620

J. R. CALVA

J. R. Calva

PCOS: A Process Control Extension to

Operating System /360

Abstract: This paper discusses the design and implementation of an extension to IBM Operating System /360 that is called PCOS
and is intended specifically for use in “real-time” control of IBM manufacturing processes and testing. The most important part of
PCOS is a Real-Time Control Program (RTCP) which is initiated at system start-up time as a “never-ending” task. The RTCP controls
the execution of application programs and permits system response to requests for their execution within a time on the order of 100
msec. Other contributions are an “express path” for handling input /output operations, an “interpartition communication” program
that provides common core storage for use during the execution of application programs, and an appendage to the OS /360 supervisor
program to serve a specially designed high-speed multiplexor called the “transmission control unit.”

Introduction

The Process Control Operating System (PCOS) is an
extension of IBM 0S/360 that was developed specifically
for use in the company’s manufacturing plants. PCOS
resides in the central computer of the satellite computer
network discussed by Stuehler.! In this network a number
of satellite computers are connected to a central computer
through a high-speed multiplexor called a Transmission
Control Unit (TCU); this unit is described in a companion
paper by Thoburn.”

The planning and development of PCOS took place
in 1968. This development was the result of decisions to
upgrade the IBM 1460/1440 technology of a satellite
computer system (COMATS)® then existing at the IBM
plant in San Jose, and to provide a single software package
that would satisfy the diverse needs of computer-aided
testing and process control applications at most of the IBM
manufacturing plants.

As an extension of OS/360 PCOS not only provides
the normal services and facilities of that operating system,
but also contains new features intended to 1) support
the TCU, 2) achieve near-optimum response to service
requests initiated at the satellite computers and 3) schedule
the execution of service programs requested by the
satellites.

The innovations included in PCOS are based on a
philosophy of real-time operating systems that is also
exemplified in other extensions of 0S/360. RTOS (Real-

The author is with the IBM General Systems Division at the Laboratory
in Rochester, Minnesota 55901.

Time Operating System)* was developed for manned
spaceflight ground-support systems at NASA, Houston.
BTAM, QTAM and TCAM® are operating system ex-
tensions provided to support teleprocessing applications
of computers. Despite great differences in the manufactur-
ing, spaceflight and teleprocessing environments for com-
puter operation, they all impose the same “real-time”
constraint that the system must respond to requests for
service within a time on the order of 100 msec. It should
be noted that IBM has recently announced for potential
customer use a generalized real-time extension of OS/360
called the Real-Time Monitor (RTM).

To be specific in discussing what is meant by real-time
systems, it is useful to quote from the recent paper by
Weiler et al.* (substituted terms are in brackets):

“A basic difference between real-time systems and other
data processing systems is that real-time systems are data
driven. ... A real-time system cannot explicitly request
the next unit of data to be processed. Instead, it must be
prepared to accept data whenever it arrives and, if process-
ing cannot be immediately accomplished, store the data
in queues for later processing. As soon as it is recognized
that data may be placed in queues awaiting processing,
another characteristic of real-time systems is identified,
i.e., responsiveness. . . . The requirements of being data
driven and highly responsive are satisfied by the design
of [the RTCP and the transmission control unit]. . . .”

Before beginning the discussion of PCOS it is important
to note its relationship to the TCU (Fig. 2 of Stuehler’s

IBM J. RES. DEVELOP.

paper). The TCU is an essential hardware component of
the process control network for which PCOS provides
software services. That is, PCOS cannot provide service
to satellite computers or terminals unless they are con-
nected to the central computer via the TCU.

The present paper has been written to provide a com-
prehensive review of PCOS development and operation
from a programmer’s viewpoint. The heart of PCOS is the
Real-Time Control Program (RTCP) of which the “super-
visory state” extensions to OS/360 are the most important.
To make the description of the RTCP understandable
to readers lacking a detailed knowledge of OS/360, the
paper has been organized as follows.

A section on “History, requirements and design cri-
teria” summarizes the justification for and considerations
leading to the development of PCOS. Next, a section on
“PCOS architecture”™ discusses the structure of PCOS and
reviews the multiprogramming characteristics of the MFT
version of OS/360. Then, a section called “Key functions
of 0S/360” presents background information critical to
an understanding of PCOS design. This section is included
especially for those readers who are unfamiliar with
0S/360. The following section, “Supervisory state ex-
tensions,” describes in considerable detail the design and
implementation of the major PCOS components. The
section on “Problem state functions of the RTCP” is
included to provide completeness to the description of
PCOS. Here, the level of detail is reduced for the sake of
brevity. The final major section, ‘“Present status of PCOS,”
points out some areas in which development is continuing.

History, requirements and design of PCOS

The decision to develop PCOS was made in February,
1968. To reach that point, several months had been spent
gathering and studying requirements of several plants
within the Systems Manufacturing Division. A modifica-
tion to Disk Operating System/360, known internally in
IBM as CIMPAC, had been evaluated in October, 1967.
Serious consideration was given to converting San Jose’s
1460-based COMATS into a System/360 process control
system. Moreover, the desirability of creating a completely
new programming system tailored to suit the precise needs
of process control was an issue that is still being considered
today.

A committee of engineering personnel from five domestic
IBM manufacturing facilities was formed to evaluate alter-
natives and make recommendations for a process control
system design.

The use of small computers at “stand alone” test sta-
tions clearly emphasized the need for a central system.
The updating of test programs at each station was be-
coming a major problem. Many stations also needed the
same data and occasionally data from another station.
The cost of 1/0 equipment for inputting, outputting, and

NOVEMBER 1970

storing programs and data was incremented with each
new test station. The requirements of a central system
were well established.

The next consideration was a programming system
at the central system. The characteristics of Operating
System/360 were well known. Although it is not conven-
tionally a real-time system (“jobs” are initiated slowly,
the operator may have to respond to messages before,
processing can continue, etc), OS/360 does allow multi-
programming with full support of FORTRAN, PL/1, and
many “data management services.”” Additionally, the main-
tenance and improvement of a programming system plus
field engineering support were important factors. The
potential value of all these facilities, especially at a central
system, could not be denied.

The consideration of OS/360 was not complete without
giving some attention to the Disk Operating System/360
(DOS).” The basic criteria for using either OS or DOS had
been established. From a previous study, it was known that
DOS could support a maximum of three (problem pro-
gram) tasks; the MFT (multiprogramming with a fixed
number of tasks) version of OS/360 would support
fifteen while the MVT (multiprogramming with a vari-
able number of tasks) version would support any number
of sub-tasks related to any one of fifteen tasks. The use of
FORTRAN or PL/1 was considerably restricted under
DOS. The judgment was that OS/360 was preferable to
DOS.

Operating in two System/360 computers, CIMPAC
could satisfy all the basic needs. But because CIMPAC uses
a “single task” supervisor, multiprogramming was pre-
cluded. Furthermore, FORTRAN and PL/1 were not avail-
able with CIMPAC. It was decided that all the functions
of CIMPAC could be incorporated as a task under OS/360.

Converting San Jose’s 1460 COMATS into a System/360
process control system was discarded, not because of
a lack of excellence, but because the architecture of
COMATS would not fit the present generation of com-
puters. Making a ‘‘one-to-one” conversion of 1460
COMATS to System/360 which has five types of inter-
rupts was, the committee decided, impractical.

The last item considered was the creation of a new
programming system. The “precise needs” of process con-
trol were enumerated by tabulating the requirements sub-
mitted from several plants. Most plants requested that
the programming system operate in a System,/360 Model
30F (64K bytes of main storage). All plants required a
central system with data management services for large
but undefined program and data banks. All plants desired
the availability of FORTRAN and PL/1. Considering
manpower and dollar resources, especially for support
of FORTRAN and PL/1, the committee agreed that
developing a new programming system was out of the
question.

PROCESS CONTROL OPERATING SYSTEM

621

622

J. R. CALVA

The only candidate that, in the committees’ judgment,
would meet immediate and future needs was OS/360. The
MFT version was selected for one principle reason: the
MFT supervisor program provides multiprogramming
capability in a System 360 Model 40G (128K bytes of
main storage)—one size larger than the desired minimum.

The design of PCOS had to satisfy the general require-
ments that the central system must
1) respond in a real-time environment,

2) provide storage facilities for satellite programs and
data.

3) provide a communication facility through the Trans-
mission Control Unit—from a satellite to the central
system and back again to the same, or to a different,
satellite.

To equal the performance of San Jose’s COMATS,
the response of the central system had to be within 500
msec 959, of the time. But this design criterion was
applicable specifically to the system load (the satellite
environment) in San Jose. Attempts to state a response
time criterion that would satisfy all potential user loca-
tions were unsuccessful. Hence, the response time design
goal was not rigidly specified. It was felt that the per-
formance of PCOS would equal or better that of COMATS.
This was purely a matter of judgment based on using the
new generation of computers. On the basis of experience
with COMATS it was judged that the new system could
expect an average of one interrupt per second from
satellites requesting service; the average transaction would
be 2000 bytes of data. It was also specified that with all
input queues empty at the central computer the interval
from interrupt time to the start of execution of a service
program had to be 20 msec or less if the service was in
core storage and 200 msec or less if the service had to be
fetched from disk or drum storage. These specifications
assumed the use of a System 360 Model 40 as the central
computer.

To provide storage facilities for satellite programs and

data was, on the surface, a design criterion. But a data
management structure applicable to satellite systems and
0S/360 data management services had nor been defined.
Satellite systems had been developed independently of
any other system; there was absolutely no programming
experience with OS/360 among those initially involved
in the project. As a result the concept of Service Modules
was derived from the CIMPAC study and a basic design
goal was established:
PCOS was to be an “open-ended” system. Process control
users could use the central system by providing their
own Service Modules. The open-endedness of PCOS
would give each plant the means to request, load and
execute its own service program. PCOS would provide
a real-time environment and support the execution of a
multiplicity of service programs.

To provide communication facilities via the TCU was,
to some extent, a straightforward programming problem.
But to do it in the context of a real-time system was
not. The design criteria in this instance were implicit:
support of the TCU, the processing of request codes, and
the scheduling of Service Modules had to be complemen-
tary if a real-time response was to be a meaningful goal.
Moreover, Service Modules should function independently
from the processing of request codes and a diagnostic
capability should be available through the TCU. A result
of these considerations was the design goal of functionally
separating automatic polling, data transfer and diagnostic
testing. The specification of three unit addresses for one
TCU device, as described in the section on “Supervisory
state extensions,” was a direct result of this goal.

It should be noted that the design of PCOS is a reason-
able compromise. It satisfies the real-time requirements
without significant internal modifications to the MFT
supervisor. Additional interfacing routines have been
developed which are modular and for the most part in-
dependent of the continuing developments of OS/360
itself. By taking this approach the designers of PCOS have
minimized the problems of interfacing with the future
releases of OS/360.

PCOS architecture

The architectural relationship between the main elements
of PCOS is shown in Fig. 1. The OS supervisor is the
system control program that executes the functions needed
to support a multiprogramming environment. In PCOS
no changes have been made to the standard OS supervisor.
To the OS supervisor PCOS consists of two separate
“tasks”*: 1) the Real-Time Control Program, including
its attention routine and appendages and the Service
Modules (the application programs which serve the satellite
computers, and 2) Core Common.

The Real-Time Control Program (RTCP) is the part
of PCOS that permits the central computer to operate
in a real-time environment. Execution of the RTCP is
initiated as if it were a normal “problem” program operat-
ing under control of the standard OS supervisor. The
RTCP in turn controls the execution of all Service Mod-
ules, which, in the case of PCOS, are the programs pre-
sented to the central computer for solution. Since the
RTCP is executed as a “never-ending” task, it is necessary
to perform the time-consuming task-initiation procedure
only at system start-up time.

The RTCP, its Attention Routine and Appendages
perform several important functions: 1) they provide
software support to the Transmission Control Unit (TCU)

* In some of the literatures on OS /360 the overall work of data processing
may be defined in terms of jobs, job steps, system tasks, and subtasks. In a
given OS context, any one of these terms may have a specialized definition.
For the purposes of the present paper, a task is defined as program executed
in a single partition of storage under the direct control of the supervisor.
A subtask is a program executed under the control of a “task” program.

IBM J. RES. DEVELOP.

2) they provide the means to schedule and load Service
Modules and 3) they provide internal services necessary
for the execution of the Service Modules.

The RTCP prepares itself to accept data called a “request
code” after it commands the TCU to start automatic
polling of satellite computers. When a satellite system needs
service from the central system, it responds ‘‘positive”
to polling and transmits request-code data to the TCU.
The TCU buffers each request code and generates an 1/O
interrupt to the central system with “‘attention status.”
This causes the RTCP to read the buffered request code
(which it is prepared to accept) and the TCU then continues
automatic polling. If a valid request code cannot be
serviced immediately, the RTCP queues and, subsequently,
retrieves the request code when the service can be per-
formed.

The block labelled Core Common in Fig. 1 refers to a
program that is loaded by the OS supervisor to provide
a temporary storage facility in the central computer for
use during the execution of Service Modules. Service
Modules employ an RTCP routine to enter or retrieve
data into or from the Core Common partition of storage.
As demonstrated in a later section of the paper, the fact
that the Core Common program performs no work other
than initiating itself (i.e., it becomes ‘“dormant”) is used
to advantage in executing programs.

As previously stated, PCOS is based on the MFT
version of OS/360. In this version problem programs
execute in partitions of core storage, numbered PO, P1,
P2, --- , P51 (a maximum of 52 partitions). The size of
each partition must be defined before a problem program
is loaded for execution. Figure 2 illustrates a typical
core storage layout. The term ““fixed number of tasks”
refers to the number of core storage partitions that must
be defined before any programs can be loaded. The tasks
and subtasks performed in a given parition are treated
as a single task by the MFT supervisor. Thus, with the
partitions defined as in Fig. 2 the multiprogramming
supervisor controls and monitors four tasks:

1) Core Common in PO,

2) the Real-Time Control Program and Service Modules
in P1,

3) the Output Writer in P2 (an OS service program) and

4) any other “job” or “‘series of jobs” in P3.

The reader familiar with OS/360 will recognize that
the Real-Time Control! Program (RTCP), its Appendages,
Attention Routine, and all Service Modules are treated
as a single task by the OS supervisor, be it MVT or MFT.
However, because the RTCP contains special routines
for the loading of disk-resident Service Modules, for
passing control to all Service Modules and for terminating
the programs, it is convenient to consider Service Modules
as sub-tasks of the RTCP.

NOVEMBER 1970

| T
RTCP | axrer | 0s
Appendages : Routine I Supervisor
|
I' |
Real-Time Control Program Core
(RTCP) Common

.
| |

Service Service Service
Module Module o Module
1 2 n

Figure 1 PCOS architecture: major software components.

Figure 2 Core storage layout of central computer in a
system using Operating System/360 multiprogramming with
a fixed number of tasks (MFT). The supervisor resides in
lower addresses of core storage; the balance of core storage
is divided into four partitions—P0O, P1, P2 and P3. A
problem program located in PO will have the highest exe-
cution priority; one in P3 the lowest. Following initializa-
tion, Core Common is dormant; thus the RTCP and Service
Modules in P1 will then have the highest execution priority.

Low core P3 P2 P1 PO
_Isvlllsm
Single job Rga[»ume : 111y n
OS/MFT or Output Control I I Core
Supervisor Batch jobs Writer Program | | : | Common
b ’ (RTCP) : I l :
| [

Key functions of 0S/360

The design of PCOS is based on two key functions of
0S/360: the control of input/output activity performed
by the OS supervisor and the routing of data through the
OS supervisor. It is important to be familiar with these
functions if one is to understand the differences between
PCOS and standard OS/360 operation.

e Control of input/output activity

One function of the supervisor program is to control the
execution of all input-output activity. This function is
especially important in a multiprogramming environment
where devices and data files may be shared by several
users. The supervisor must resolve all conflicts among
users that desire access to a particular resource. Typical
resources are I/O devices (including the Transmission
Control Unit of the satellite system) and data files.

After the OS supervisor program has loaded a user
program (a problem program) it passes control of the
computer to the user program. The user program may
continue processing until it requires an I/O operation.
It must then pass control back to the supervisor with the
request that a particular I/O operation be initiated. If

623

PROCESS CONTROL OPERATING SYSTEM

624

J. R. CALVA

Supervisor Problem program
R N] Real-Time
Supervisor N Control Program
program e — — | N and
N T Service Modules
................ N ST Control blocks
for TCU
automatic polling
Supervisor’s
control blocks
_______ B — —— —] Control blocks
for TCU
data transfer

———— Temporary linkage during exccution
.......... Linkage maintained permanently by
RTCP ajter it initiates automatic polling
Permanent linkage established when
problem program is initialized

Figure 3 Linkages between supervisor and problem program
for I/O work.

the 1/O resource is “busy” (in use due to any previous
request) the supervisor must enqueue the current I/0 re-
quest until the resource is no longer busy; otherwise the
supervisor initiates the I/O operation. In either case,
whether the request is queued or initiated, control of the
computer is again passed to the user program so that it may
continue processing. Eventually, the user program must
pass control back to the supervisor, indicating that it wishes
to wait for completion of one or more I/O requests. In a
multiprogramming environment, the supervisor may then
give control of the computer to another “task™ (a problem
program) of lower priority. Whenever an I/0 request is
completed, the supervisor automatically retrieves and tries
to initiate any queued I/O requests before returning control
to some problem program. The task having highest
priority will always receive control if it is waiting on the
completed I/O operation.*

The passing of control between the supervisor and a
problem program is depicted in Fig. 3. Temporary linkages
(those that exist for relatively brief periods) are indicated
by dashed lines; permanent linkages (those that may be
established for the total duration of problem program
execution) are indicated by solid lines. Before a user
program can request an I/O operation it must initialize
the required “‘control blocks™ by means of special OS/360

* In OS/360 terminology, the execution priority of tasks and subtasks is
determined by a ‘‘dispatching priority>; in MFT, this priority is determined
by the partition in which a problem program may reside. As illustrated in
Fig. 2, PO has the highest priority and P3 the lowest. For optimum operation,
high priority tasks must wait on I/O activity or other external events so that
lower priority tasks may have execution time.

service routines invoked by the OPEN macro-instruction.
The oPEN routines of OS establish the permanent linkage
between the user’s control blocks and the supervisor’s
control blocks. When a user program requests an I/O
operation it provides the address to a particular set of
user control blocks so that the supervisor can establish
the temporary linkage from its own control blocks to
the user’s control blocks in order to initiate and complete
the I/0O operation.

The user’s control blocks of Fig. 3 contain special control
words (e.g., device commands and addresses of data
buffers and I/O workspace) and software indicators
(“flags” and codes) required by the supervisor in order to
execute an I/0 request. The supervisor’s control blocks
contain the “unit address” of each device attached to the
system, some control information peculiar to each device
(““device characteristics), workspace required by pro-
cedures common to all I/O requests (including device
status conditions), and the control words (“queue ele-
ments”’) needed to link the supervisor’s control blocks with
the user’s control blocks when an I/O request is made.

A given set of user control blocks may be used repeatedly
after each I/O request is completed. It is also possible to
make several 1/O requests to the same resource (device
or data file) before previous ones are completed if the
user’s program contains as many sets of control blocks
as the number of I/O requests that will be made before
the first one is completed. The latter case is typical of a
PCOS environment; any number of Service Modules may
independently make I/0 requests for the same resources,
in particular for the Transmission Control Unit.

It should be stressed that the linkage from the super-
visor’s to the user’s control blocks is established only by
an explicit request for the next unit of data; when the I/O
operation is completed the OS supervisor deletes the
temporary linkage between control blocks. This char-
acteristic is in direct conflict with a real-time system re-
quirement. In particular, as far as PCOS is concerned, the
response to automatic polling by the Transmission Control
Unit would be adversely affected. In a later section it is
described how an RTCP Appendage converts the (normal)
temporary linkage to a permanent linkage when automatic
polling is first initiated. From then on, the RTCP is ready
to accept request code data in a continuous fashion without
re-initiation of an 1/0 request.

o Data routing through the supervisor

An area of particular interest for PCOS concerns the
data routing through the OS supervisor that is triggered
by an 1/O interrupt. Figure 4 illustrates all the possible
OS data paths from component to component from an
I/0 interrupt to a problem program task. Readers familiar
with OS/360 may observe that the diagram does not
illustrate data routing directly from a problem program

IBM J. RES. DEVELOP.

to the Execute Channel Program Supervisor or to the
Dispatcher. The former occurs when a problem program
requests an I/O operation, and the latter when a problem
program issues the warr macro-instruction so that the
dispatcher may give control to a lower priority program.
For simplicity, consider the data routing that begins with
the completion of an I/O request, i.e., an /O interrupt.

The shortest possible data path occurs if the problem
program does not include supervisory state extensions to
the OS supervisor. In this case, the data route will be
through the interruption supervisor and dispatcher only.
In Fig. 4 the data path numbers (for the shortest path)
are 1 to 6 and 11.

The inclusion of one or more supervisory state extensions
will, of course, increase the length of the data path and
the time required to traverse it since each extension will
receive control to execute its own instructions. The ex-
tension routines (or appendages) have coding restrictions
and conventions that should be followed. Additionally,
0S/360 provides special macro-instructions that must be
coded for execution before the extensions are needed (e.g.,
when a program begins operating). In this way, the OS
supervisor establishes linkages (addresses) to each ex-
tension identified through coding parameters. A given
set of extension routines, appendages, and macro-instruc-
tions is associated only with a specific I/O device which,
in turn, is fully identified by an I/O interrupt. For a
specific device, such as the TCU, the OS supervisor can
link to applicable extensions by using the device each
time an I/O operation is completed.*

Assuming that all the extension routines or appendages
shown in Fig. 4 exist, let us consider the conditions that
must prevail so that each may receive control. On receiving
an I/0 interrupt the OS interruption supervisor will first
link to the attention routine defined for the I/O device
if the status from the device indicates ‘“‘attention.” As
indicated in Fig. 4, the attention routine returns control
to the interruption supervisor. If the status examined by
the interruption supervisor contains only the ‘“‘attention
flag” then only the attention routine will receive control
before the interruption supervisor gives control to the
dispatcher.

The channel end appendage or the abnormal end ap-
pendage is entered if the status words of the I/O channel
and I/O device indicate the completion of an operation.
Upon a given 1/O interrupt, the interruption supervisor
may give control to either appendage but not to both.

Normally, the dispatcher immediately gives control to
some problem program. But, if the attention routine or
either appendage has requested the scheduling of an
asynchronous exit routine, the dispatcher will first give
control to the appropriate asynchronous exit routine.

* System /360 bardware stores the address of a device in the “old 1/0 pro-
gram status word” when an I,/0 interrupt takes place.

NOVEMBER 1970

1/0 interrupt
1
Y
2
Attention
routine 3
oS
interruption
4 supervisor 4
Channel end Abnormal end
appendage 5 5 appendage
)]
6
7 To problem program
08 11 _ task of highest priority
8 dispatcher that is not waiting for
Asynchronous completion of some event
exit
routine [¢] OS 12
Exccutive Channel sTaRT I/O
10 | Program (EXCP) 13 appendage
Supervisor

Figure 4 Data routing through the OS supervisor. Diagram
illustrates the data routings that may be triggered by an
1/0 interrupt. The attention routine channel end appendage,
abnormal end appendage, the asynchronous exit routine
and the START 1/0 appendage are conventional problem pro-
gram extensions to the OS supervisor; these extensions
operate in supervisor state.

It may be helpful to consider a typical application to
define what is meant by an “asynchronous exit routine.”
The figures and characters displayed in an IBM 2250
display station are driven through explicit 1/O requests
that provide data to a given unit. Each of these operations
is accompanied by an I/O interrupt when the (output)
data transfer is completed. These interrupts are ‘“syn-
chronized” with problem execution because they occur as a
consequence of an I/O operation directed to the device.
But requests made by an operator at a display station may
occur asynchronously to problem program execution.
To handle this case, the display stations are designed to
generate a status of “‘attention” when the operator in-
dicates that he wishes to communicate with the computer.
The result: an attention routine requests that the dispatcher
take an ‘“‘asynchronous exit” in place of its normal (syn-
chronous) exit to a problem program.

An asynchronous exit routine can perform any number
of /O requests (the same or different) through the Execute
Channel Program (EXCP) Supervisor (e.g., to read in-
formation being keyed in by an operator). Conventionally,
the attention routine cannot perform any 1/O requests.
The channel end and abnormal end appendages can
request (through modified exits) that the same I/O
operation be repeated, but the appendages cannot initiate
any new I/O request. We shall see in the following section
that in the case of PCOS, if a conventional implementation
had been made, an asynchronous exit routine would be
required to read request codes buffered by the TCU.

625

PROCESS CONTROL OPERATING SYSTEM

626

J. R. CALVA

Finally, with reference to Fig. 4, a few comments about
START I/0 appendages are in order. A START 1/0 appendage
receives control from the EXCP supervisor whenever an
I/O request is made for its associated device; control is
given to the appendage before the 1/O request is executed.
As indicated in the figure, a START 1/0 appendage returns
control to the EXCP supervisor. A “normal return” allows
the execution of the I/O request and a “modified return”
disallows the I/O request. PCOS uses a START 1/0 ap-
pendage to prevent the incorrect use of commands that
may be issued to the TCU (e.g., service modules may not
start or stop automatic polling).

PCOS supervisory state extensions of 0S/360
PCOS was designed to enhance the effectiveness of OS/360
performance in the real-time environment represented by
IBM’s plants. Specifically, 1) it improves the ability of the
OS supervisor to respond quickly to data-driven I/O
interrupts that request other I/O operations and 2) it
eliminates the need for all other activity in an entire
partition to wait until the loading of a program, such as
a Service Module, is completed. In PCOS these enhance-
ments are accomplished by three supervisory-state exten-
sions to OS: the RTCP Attention Routine, the RTCP
Channel End Appendage, and the RTCP Fetch Module.
Moreover, through the first two extensions the TCU is
supported in a data-driven mode. This section describes
how these operations are accomplished. In addition, the
PCOS support for “interpartition communication”
(another supervisory state extension) is also described.

It should be stressed that the PCOS express path, the
PCOS method of loading disk-resident Service Modules,
and PCOS support of the TCU provide a means of handling
TCU request codes in a very efficient way (when using OS).
By combining the individual effects of these supervisory
state extensions, the net effect is most significant. Request
codes can be quickly processed so that the TCU may
continue polling, Service Modules can be loaded while
other Service Modules continue their execution (or while
a subsequent request code is processed), and Service
Modules can use the TCU without disrupting or delaying
the handling of request codes.

e PCOS express path for reading a request code

Let us direct our attention to the express path and consider
a request for a core-resident Service Module. Assume
that the TCU function of “automatic polling” has been
started.

The TCU buffers request codes, one at a time, as they
are received from a satellite computer. As soon as a
request code has been buffered, the TCU generates an
I/0O interrupt to the central system with attention status.
As described previously, the OS interruption supervisor
will then give control to the RTCP Attention Routine

which, conventionally, would never “request” nor ‘‘ex-
ecute” an I/O operation. But the RTCP Attention Routine
issues a START 1/0 instruction to read the request code
buffered in the TCU into an input queue and then com-
pletes the operation by issuing a TEST 1/0 instruction.
START 1/0 and TEST I/0 are “privileged instructions” to
be used only by the supervisor, but the attention routine
can issue them because it operates in supervisory state.®

A TEST 1/0 instruction retrieves ending status due to an
1/0 operation. Thus, when the attention routine issues a
TEST 1/0 to the TCU, the status contained in the Sys-
tem/360 channel status word is changed from “attention”
to “channel end/device end” (obtained from the TCU).
When this is done, the attention routine returns control
to the interruption supervisor which then detects a status
of “channel end” (in addition to “device end”) and passes
control to the RTCP Channel End Appendage.

The RTCP Channel End Appendage examines the
request code read by the attention routine to determine
the identity of the Service Module (SM) requested. If
the SM is in use but is serially re-usable, the current
request code is chained to a previous one in the input
queue for later retrieval. If the SM is disk resident, the
RTCP Channel End Appendage will set parameters so
that the OS dispatcher will take an asynchronous exit
to the RTCP Fetch Module. If the SM is core resident—
which is the case we are considering—the appendage marks
the SM ready for execution. Finally, the RTCP Channel
End Appendage keeps the automatic polling control
blocks (a set of user control blocks) permanently open so
that the attention routine will continue to process request
code data. Control is then returned to the OS interruption
supervisor.

The OS interruption supervisor passes control to the
OS dispatcher which, in turn, gives control to the RTCP
problem program. Any SM that has been marked “ready”
for execution will receive control (in problem state) from
the RTCP SM Initiator.

In summary, the sequence for initiating execution of a
core-resident SM is: 1) an I/O interrupt with attention
status is generated by the TCU, 2) the RTCP Attention
Routine reads the buffered request code through a START
1/O-TEST 1/0 sequence, 3) the resulting status due to TEST 1/0
is channel end/device end, 4) the RTCP Channel End
Appendage marks a core-resident Service Module ready
for execution and 5) the dispatcher gives control to the
RTCP (in problem program state).

As indicated in Fig. 4, the linkage to the attention
routine, channel end appendage and to the RTCP is
accomplished via the OS interruption supervisor and the
OS dispatcher. And, to emphasize the PCOS express path
for reading a request code, note that only one 1/0 inter-

* The procedure followed is identical to the one in the “sense subroutine”
of the OS Supervisor.

IBM J. RES. DEVELOP.

rupt takes place and the path numbers in Fig. 4 are 1-2-
3-4-5-6 and 11.

& Conventional approach to reading a request code
To read a request code using a conventional approach,
two 1I/0O interrupts are required. The path numbers for
the first I/O interrupt are 1-2-3-6-7-9-12-13-10-8; this
interrupt is followed immediately by a second I/O inter-
rupt with path numbers of 1-6-7-8 and, finally 11.

In a conventional implementation, the logical sequence
for the first I/O interrupt is: 1) an I/O interrupt with
attention status is generated by the TCU, 2) the RTCP
Attention routine requests that the dispatcher link to an
asychronous exit routine—the request code is not read,
3) the asynchronous exit routine makes an I/O request
to the EXCP supervisor to read the request code buffered
by the TCU, 5) the Excp supervisor links to the RTCP
START 1/0 appendage before executing the I/O request,
6) the I/O operation is initiated and the EXCP supervisor
returns control to the asynchronous exit routine, 7) the
asynchronous exit routine issues a WAIT macro-instruction
to cause a wait for completion of request code input and
8) the dispatcher receives control as a result of the warr
macro-instruction.

When the dispatcher enables I/O interrupts, the inter-
rupt will occur immediately because the TCU will have
completed transferring its buffered request code (this
operation is very fast).

The logical sequence for this second I/O interrupt is:
1) an I/O interrupt with channel end/device end status
is generated by the TCU (the channel end appendage is
not an essential requirement in this case and may be
assumed not to exist), 2) the dispatcher gives control to
the asynchronous exit routine because the event it was
“waiting on’’ has now completed, 3) the asynchronous
exit routine marks a core resident Service Module ready for
execution and 4) the dispatcher gives control to the RTCP
(in problem program state).

Clearly, the express path used by PCOS is much shorter
than the path that would be used in conventional OS
operation. Under normal operating conditions, many
milliseconds are saved by avoiding the queueing and
retrieving of the I/O requests which can occur when the
System/360 channel is busy servicing some other I/O
request.

& Fetch of disk-resident Service Modules
As indicated above, whenever the RTCP Channel End
Appendage finds that a Service Module is disk resident,
it sets parameters so that the OS dispatcher will take an
“asynchronous exit” to the RTCP Fetch Module. The
path through Fig. 4 to the RTCP Fetch Module, an
asynchronous exit routine, is 1-2-3-4-5-6-7,

There are several important steps involved in the

NOVEMBER 1970

P1 PO

T T
| i
| RTCP
| Fetch : c Core
: Module | ommon
i !
TCB1 IRB TCBO
3
Request code IRB TCB
obtained from TCU pointer pointer

IQE

Figure 5 Fetching disk-resident Service Modules in overlap
mode. The task control block pointer within the interrupt
queue element addresses the partition containing Core
Common. Service Modules in P1 can then continue execut-
ing while a disk-resident Service Module is being loaded
into P1.

loading of disk-resident Service Modules. Some are per-
formed within the channel end appendage before the
fetch module is entered and the others within the fetch
module.

With reference to Fig. 5, in order to link to an asyn-
cronous exit routine the dispatcher requires what is called
an “interrupt queue element” (IQE). The IQE must contain
a “pointer” (an address) to an ““interrupt request block”
(IRB) which, in turn, contains a pointer to some routine
or program (in PCOS it is the RTCP Fetch Module).
The IQE must also contain a pointer to the “task control
block” (TCB) that the dispatcher associates with a prob-
lem program. The RTCP Channel End Appendage
initializes appropriate parameters but, in addition, the
TCB pointer is altered so that its content addresses the
TCB for Core Common instead of the TCB for the Real-
Time Control Program, This situation is depicted in Fig. 5.
Result: the OS dispatcher treats the fetch module in P1
as if it resided in PO.

To state it more simply, the asynchronous exit routine
requested in the RTCP Channel End Appendage is made
to belong to another task, i.e., the Core Common problem
program.

When the RTCP Fetch Module is entered, this asyn-
chronous exit routine does not perform the actual loading
of disk-resident Service Modules. Instead, it initializes
parameters required by the OS Fetch Routine and branches
directly to it. OS fetch loads Service Modules into the
Real-Time Control Program partition (P1) in the same
way it loads any other disk-resident program. In so doing,
when OS fetch issues a WAIT macro-instruction, the OS
dispatcher will receive control and it will place the task
in PO (Core Common) into the wait state (because of the
TCB pointer in the IQE) and pass control to a lower
priority task not waiting for completion of some event.

627

PROCESS CONTROL OPERATING SYSTEM

628

J. R. CALVA

Supervisor Problem program
Supervisor [~] N ———> User
program e —— _ program
1/0 I L A — N- —— —» User’s
queue control blocks
*——1 set 1
R o N —— —] User’s
SUPCT‘t’IS?f s control blocks
contro -+ set2
blocks
_____.ﬁ___] User’s
control blocks
< set n

——~— Temporary linkage during execution

Permanent linkage established when
problem program is initinlized

Figure 6 Real-Time Control Program support of Trans-
mission Control Unit.

It was stated previously that dormancy of the Core
Common task is used to advantage. It should be clear
that on the occurrence of an I/O interrupt for a disk-
resident Service Module, if the Real-Time Control Pro-
gram or its Service Modules are in some stage of execu-
tion, processing in P1 will be resumed at the point of
interruption as OS fetch loads another Service Module
into the same partition. The problem program task waiting
for completion of loading will be the one in PO, Core
Common.

When OS fetch finishes loading a Service Module it
returns to the RTCP Fetch Module (the asynchronous
exit routine) which resumes processing in supervisory
state. To finish its work, RTCP fetch sets the “ready flag”
for the SM just loaded; the SM flags field is located in the
request code input queue. Then, RTCP fetch checks the
event control block (ECB)* used by (RTCP) SM-Initiator
Servicer. If the SM initiator is waiting for the completion
of a request code interrupt, RTCP fetch sets the comple-
tion flag in SM initiator’s ECB so that the OS dispatcher
will give control to SM initiator. If the SM initiator is
not waiting for completion of a request code interrupt,
then the Real-Time Control Program or a Service Module
has been interrupted from its processing. The dispatcher
will automatically return control to the RTCP or one of
its Service Modules (so that processing will continue at
the point of interruption), and the SM initiator will
eventually find a newly loaded SM ready for execution.

Finally, as far as disk resident Service Modules are
concerned, the data routing through Fig. 4 is 1-2-3-4-5-
6-7-8 (when OS fetch issues a warr to the dispatcher) and

* An ECB is one control block within a “‘user control block™ set of Fig. 3.

11. After OS fetch completes the loading of a Service
Module, the RTCP Fetch Routine (working as if it were
in P0) will terminate its operations. The OS dispatcher
will again give control to the RTCP or to one of its
Service Modules in P1.

o Program support of the TCU

The PCOS express path and the method of loading disk-
resident Service Modules would hardly be effective without
the support provided for the Transmission Control Unit.
The real-time response depends largely on the PCOS
software-TCU hardware relationship. For programming
purposes, the hardware interface between the TCU and
the central system was designed for three distinct functions:
1) automatic polling, 2) data transfer and 3) diagnostic
testing. The programming of these functions can be
performed by using three unit addresses. That is, although
the TCU is actually one device, it will accept commands
from the central system on three different addresses.*

The Real-Time Control Program reserves the first unit
address solely for automatic polling and the next higher
unit address (of the TCU) for data transfer. As stated
previously, a user program must have a set of user control
blocks for each I/O request. This situation is depicted
in Fig. 6, where the user control blocks of Fig. 3 have been
assigned to “automatic polling” and ‘“‘data transfer.”

As indicated in Fig. 6, the control blocks for automatic
polling remain permanently active once automatic polling
has been started. To accomplish this, the RTCP Channel
End Appendage executes one additional instruction and
it uses a modified return to the OS supervisor. The
modified return is a standard option for any OS appendage.
Some of the details are discussed in the following four
paragraphs.

When the TCU accepts the command to start polling
it presents a status of “channel end/device end” (attention
status is not generated until the TCU buffers a request
code) and, as explained previously, the RTCP Channel
End Appendage will receive control. The appeniage
recognizes the issuance of a start poll command and
sets two flags in the supervisor’s “unit control block”
(UCB) containing the unit address for automatic polling.
They are called ucesUsy and ucsrost. These flags indicate
to the OS supervisor that an I/O request is pending, and
any subsequent 1/O interrupt (from the unit assigned to
automatic polling) will be treated as an explicit I/O request.

The RTCP Channel End Appendage terminates its
processing by using a modified return to the OS supervisor.
Through this standard option, the OS supervisor will
retain what is called a “request queue element” (RQE)
in an active status. An RQE is a unit of software logic

* For example, at the plant in Rochester, Minn., the system uses TCU
address 260 for automatic polling, 261 for data transfer and 262 for diagnostic
testing,

IBM J. RES. DEVELOP.

used by the OS supervisor for each explicit I/O request.
Among other things, an active RQE contains a pointer
(an address) to a set of user control blocks (in this case,
those associated with automatic polling).

Two important things have now been explained: 1)
flags have been “set” in the supervisor’s control blocks
so that a subsequent I/O interrupt will be treated like an
explicit I/0 request and 2) the linkage to a user’s control
blocks is retained. The result is that when the TCU
generates an I/O interrupt with attention status the OS
interruption supervisor will handle it as if an explicit
1/0 request had been made.

The RTCP Channel End Appendage repeats the same
procedure whenever it processes a request code. Thus,
because the TCU does not require a command to continue
polling, it should now be clear why the Real-Time Control
Program is data driven. That is, request codes buffered
by the TCU are processed without the use of explicit 1/O
requests to the OS supervisor.

With the first unit address of the TCU reserved for
automatic polling, what of the second unit address? The
software is conventional in design and use. It is reserved
by the RTCP for data transfer operations by any Service
Module.

As for the third unit address of the TCU, the RTCP
does nor use it, and diagnostic tests can be performed
without any conflicts from a separate OS partition while
the RTCP is in operation.

o Software implications of multiple TCU addresses

From a software standpoint, the advantages in having
three unit addresses for the same TCU are: 1) responsive-
ness to automatic polling is optimized, 2) it is logically
convenient to assign each unit address with the specialized
functions of polling, data transfer and diagnostic testing
and 3) it is possible to assign the unit address for diagnostic
testing to a separate problem program. As to the latter,
once a “‘unit address” has been assigned to a “‘task”
(a problem program) of 0OS/360, the OS supervisor will
not assign the same ‘““unit address” to another (indepen-
dent) task; however, because the TCU will accept three
unit addresses, it could in fact be assigned to three dif-
ferent independent OS tasks.

e Hardware implications of multiple TCU addresses
The relationship between OS control blocks, unit address,
and devices led to a specification for three unit addresses.
But the TCU will accept all of its commands on any one
of its addresses. Thus, the TCU is independent of any
programming system and is designed to work with any
System/360 computer.

It is possible to program the TCU by using only its
first unit address. Nevertheless, there are characteristics
of the TCU that offer important programming advantages.

NOVEMBER 1970

When the TCU buffers a request code, it does two im-
portant things: 1) it resets the “polling latch” so that the
satellite system is not polled and 2) the I/O interrupt with
attention status will occur only on the first unit address.
From the latter, a programmer wishing to treat automatic
polling as a separate function (such as in PCOS) must
use the first unit address for this purpose.

When a central system program (such as a Service
Module) selects a satellite computer, the TCU will auto-
matically re-enable polling of the satellite system. However,
automatic polling will be re-enabled only if the satellite
system is selected on the first or second unit address.
Thus, a programmer may use the first unit address for
automatic polling and data transfer. He may, optionally,
separate the two functions (such as PCOS). Data transfer
on either the first or second unit address will produce
the same result—the TCU will resume automatic polling
to the selected satellite after it has been serviced.

If a central system program selects a satellite computer
on the third unit address of the TCU, the selected satellite
will not be re-enabled for automatic polling. In this way,
the third unit address can be reserved for diagnostic tests
and the satellite system will not be polled automatically.
(It is possible to poll a sateliite system through software.
It is also possible to enable or disable a satellite system
for automatic polling by explicitly using a MaSK command.
This may be done on any unit address, including the third.)

The TCU characteristic of not re-cnabling automatic
polling (unless explicitly requested) on the third unit ad-
dress is significant. It is possible to test one or more
satellite systems without affecting the Real-Time Control
Program. If polling were re-enabled, the TCU would
buffer what could be an undesired request code which,
in turn, would be processed by the RTCP.

The design of the hardware interface of the TCU is
complementary to the design of PCOS. Each unit address
of the TCU provides features that assist the programming
of three distinct functions—automatic polling, data trans-
fer and diagnostic testing.

o Elimination of stored polling list
Another important characteristic of the TCU is its ability
to automatically poll satellite systems without the con-
tinuous access of terminal addresses. The TCU accepts
a “polling list> through what is called a Mask operation.
Though this operation is performed by a problem state
function of the RTCP, it is considered here because of its
specification for (and relation to) real-time programming.
Through the mask operation, the RTCP TCU Initializa-
tion Servicer (in problem state) provides a polling list to
the TCU. Once completed, the TCU does not require a
polling list from the central system. In contrast to tele-
processing devices, a real-time response is not compro-
mised by I/O channel interference. Moreover, after the

629

PROCESS CONTROL OPERATING SYSTEM

630

J. R. CALVA

command to start automatic polling has been issued, no
software instruction or polling list data is needed (except
for error conditions). The only normal requirement is
the ability to process I/O interrupts for request code
handling. In PCOS, a polling list is provided only when
the RTCP begins its operation. The RTCP Attention
Routine and the RTCP Channel End Appendage take
care of request code handling. The need for use of a
permanently core-resident polling list is eliminated.

& [Inter-partition communication

As illustrated in Fig. 2, the Core Common partition is a
separate area of core storage. For this reason, to the OS
supervisor Core Common is an independent task with its
own “storage protect key.” A problem program that
attempts to store data into another partition will be ab-
normally terminated by the OS supervisor. However, the
PCOS Core Common Servicer provides the means to
store or retrieve data into or from the Core Common
partition.

The Core Common Servicer was designed for RTCP
Service Modules, but any other problem program may
use this servicer which stores or retrieves data only into
or from the Core Common partition. This function is
implemented through the use of PCOS macro-instructions
and a PCOS SVC Routine.* A user must provide a
unique eight-byte “label” to store data and, subsequently,
to retrieve data; another user may retrieve data by using
the same label. Provisions are available to prevent storing
data with duplicate labels and for the deletion of labeled
data.

The core buffer used by the Core Common Servicer
has a fixed size that can be determined at each user installa-
tion. To prevent core storage from becoming fragmented
when data records are deleted from a string of records, the
Core Common Servicer links pieces of core together when
necessary. Core Common is thus limited by the size of the
core buffer but not by core fragmentation.

To use the PCOS Core Common Servicer, the Core
Common partition must be initialized so that a PCOS
SVC routine can place the address of the Core Common
data buffer into the communications vector table (CVT)
of the OS supervisor. (The CVT contains addresses to
routines and control blocks used by the OS supervisor
or by SVC routines. A pointer to the CVT is stored in
core location 16 in all versions of 0S/360 when the OS
supervisor is initialized.)

Problem state functions of the RTCP
The problem state routines of the Real-Time Control
Program are loaded by the OS supervisor as one problem

* An SVC *“supervisor call” routine operates in supervisor state as yet
another extension to the OS supervisor. An SVC routine for Core Common
operates with all System /360 interrupts disabled (excluding machine check) to
lock out any interference.

program. As the RTCP begins its execution, linkages to
the supervisory state extensions are established through
normal conventions of OS/360 and the RTCP initializes
all the functions it needs to begin its work. Additionally,
the RTCP provides many service routines for its own
use and for Service Modules. The following paragraphs
describe the highlights of the RTCP services.

o Data Control Block Servicer

A requirement common to all Service Modules is the
need to access I/O devices and data files. The use of these
1/0 resources must be planned before any Service Module
can be coded. When the RTCP begins its execution, the
Data Control Block (DCB) Servicer initializes all the sets
of user’s control blocks (Fig. 3) required by Service
Modules and by the RTCP. Service Modules use the DCB
Servicer to obtain any defined set of control blocks. An
I/0 request can then be initiated without delay.

The DCB Servicer uses the oPEN macro-instruction to
initialize all sets of user control blocks. The significance
of “opening data control blocks” when the RTCP begins
its execution may be understood by considering a typical
case. Service Modules of the PCOS installation at IBM
Rochester use 13 data files. The processing performed by
the open routines of OS takes 15.6 sec—an average of 1.2
sec per set of control blocks. Once initialized, control
blocks remain “open” for immediate use. The time saved
for a real-time system environment is self-evident.

o TCU Initiation Servicer

The TCU Initiation Servicer performs the mask operation
and issues a command to the TCU to start automatic
polling (via I/O requests). It should be emphasized that
the automatic polling control blocks provide control in-
formation to the OS supervisor and also to RTCP func-
tions. In particular, the automatic polling control blocks
contain the address of the input queue for request code
data required by the RTCP Attention Routine and the
RTCP Channel End Appendage. This all-important ad-
dress is made available when the TCU Initiation Servicer
starts automatic polling.

o SM Initiation Servicer

The SM Initiation Servicer gives control to Service Mod-
ules that are ready to begin or to resume their execution.
SM execution is resumed when any of its I/O operations
have completed.

When two or more SM’s are waiting for completion
of an I/O operation, the SM Initiation Servicer “looks
ahead” to see if other SM’s are ready to begin or resume
execution, If no Service Module is ready for execution,
this servicer branches to the PCOSWALIT Servicer to wait
for the completion of an I/O interrupt (when another
SM is ready for execution).

IBM J. RES. DEVELOP.

o PCOSWAIT Servicer

Whenever a problem program performs an I/O operation,
if it cannot continue processing it should issue a WAIT
macro-instruction to wait for the completion of its I/O
request. The OS supervisor will return control immediately
if the 1/O operation has completed. Otherwise, control is
given to a problem program of lower priority. When the
I/0 operation is completed, the OS supervisor interrupts
the lower priority program (triggered by hardware inter-
rupt) and passes control to the higher priority program.

In the case of RTCP Service Modules, the use of the
WAIT macro-instruction is not allowed because a lower
priority partition may gain control while other Service
Modules are in some stage of execution. The PCOSWAIT
macro-instruction is used by Service Modules instead
of the normal wAIT macro-instruction to invoke the
PCOSWAIT Servicer routine.

In performing its functions, the PCOSWAIT Servicer
uses what is called a “multiple wait,” a special form of
the waIT macro-instruction. At the very least, the SM
Initiation Servicer will be waiting on the completion of a
request code interrupt. Additionally, one or more Service
Modules may be waiting for completion of an I/O request.

When the PCOSWAIT Servicer issues a multiple wait,
the OS supervisor gives control to a lower priority pro-
gram if none of the multiple I/O events have completed
execution. But if one or more of the multiple I/O events
has been completed, or whenever one or more does be-
come completed, the OS supervisor returns control to
the PCOSWAIT Servicer which, in turn, passes control to
the SM Initiator.

o Program Check Servicer

A “program check” is a name given to error or fault
conditions associated with the execution of a program.
In System/360, a program check will cause a special
interrupt which is similar to, but separate from, an I/O
interrupt. The OS supervisor processes a program check
and, in many cases, it will allow a problem program to
continue operation according to its own error or fault
handling routines. In OS/360 these can be provided
through the use of sPIE and STAE macro-instructions. The
RTCP Program Check Servicer provides necessary routines
and issues SPIE (System Program Interrupt Exit) and STAE
(System Task Abend Exit). Its own routines and Service
Modules can recover from arithmetic errors. In addition,
the servicer protects all Service Modules from those opera-
tions that may generate nonarithmetic errors (e.g., an
attempt to store data in another partition, overflow of a
data file, and many others).

o SM Termination Servicer

When a Service Module completes its execution it uses
the SM Termination Servicer. This servicer is also used

NOVEMBER 1970

by RTCP routines that (abnormally) terminate a Service
Module. The SM termination servicer frees all I/O re-
sources that may have been requested by a Service Module
from the DCB Servicer. The SM Termination Servicer
also clears flags in the input queue to make the space
available for another request code.

Present status of PCOS

PCOS was first installed at IBM’s Boulder manufacturing
plant in September, 1968. San Jose, Kingston, Raleigh
and Rochester each installed a PCOS facility within a
year. By September 1969 the user plants had gained
experience and acquired programming skills at the central
system as well as at satellite systems, and it was time to
improve the original design.

Again, a development mission was assigned to the
manufacturing plant in Kingston. PCOS was modified to
support “re-entrant” Service Modules. Additionally, with
the availability of Release 18 of 0OS/360, PCOS could
use the sTAE feature described earlier in the paper.

Re-entrant Service Modules are those that can accept
many request code inputs regardless of their execution
stage. In contrast, a “‘serially re-usable” SM is one that
can handle only one request code input at a time. Re-
entrant SM’s are most useful when they can provide a
commonly used function. The most obvious common func-
tions are program storage or retrieval and data storage
or retrieval. A core-resident Service Module that is used
often enough can provide faster service if it is re-entrant
since a satellite user does not have to wait for the com-
pletion of a previous service request.

Efforts have been made, notably by the San Jose plant,
to provide a set of re-entrant Service Modules for common
use. These efforts have been partially successful. There
has been some difficulty, however, in defining a data
management scheme common to all plants. Service
Modules offered from one plant may include features
peculiar to its own installation, e.g., the way error con-
ditions are handled, use of different error control codes,
need for additional services, and so on. Thus, satellite
systems at the various plants are not using identical
Service Modules. Those SM’s that are shared are usually
modified.

In interfacing the RTCP with OS/360 no attempt was
made to develop new core management or data manage-
ment techniques. Thus, in addition to the problems in-
volved in developing a set of compatible re-entrant Service
Modules, some problems exist that are not specifically
restricted to the real-time process control environment in
which PCOS operates.

One problem associated with OS/360 is called “core
fragmentation.” Its existence has been recognized since
the first development of PCOS but, up to now, there
have been ways of overcoming it by providing ‘“‘enough”

631

PROCESS CONTROL OPERATING SYSTEM

632

J. R. CALVA

core storage. All the details concerning core fragmenta-
tion are beyond the scope of this article. The effect, how-
ever, is that at some point a Service Module cannot
obtain core for its work or the RTCP cannot load another
SM. If this point should ever be reached the central
computer would become inoperative.

There is a problem, too, if Service Modules require
many different data files. For maximum speed, the core
required for “‘user control blocks” becomes prohibitively
large. At 200 bytes per set of control blocks, 50 data
files will require 10,000 bytes of core storage. IBM
Rochester has overcome this problem by using two data
files for most Service Modules. The first one is an “index
file” which contains the location of each record or data
file stored in the second file. This procedure conserves
core at the expense of time.

Proposals have been made to take care of known
deficiencies. Kingston has suggested that selected control
blocks be stored on disk after a data file has been “‘opened.”
Rochester has suggested improvement of its system by
keeping a core-resident directory of commonly used data
records and data files and also a new core management
technique.

The acceptance and development of PCOS have con-
tinued to progress satisfactorily in spite of certain prob-
lems. The design goals and performance specifications of
1968 have been met.

Acknowledgments

The implementation of PCOS was carried out at the plant
in Kingston, New York. M. L. Mauldin led the develop-
ment effort and incorporated the Service Module concept.
He and T. G. Reilley implemented the RTCP Fetch
Module and almost all of the problem-state portions of
the RTCP. D. J. McKenna developed the Core Common

functions and, with A. C. Christiano, implemented most
recent improvements to PCOS. W. D. Houle managed
the project at Kingston.

The author is especially grateful to R. W. Henry of
San Jose who provided him with much of the programming
information needed to functionally specify the TCU-to-
central computer interface and who, with the author,
developed the RTCP support for the TCU. The engineering
skill of A. H. Rall was crucial to the design of a TCU that
could operate compatibly with PCOS.

The important contributions of W. Moore in coordinat-
ing the efforts of managers from the various IBM plants
during development of the process control network are
acknowledged and the author’s special thanks go to G. L.
Gorsuch of Rochester, Minnesota for his foresight and
commitment to the project.

References

1. J. E. Stuehler, “An Integrated Manufacturing Process
Control System: Implementation in IBM Manufactur-
ing,” IBM J. Res. Develop. 14, 605 (1970), this issue.

2. F. W. Thoburn, Jr., “A Transmission Control Unit
for High-speed Computer-to-computer Communication,”
IBM J. Res. Develop. 14, 614 (1970), this issue.

3. J. E. Stuehler and R. V. Watkins, “Computer Operated
Manufacturing and Test System,” IBM J. Res. Develop.
11, 452 (1967).

4. P. W. Weiler, R. S. Kopp and R. G. Doman, “A Real-
Time Operating System for Manned Spaceflight,” IEEE
Trans. Computers C-19, 388 (1970).

5. R. M. Winick, “Line Control and Terminal Manage-
ment in OS/360-A Proposed Control System,” Software
Age 4,23 (January, 1970).

6. G. H. Mealy, “The Functional Structure of OS/360,
Part One, Introductory Survey,” IBM Syst. J. 5,3 (1966).

7. G. Bender, D. N. Freeman and J. D. Smith, “Function
and Design of DOS/360 and TOS/360,” IBM Syst. J.
6,2 (1967).

Received August 14, 1970

IBM J. RES., DEVELOP.

