree of consistency of the different 
results. Thus, we have compared our results, calculated 
from (2) and (3), with those of Levesque’ and  Mandel 
et al.,” in Figs. l(a)  and  l(b).  The agreement is good. 669 
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Figure 2(a) Internal energy  calculated from Eq. (4). The 
curve gives the  results of our calculations for p* = 0.85. 
The points given by X give the results of the  calculations 
of Mandel  et al. (Ref. l l ) ,  also calculated from Eq. (4), 
and points given by 0 give the simulation results of Verlet 
(Ref. 5 ) .  

Figure 2(b) Internal energy calculated from Eq. (4).  The 
curves are isotherms and  are labelled with the  appropriate 
reduced  temperatures. The broken  portion of the lowest 
temperature isotherm lies inside the two-phase region of the 
energy equation of state. The points given by 0 ,  , and 0 
are simulation results taken from Refs. 3, 4 and 5 ,  
respectively. The point given by 0 was calculated from ex- 
perimental data in Refs. 20 and 21 and  the points given by 
X are experimental results taken from Ref. 23. 
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Figure 2(c) Internal energy at saturated  vapor pressures. 
The curve gives the results  calculated from  Eq. (4)  using 
the experimental argon densities. The points given by 8 and 
a are simulation  results  taken from Refs. 4 and 5, respec- 
tively. The points given by 0 were calculated from experi- 
mental  data in Refs. 20  and 21 and  the points given by 0 
are experimental results taken from Ref. 22. 

The reduced temperature and density are T* = k T / c  and 

At low temperatures there is, for a given temperature, 
a  range of densities for which (6) has no solution. Thus, 
the compressibility-equation pressures cannot be obtained 
by a simple numerical integration of the compressibilities 
obtained from (3). However, Baxter" has shown that if 
the pressure is calculated from 

p* = pu3, respectively. 

__-  

Nk T 
- 1 + 27rp Lrn R2c(R)(g(R) - 2 ) d R  

where c(R) is the direct correlation function which  is 
given, in  the PY theory, by 

a )  = f (RlY( f9 ,  

and  the  Fourier transform of c(R) and is given by 

c(q) = - Rc(R) sin qRdR,  

then the compressibility obtained from these pressures is 
identical to those given  by (3). The results which  we have 
obtained using (10) are  in good agreement with those of 
Mandel  et a1.l' This agreement may be seen in Fig. l(c). 

Finally in Fig. 2(a) we compare our results for  the 
energy, calculated from Eq. (4), with those calculated by 

47r 4 1- 
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Mandel et al.ll The reduced internal energy is defined as 

Ui* = U / N E  - $T* (1 3) 

The agreement is good. 
From these comparisons we see that all the calcula- 

tions of the  PY thermodynamic  properties are  in  good 
agreement. Khan's results' are  an exception and  appear 
to be seriously in error.g 

Energy and heat capacity 
We have calculated Us* from (4) for 0.69 < T* 5 2.74 
in steps of  0.01 in (T*)-l and  for 0.05 5 p* 5 1.00 in 
steps of  0.025. This wide range of temperatures and 
densities includes the entire  liquid state  and most of the 
gaseous state  for which simulation  results or experimental 
 result^'^-^^ are available. 

In Figs. 2(a), (b), and (c)  we have shown the results 
of our calculations for  the energy. The agreement with 
the simulation and  the reduced experimental results for 
argon  is excellent. We  have  obtained the reduced internal 
heat  capacity at constant density, 

C ,  * = C,/Nk - 3, (1 4) 

by means of a  three-point numerical differentiation. These 
results are shown in Figs. 3(a) and (b) and  are seen to 
be in good agreement with the simulation and  the reduced 
experimental results for argon. 

The most interesting feature of our calculations of the 
PY heat  capacity is that  the  heat capacity becomes large 
in  the critical region. It is difficult to reach definitive con- 
clusions since we have only numerical results. The heat 
capacity, however, appears to be infinite at  the compressi- 
bility equation critical point.  This conjecture is supported 
by the fact that Baxter has  found  the heat  capacity to be 
a system of adhesive hard spheres, for which analytic 
calculations  can  be  made in  the  PY approximation, to 
be infinite at  the critical point  in  the compressibility 
equation. 

As we have already  mentioned, the singularity in  the 
heat capacity occurs at the compressibility equation crit- 
ical point  and,  as we shall see, not  at  the energy equation 
critical point. This inconsistency in  the  PY theory  does 
not seem too  important when one considers that  the  PY 
theory  is, to our knowledge, the first approximate  theory 
to predict an infinity in  the heat  capacity at  constant 
density of a liquid at  the critical point. 

It should  be kept  in mind that,  for  the system of adhe- 
sive hard spheres, the  PY critical exponent  for  the heat 
capacity singularity is not  in  good agreement with the 
experimental  value for real  liquids. No doubt  the PY 
critical exponents for  the 6: 12 potential  are also not 
reliable. 

At first sight it may seem unrealistic to use Baxter's 
adhesive hard sphere model to support our conjectures 
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Figure 3(a) Internal heat capacity  calculated from Eq. (4). 
The curves are isotherms  and are labelled  with the ap- 
propriate reduced  temperatures.  The  broken part of the 
lowest temperature isotherm  lies  inside the two-phase re- 
gion  of the  energy equation of state. The  points given 
by and @ are simulation  results taken from Refs. 3 and 
4, respectively. 

Figure 3(b) Internal heat  capacity at saturated vapor  pres- 
sures.  The  curve  gives the results  calculated from Eq. (4) 
using the experimental argon  densities. The points  given 
by 8 are simulation  results  taken from Ref. 4 and the points 
given by 0 are experimental  results taken from Ref. 21. 

0 

' O  oc 
0 0 

I I I I I 
1.7 0.8 0.9 1 .O 1.1 1.2 1. 

<educed  temperature, T* 671 

EQUATION OF STATE-6: 12 FLUID 



672 

T* =2.14 

I I I I 

) 0.2 0.4 0.6 0.8 1. 

(educed density, p * 
Figure 4(a) Equation of state of 6 :  12 fluid at T* = 2.74. 
The solid curve gives the  perturbation theory  results which 
are used to obtain Ao, and  the broken curves marked P 
and C give the PY pressure and compressibility results. The 
points given by 0 and 0 are simulation results taken from 
Refs. 3 and 5,  respectively. The points given by X are ex- 
perimental results taken from Ref. 23. 

concerning the infinity in  the heat capacity at  the critical 
point,  but critical exponents appear not  to depend strongly 
on  the nature of the system. 

Baxter's calculation, however, must be considered as 
providing only weak support for  the above conjecture 
because a  potential of Baxter's type is somewhat unphys- 
ical. It is possible that his model may not answer delicate 
questions about C, correctly. Also, as Baxter points out, 
there are unresolved difficulties in taking the limit that 
must be taken  preparatory to calculating C,. Thus the 
question as  to whether the PY value for C, at  the critical 
point is still open. 

Bearman et aLZ6 have investigated the extrema in the 
heat capacity and  found good agreement with experiment 
away from the critical point.  Thus  one heretofore un- 
known success of the PY theory is its ability to give 
good results for  the heat capacity away from  the critical 
point  and to give results for  the heat capacity at  the 
critical point that  are better than those of other approxi- 
mate theories of liquids. 
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Figure 4(b) Equation of state of 6:  12 fluid at T" = 1.35. 
The curves give the theoretical  results. The points given by 
0 and 0 give the simulation  results  taken from Refs. 5 
and 37, respectively, and the  points given by X give experi- 
mental results taken from Ref. 23. 

Figure 4(c) Equation of state of 6:  12 fluid at T4:  = 0.72. 
The curves give the theoretical results. The points given by 
0 and 0 give the simulation  results  taken from Refs. 4 
and 5, respectively, and  the points given by @ are experi- 
mental results taken from Ref. 24. 
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Energy equation of state 
Our procedure is  to integrate (4) with respect to  1/T 
to  obtain  the Helmholtz free energy: 

where 

&(T,  p )  = -4a g(R)u(R)R'dR 1- (1 6) 

and A. is the Helmholtz  free energy at  the reference 
temperature pee. The pressure may be obtained by dif- 
ferentiating (15) with respect to p .  For  the reference 
temperature we chose f l oe  = 1/2.74, which is high enough 
so that  the PY theory is reliable. This may be seen from 
Fig. 4(a). At  T* = @e)" = 2.74 both  the pressure and 
compressibility isotherms are  in good agreement with the 
simulation and experimental argon results. We could use 
either the PY pressure or compressibility isotherm to 
provide A". However, we chose to use perturbation theory 
to  obtain Ao. In Fig. 4(a) we see that  the  perturbation 
theory result is virtually in exact agreement with the 
simulation and experimental results. 

In Fig. 2(a) we have plotted the  internal energy as a 
function of 1/T*  for p* = 0.85. The function is smooth 
and  thus there is  no difficulty in performing the numerical 
integration. For comparison we have plotted the simula- 
tion results. The PY results lie somewhat higher than  the 
simulation  results at  the lower temperatures.  This might 
lead  one to anticipate that  poor results would be obtained 
from (15) at low temperatures. However, the area between 
the PY and simulation is small and,  as we will see, does 
not  cause  any  appreciable  errors. 

In Figs. 4(b) and (c) we have  compared the PY results 
obtained from  the pressure, compressibility and energy 
equations with virial expansion,28  simulation and  argon 
experimental results. As the temperature is lowered the 
pressure (and, to a lesser extent, the compressibility) 
results become seriously in  error. On the  other  hand  the 
energy equation results are virtually in exact agreement 
with the simulation and experimental results. 

In fact, as may be seen from Fig. 4(b), the PY energy 
results are better than  the pressure or compressibility 
results  obtained from  the  more complex second-order 
PY2 t h e ~ r y . ~ ~ ' ' ~   I n  Fig. 4(c)  we have  included the per- 
turbation theory  results (using the exact second-order 
term) for T* = 0.72. Although the  perturbation theory 
result is better than  the PY pressure or compressibility 
results, it  is inferior to  the PY energy result.  One might 
be  tempted to generalize and conjecture that  the PY 
energy equation  is superior to perturbation theory. We 
feel that this is a premature conclusion because we have 
some indication,  based on calculations using other poten- 
tials, that  the relative merits of the PY theory  and per- 

turbation theory may vary somewhat with the potential 
used. 

One further virtue of this approach based on  the energy 
equation is that we obtain results for  the free energy. The 
free energy cannot be calculated directly from  the pressure 
or compressibility equations because such a  calculation 
of the free energy involves a density integration.  This 
presents no problem at high temperatures. However, at 
low temperatures  there is a  range of densities for which 
the PY equation  has no solution.  As  a  result the density 
integration cannot be  performed. Thus, we can calculate 
the properties of the 6:12  liquid in equilibrium with its 
vapor. These results are shown in Figs. 5(a), (b), and (c). 
The PY energy results are virtually in exact agreement 
with the machine results-even in  the critical region. 
Since the simulation  calculations are  made  for finite sys- 
tems, they do  not  take account  adequately of the long- 
range  correlations  characteristic of the critical region. 
Thus,  the critical point of the 6:12 fluid is almost cer- 
tainly at a lower temperature than  the machine calcula- 
tions indicate. Hence, the PY energy estimates of the 
critical point  are almost certainly in  error. However, it  is 
interesting that they are  as accurate as  the simulation 
results. This may be seen from Table  1.  We have included 
the PY pressure critical  constants in  Table 1. Since these 
constants are determined by extrapolation into  the region 
where the PY theory has  no solution, we do  not regard 
the numbers as having much meaning. However, we do 
include  them because they are widely quoted. 

We have calculated the entropy from  the energy equa- 
tion  and (15). In Figs. 6(a) and (b) we have  plotted the 
results for  the  internal entropy defined by 

Si* = S i / N k  

= S / N k  - 4 - 3 In (7) - In p .  (17) 

The agreement with the simulation and experimental 
results is excellent. 

Finally, we have considered the solidification of the 
6: 12 fluid for which simulation results3' and experimental 
results are available.31 The PY theory, as formulated in 
(6), assumes the fluid to be isotropic and  thus is not able 
to  treat solidification. However, we can adopt  the pro- 
cedure of Henderson and Barker3' and use a  separate 
theory to calculate the free energy of the solid phase. 
As may be seen from  Table 2, if the cell is used 
for  the 6: 12 solid, reasonable  results are obtained for 
the triple-point  properties. If simulation  results34 for  the 
6:12 solid are used, excellent results are obtained. 

Discussion 
In this paper we have  shown that  the PY theory is an 
excellent theory of the liquid state when used with the 
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Figure 5(a) Equation of state of 6:12 fluid. The solid curves 
are isotherms  calculated from Eq. (1.5) and  are labelled with 
the  appropriate reduced temperatures. The reduced volume 
is v* = V / N $ .  

Figure 5(c) Reduced vapor pressures for 6:12 fluid. The 
solid  curve gives results calculated from (15) and  the broken 
curve gives perturbation  theory results calculated using the 
exact  second-order  term. The points are reduced experi- 
mental values for  Ar (Ref. 21) and the  large  cross gives the 
simulation  estimate,  together  with error bounds, of the 
critical  point (Ref. 5). 

- 1  

4 

t o  
0 - 0 -2  

1 I I I 
1.4 1.2 .1.0 0.8 

kduccd reciprocal  temperature, 1 / T* 

:educed temperature, T* 

Figure 5(b) Densities of coexisting phases of 6 :  12 fluid. 
The solid curve gives the theoretical  results  calculated from 
Eq. (15)  and  the broken  curve gives the perturbation  theory 
results  calculated  using the exact  second-order term.  The 
points given by 8 and 0 are machine  calculation  results 
taken from Refs. 4 and 5, respectively, and  the points given 
by 0 and 8 are experimental results for liquid and solid 
argon and  are taken from Refs. 19 and 20, respectively. 
The large cross gives the machine  calculation  estimate, 
together  with error bounds, of the critical point and is 
taken from Ref. 5. 

energy equation. Insight into why the energy equation is 
the preferred route to thermodynamics may be found by 
using perturbation theory.15 If a perturbational expansion 
of g(R), using hard spheres as  the reference  system,  is 
undertaken then it can easily  be e~tablished’~  that the 
nth order perturbation term for g(R)  gives  rise to the nth 
order perturbation term in the thermodynamic properties 
if either the pressure or compressibility equation is used. 
However, if the energy equation is  used then the nth 
order perturbation term in g(R) gives  rise to the (n + 1)th 
order perturbation term  in the thermodynamic properties. 

The success  of perturbation theory, not only in our 
form~lation’~ but also alternative  formulation^,^^.^^ has 
shown that the structure of a dense fluid  is determined 
primarily by the repulsive forces, which are well repre- 
sented by a hard-sphere potential, with the attractive 
forces  merely providing the “internal pressure” which 
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Figure  6(a) Internal entropy  calculated from Eq. (15). The 
curves are isotherms and  are labelled with the  appropriate 
reduced  temperatures. The broken portion of the lowest tem- 
perature  isotherm lies inside the two-phase region of the 
energy  equation of state. The points given by X are experi- 
mental results taken from Ref. 23 and  the point given by 8 
was  calculated from experimental data in Refs. 20 and 21. 

Table 1 Critical constants for 6:12 potential. 
, 

Expt 
MD 

PY(P) 
Present 

PY(C) 
PY2(P) 
PY2(C) 
Pert 

1.26 

1.34 
1 .25a 
1.32 
1.36 
1.33 
1.41 

1.32-1.36 
0.316 
0.32-0.36 
0.34 
0.298 
0.28 
0.36 
0.33 
0.32 

0.117 
0.13-0.17 
0.14 
0.11% 
0.13 
0.15 
0.15 
0.17 

0.293 

0.31 
0.308 
0.36 
0.31 
0.34 
0.38 

0.30-0.36 

1 , I 

a Determined by extrapolation 

maintains  the high density. The PY theory is an excellent 
theory of hard spheres and  thus gives a  good value for 
the  zeroth-order  perturbation  term in  the expansion of 
g(R).  From this term, good estimates for the  zeroth-order 
contributions to the thermodynamic properties will  be 
obtained when the pressure and compressibility equations 
are used and a good estimate of the ,first-order contribu- 
tion will be obtained when the energy equation is used. 
It is hard to comment on the higher-order terms in the 

J 
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Figure  6(b) Internal entropy at  saturated vapor pressures. 
The curve gives the results calculated from Eq. (4) using 
the experimental argon densities. The points given by 0 
were  calculated from experimental data in Refs. 20 and 21 
and the  points given by @ are experimental  results  taken 
from Ref. 22. 

Table 2 Triple-point properties for 6:12 potential. 

Expt I 0.699 

Machine Calc 0.68 & 0.02 

Present" 0.64 

Presentb 0.704 

a Using cell model for solid phase 
b Using machine  calculation results for solid phase 

Pf* 

0.00163 

0.0006 

0.0020 

expansion of g(R). However, explicit calculations using 
the square-well potential indicate that they are  not  too 
accurately described by PY theory.14 Thus if an accurate 
expression for A. is used in (15), the energy equation of 
state will  be accurate in  both  the zeroth- and first-order 
perturbation terms, whereas the pressure and compressi- 
bility equations of state will be accurate only in zeroth 
order.  This difference is highly significant because the 
zeroth- and first-order terms are  important  and of the 675 
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same order of magnitude, the second- and higher-order 
terms being Thus  the energy equation will 
yield more reliable results. 

Furthermore, since the values of the integrals (2)  and 
(3) are small residues resulting from differences in large 
quantities, small errors in g(R) can cause large errors  in 
thermodynamic quantities. On  the other  hand, the inte- 
grand in (4) is predominantly negative, so the (4) is less 
sensitive to  errors  in g(R).  

When used with the energy equation, the PY theory is 
at least comparable in accuracy to  the perturbation 
theory of liquids. The reason we refrain from making 
the conclusion that the PY theory  is  more  accurate than 
perturbation  theory is that  the reliability of a theory 
depends on  the  order to which it is  taken. The  PY theory  is 
a first-order theory and there is some evidence [see Fig. 
4(b)], that  the PY2 theory will be less successful than the 
PY theory. The perturbation results we have shown are 
calculated including the effects of the second-order term. 
Had first-order perturbation results been displayed, per- 
turbation theory would have been about  as accurate as 
the PY theory. Perturbation  theory has  the virtue of 
being easier to use and of providing a simple physical 
picture. On  the  other hand the PY theory is, at least for 
the 6 :  12 fluid, more  accurate and gives more informative 
results for  the heat capacity. 
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Note added in proof 
Our recent work has  supported our conjectures concerning 
the  nature of critical point singularities in  the  PY theory. 
We have developed an analytical proof that  at  the critical 
density the  PY heat capacity at constant density has the 
form 

constant C” = 

near the critical point. In addition, we have  made detailed 
numerical studies confirming the above result. 

Also, our recent calculations of the second-order per- 
turbation term using longer computer runs have shown 
our previous results to  be somewhat in  error  at  the 
highest densities. If the revised second-order term  is used, 
the second-order perturbation  equation of state is as  good 
as  the  PY energy equation of state. 
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