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PCOS: A Process  Control  Extension to 
Operating System/360 

Abstract: This  paper  discusses the design and  implementation of  an  extension to IBM Operating  System/360 that is  called  PCOS 
and is  intended specifically  for  use in “real-time” control of IBM manufacturing processes and  testing.  The  most important part of 
PCOS  is a Real-Time  Control  Program  (RTCP)  which  is  initiated at system start-up time  as a “never-ending”  task.  The  RTCI’  controls 
the execution  of application  programs  and  permits  system  response to requests  for  their  execution  within a time on the  order of 100 
msec.  Other contributions are an  “express path” for  handling  input /output operations,  an “interpartition communication”  program 
that provides  common  core storage  for use during the execution  of application  programs,  and  an  appendage to the OS /360  supervisor 
program to serve a specially  designed  high-speed  multiplexor  called the  “transmission  control  unit.” 

Introduction 
The Process Control Operating System (PCOS) is  an 
extension of IBM OS/360 that was developed specifically 
for use in the company’s manufacturing  plants. PCOS 
resides in  the central  computer of the satellite computer 
network discussed by Stuehler.‘ In this  network a number 
of satellite computers are connected to a central computer 
through a high-speed multiplexor called a Transmission 
Control  Unit (TCU);  this  unit is described in a companion 
paper by Thoburn.2 

The planning and development of PCOS  took place 
in 1968. This development was the result of decisions to 
upgrade the  IBM 1460/1440 technology of a satellite 
computer system (COMATS)3 then existing at  the IBM 
plant  in  San Jose, and  to provide a single software  package 
that would satisfy the diverse needs of computer-aided 
testing and process control applications at most of the 1BM 
manufacturing  plants. 

As an extension of OS/360 PCOS not only provides 
the  normal services and facilities of that operating system, 
but also  contains new features  intended to 1)  support 
the  TCU, 2 )  achieve near-optimum  response to service 
requests  initiated at  the satellite computers and 3) schedule 
the execution of service programs  requested by the 
satellites. 

The innovations  included in PCOS are based on a 
philosophy of real-time operating systems that is also 
exemplified in  other extensions of OS/360. RTOS (Real- 
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Time  Operating S y ~ t e m ) ~  was developed for manned 
spaceflight ground-support systems at NASA, Houston. 
BTAM, QTAM  and  TCAM5  are operating system ex- 
tensions provided to  support teleprocessing applications 
of computers. Despite great differences in  the manufactur- 
ing, spaceflight and teleprocessing environments for com- 
puter  operation,  they  all  impose the same “real-time” 
constraint that  the system must respond to requests for 
service within a time on  the  order of 100  msec. It should 
be noted  that  IBM  has recently announced for potential 
customer use a generalized real-time extension of OS/360 
called the Real-Time Monitor (RTM). 

To be specific in discussing what is meant by real-time 
systems, it  is useful to  quote  from  the recent paper by 
Weiler et  al.4  (substituted  terms are  in brackets): 

“A basic difference between real-time systems and  other 
data processing systems is  that real-time systems are  data 
driven. . . . A real-time system cannot explicitly request 
the next unit of data  to be processed. Instead, it must be 
prepared to accept data whenever it arrives and, if process- 
ing cannot  be immediately accomplished, store  the  data 
in queues for  later processing. As soon as it is recognized 
that  data may be placed in queues awaiting processing, 
another characteristic of real-time systems is identified, 
i.e., responsiveness. . . . The requirements of being data 
driven and highly responsive are satisfied by the design 
of [the RTCP  and  the transmission control unit]. . . .” 

Before beginning the discussion of PCOS it  is  important 
to  note  its relationship to the  TCU (Fig. 2 of Stuehler’s 



paper). The  TCU is an essential hardware component of 
the process control network for which PCOS provides 
software services. That is, PCOS cannot  provide service 
to satellite computers or terminals unless they are con- 
nected to  the central computer via the  TCU. 

The present paper has been written to provide a com- 
prehensive review  of PCOS development and operation 
from a programmer’s viewpoint. The heart of PCOS is the 
Real-Time Control Program  (RTCP) of which the “super- 
visory state” extensions to OS/360 are the most important. 
To make the description of the  RTCP understandable 
to readers lacking a detailed knowledge of OS/360, the 
paper has been organized as follows. 

A section on “History, requirements and design cri- 
teria” summarizes the justification for  and considerations 
leading to the development of PCOS. Next, a section on 
“PCOS  architecture” discusses the  structure of PCOS and 
reviews the multiprogramming characteristics of the  MFT 
version of OS/360. Then,  a section called “Key functions 
of  OS/360” presents background  information critical to 
an understanding of PCOS design. This section is included 
especially for those  readers who are unfamiliar with 
OS/360. The following section, “Supervisory state ex- 
tensions,” describes in considerable detail  the design and 
implementation of the major PCOS components. The 
section on “Problem  state functions of the  RTCP” is 
included to provide completeness to  the description of 
PCOS. Here, the level of detail is reduced for the sake of 
brevity. The final major section, “Present status of PCOS,” 
points out some areas in which development is continuing. 

History, requirements and  design of PCOS 
The decision to develop PCOS was made in February, 
1968. To reach that point, several months had been spent 
gathering and studying requirements of several plants 
within the Systems Manufacturing Division. A modifica- 
tion to Disk Operating System/360, known internally in 
IBM as  CIMPAC,  had been evaluated in October, 1967. 
Serious consideration was given to converting San Jose’s 
1460-based COMATS into a System/360 process control 
system. Moreover, the desirability of creating a completely 
new programming system tailored to suit the precise needs 
of process control was an issue that is still being considered 
today. 

A committee of engineering personnel from five domestic 
IBM  manufacturing facilities was formed to evaluate alter- 
natives and make recommendations for  a process control 
system design. 

The use of small computers at “stand  alone”  test  sta- 
tions clearly emphasized the need for a central system. 
The updating of test programs at each station was be- 
coming a major problem. Many  stations  also needed the 
same data  and occasionally data  from another  station. 
The cost of 1/0 equipment for inputting,  outputting, and 
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storing programs and  data was incremented with each 
new test station. The requirements of a central system 
were well established. 

The next consideration was a programming system 
at  the central system. The characteristics of Operating 
System/360 were well known. Although it is not conven- 
tionally a real-time system (“jobs” are initiated slowly, 
the  operator may have to respond to messages before, 
processing can  continue, etc), OS/360 does allow multi- 
programming with full support of FORTRAN,  PL/l,  and 
many “data management services.” Additionally, the main- 
tenance and improvement of a programming system plus 
field engineering support were important factors. The 
potential value of all these facilities, especially at a central 
system, could not be denied. 

The consideration of OS/360 was not complete without 
giving some attention to the Disk Operating System/360 
(DOS).7 The basic criteria for using either OS or DOS had 
been established. From a previous study,  it was known that 
DOS could support a maximum of three (problem pro- 
gram) tasks; the  MFT (multiprogramming with a fixed 
number of tasks) version of OS/360 would support 
fifteen  while the MVT (multiprogramming with a vari- 
able number of tasks) version would support any number 
of sub-tasks related to any one of fifteen tasks. The use  of 
FORTRAN  or PL/1 was considerably restricted under 
DOS. The judgment was that OS/360  was preferable to 
DOS. 

Operating in two System/360 computers, CIMPAC 
could satisfy all  the basic needs. But because CIMPAC uses 
a “single task” supervisor, multiprogramming was pre- 
cluded. Furthermore, FORTRAN  and PL/1 were not avail- 
able with CIMPAC. It was decided that all  the functions 
of CIMPAC could be incorporated as a  task  under OS/360. 

Converting San Jose’s  1460 COMATS into a System/360 
process control system was discarded, not because of 
a lack of excellence, but because the  architecture of 
COMATS would not fit the present generation of com- 
puters. Making a “one-to-one” conversion of  1460 
COMATS to System/360  which has five types of inter- 
rupts was, the committee decided, impractical. 

The last item considered was the creation of a new 
programming system. The “precise needs” of process con- 
trol were enumerated by tabulating  the requirements sub- 
mitted from several plants. Most  plants requested that 
the programming system operate in a System/360 Model 
30F (64K bytes of main storage). All plants required a 
central system with data management services for large 
but undefined program and  data banks. All  plants desired 
the availability of FORTRAN  and  PL/l. Considering 
manpower and dollar resources, especially for support 
of FORTRAN  and  PL/l,  the committee agreed that 
developing a new programming system was out of the 
question. 



The only candidate that, in the committees’  judgment, 
would  meet  immediate and future needs was  OS/360. The 
MFT version  was  selected for one  principle  reason: the 
MFT supervisor program provides  multiprogramming 
capability in a System 360 Model 40G (128K bytes of 
main storageeone size larger than the desired  minimum. 

The design  of  PCOS had to satisfy the general  require- 
ments that  the central system  must 
1) respond in a real-time  environment, 
2)  provide storage facilities for satellite  programs and 
data. 
3) provide a communication  facility through the Trans- 
mission Control Unit-from a satellite to the central 
system and back again to the same, or to a different, 
satellite. 

To equal the performance of San Jose’s  COMATS, 
the response of the central system had to be  within 500 
msec 95% of the time.  But this design  criterion was 
applicable specifically to  the system load (the satellite 
environment) in San  Jose.  Attempts to state a response 
time  criterion that would  satisfy all potential user  loca- 
tions were  unsuccessful.  Hence, the response  time  design 
goal was not rigidly  specified. It was felt that the per- 
formance of PCOS  would equal or better that of COMATS. 
This was  purely a matter of judgment  based on using the 
new generation of computers.  On the basis of experience 
with  COMATS it was judged that the new system  could 
expect an average of one interrupt per  second from 
satellites  requesting  service; the average transaction would 
be 2000 bytes of data. It was also specified that with all 
input queues  empty at the central computer the interval 
from interrupt time to the start of execution  of a service 
program had to be 20 msec or less if the service  was in 
core storage and 200 msec or less  if the service had to be 
fetched from disk or drum storage. These  specifications 
assumed the use  of a System 360 Model 40 as the central 
computer. 

To provide  storage  facilities for satellite programs and 
data was, on the surface, a design  criterion. But a data 
management structure applicable to satellite  systems and 
OS/360 data management  services had not been  defined. 
Satellite  systems had been  developed  independently of 
any other system; there was absolutely no programming 
experience  with  OS/360  among  those  initially  involved 
in the project. As a result the concept of Service  Modules 
was  derived from the CIMPAC study and a basic  design 
goal was established: 
PCOS  was to be an “open-ended”  system.  Process control 
users  could  use the central system by providing their 
own  Service  Modules. The open-endedness of PCOS 
would  give  each plant the means to request, load and 
execute its own  service  program.  PCOS  would  provide 
a real-time  environment and support the execution of a 
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To provide  communication  facilities via the TCU was, 
to some  extent, a straightforward programming  problem. 
But to do  it in the context of a real-time  system was 
not. The design  criteria in this instance were  implicit: 
support of the TCU, the processing of request  codes, and 
the scheduling of  Service Modules had to be  complemen- 
tary if a real-time  response was to be a meaningful  goal. 
Moreover, Service Modules  should function independently 
from the processing of request  codes and a diagnostic 
capability  should  be  available through the TCU. A result 
of these  considerations was the design goal of functionally 
separating automatic polling, data transfer and diagnostic 
testing. The specification of three unit addresses for one 
TCU device, as described in the section on “Supervisory 
state extensions,” was a direct  result of this goal. 

It should be noted that the design of PCOS  is a reason- 
able compromise. It satisfies the real-time  requirements 
without  significant internal modifications to the MET 
supervisor. Additional interfacing routines have  been 
developed  which are modular and for the most part in- 
dependent of the continuing  developments of  OS/360 
itself. By taking this approach the designers of PCOS have 
minimized the problems of interfacing with the future 
releases of  OS/360. 

PCOS architecture 
The architectural relationship between the main  elements 
of PCOS  is  shown in Fig. 1. The OS supervisor  is the 
system control program that executes the functions  needed 
to support a multiprogramming  environment. In  PCOS 
no  changes  have  been  made to the standard OS supervisor. 
To the OS supervisor  PCOS  consists of two separate 
“tasks”*: 1) the Real-Time Control Program, including 
its attention routine and appendages and the Service 
Modules (the application programs which  serve the satellite 
computers, and 2) Core Common. 

The Real-Time Control Program (RTCP)  is the part 
of PCOS that permits the central computer to operate 
in a real-time  environment.  Execution of the RTCP is 
initiated as if it were a normal “problem” program operat- 
ing under control of the standard OS supervisor. The 
RTCP in turn controls the execution of all Service Mod- 
ules,  which, in the case of PCOS, are the programs  pre- 
sented to the central computer for solution. Since the 
RTCP is executed as a “never-ending’’ task, it is necessary 
to perform the time-consuming task-initiation procedure 
only at system start-up time. 

The RTCP, its Attention Routine and Appendages 
perform  several important functions: 1) they  provide 
software support to the Transmission Control Unit (TCU) 

* In some of the  literatures  on OS/360 the  overall  work of data  processing 
may  be  defined  in  terms of jobs,  job  steps,  system  tasks,  and  subtasks.  In  a 
given OS context, any  one of these  terms  may  have  a  specialized  definition. 
For the  purposes of the  present  paper, a task is defined as program  executed 
in  a  single  partition of storage  under  the  direct control of the  supervisor. 
A subtask is a  program  executed  under  the control of a “task” program. 
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2) they provide the means to schedule and load Service 
Modules and 3) they provide internal services  necessary 
for  the execution of the Service Modules. 

The  RTCP prepares itself to accept data called a “request 
code” after it commands the TCU  to  start automatic 
polling of satellite computers. When a satellite system needs 
service from  the central system, it responds “positive” 
to polling and  transmits request-code data  to  the  TCU. 
The  TCU buffers each request code and generates an 1/0 
interrupt to  the central system with “attention  status.” 
This causes the RTCP  to read the buffered request code 
(which it is prepared to accept) and the  TCU then continues 
automatic polling. If a valid request code cannot be 
serviced immediately, the  RTCP queues and, subsequently, 
retrieves the request code when the service can be per- 
formed. 

The block labelled Core Common in Fig. 1 refers to a 
program that is loaded by the OS supervisor to provide 
a temporary storage facility in the central computer for 
use during the execution of Service Modules. Service 
Modules employ an  RTCP routine to enter or retrieve 
data  into or from the Core Common partition of storage. 
As demonstrated in a later section of the paper, the fact 
that the  Core Common program performs no work other 
than initiating itself (i.e., it becomes “dormant”) is used 
to advantage in executing programs. 

As previously stated, PCOS is based on  the  MFT 
version of  OS/360. In this version problem programs 
execute in partitions of core storage, numbered PO, P1, 
P2, . . . , P51 (a maximum of 52 partitions). The size of 
each partition must be defined before a problem program 
is loaded for execution. Figure 2 illustrates a typical 
core storage layout. The term “fixed number of tasks” 
refers to  the number of core storage partitions that must 
be defined before any programs can be loaded. The tasks 
and subtasks performed in a given parition are treated 
as a single task by the  MFT supervisor. Thus, with the 
partitions defined as  in Fig. 2 the multiprogramming 
supervisor controls and monitors four tasks: 

1) Core Common in PO, 
2) the Real-Time Control Program and Service Modules 

3) the Output Writer in P2 (an OS service program) and 
4) any other  “job” or “series of jobs”  in P3. 

in P1, 

The reader familiar with OS/360  will recognize that 
the Real-Time Control Program (RTCP), its Appendages, 
Attention  Routine, and all Service Modules are treated 
as a single task by the OS supervisor, be it MVT or  MFT. 
However, because the  RTCP contains special routines 
for  the loading of disk-resident Service Modules, for 
passing control to all Service Modules and  for terminating 
the programs, it is convenient to consider Service Modules 
as sub-tasks of the RTCP. 
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Figure 1 PCOS  architecture: major software components. 

Figure 2 Core storage  layout of central  computer  in  a 
system using  Operating  System/360  multiprogramming with 
a fixed number of tasks (MFT).  The supervisor resides in 
lower addresses of core  storage; the balance of core  storage 
is divided into  four partitions-PO, P1, P2 and P3. A 
problem  program  located  in PO will have the highest exe- 
cution  priority;  one in P3  the lowest. Following initializa- 
tion, Core  Common is dormant; thus  the RTCP and Service 
Modules in P1 will then have the highest execution priority. 
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Key functions of OW360 
The design of PCOS is based on two key functions of 
OS/360: the  control of input/output activity performed 
by the OS supervisor and  the routing of data through the 
OS supervisor. It is  important to be familiar with these 
functions if one is to understand the differences  between 
PCOS and  standard OS/360 operation. 

Control of inputloutput activity 
One function of the supervisor program is to control  the 
execution of all input-output activity. This function is 
especially important  in a multiprogramming environment 
where  devices and  data files  may be shared by several 
users. The supervisor must resolve all conflicts among 
users that desire access to a particular resource. Typical 
resources are 1/0 devices (including the Transmission 
Control Unit of the satellite system) and  data files. 

After the OS supervisor program has loaded a user 
program (a problem program) it passes control of the 
computer to  the user program. The user program may 
continue processing until it requires an  I/O operation. 
It must then pass control back to  the supervisor with the 
request that a particular 1/0 operation be initiated. If 623 
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Figure 3 Linkages  between  supervisor  and  problem  program 
for 1 /0  work. 

the 1/0 resource is “busy” (in use due  to any previous 
request) the supervisor must  enqueue the current 1/0 re- 
quest  until the resource is  no longer busy; otherwise the 
supervisor initiates the 1/0 operation. In either case, 
whether the request is queued or initiated, control of the 
computer is again passed to the user program so that  it may 
continue processing. Eventually, the user program  must 
pass control back to the supervisor, indicating that  it wishes 
to wait for completion of one  or more I/O requests. In a 
multiprogramming  environment, the supervisor may then 
give control of the computer to  another “task” (a problem 
program) of lower priority. Whenever an  I/O request is 
completed, the supervisor automatically retrieves and tries 
to initiate  any  queued 1/0 requests before returning control 
to some  problem  program. The task having highest 
priority will always receive control if it  is waiting on  the 
completed 1/0 operation.* 

The passing of control between the supervisor and a 
problem  program is depicted in Fig. 3. Temporary linkages 
(those that exist for relatively brief periods) are indicated 
by dashed lines; permanent linkages (those that may be 
established for  the  total  duration of problem  program 
execution) are indicated by solid lines. Before a user 
program  can request an  I/O operation it must initialize 
the required “control blocks” by means of special OS/360 

determined  by a “dispatching priority”;  in MFT,  this priority  is determined 
* In  OS/360 terminology, the  execution priority of tasks  and subtasks  is 

by  the  partition  in which a problem  program  may reside. As illustrated  in 
Fig. 2, PO has  the  highest  priority  and P3 the  lowest.  For  optimum  operation, 
high  priority  tasks  must  wait on 1 / 0  activity or  other  external  events so that 
lower  priority  tasks  may  have  execution  time. 

service routines  invoked by the OPEN macro-instruction. 
The OPEN routines of OS establish the permanent linkage 
between the user’s control blocks and  the supervisor’s 
control blocks. When  a user program requests an 1/0 
operation it provides the address to a particular set of 
user control blocks so that  the supervisor can establish 
the temporary linkage from  its own control blocks to 
the user’s control blocks in  order to initiate and complete 
the I/O operation. 

The user’s control blocks of Fig.  3  contain special control 
words (e.g.,  device commands and addresses of data 
buffers and 1/0 workspace) and software  indicators 
(“flags” and codes) required by the supervisor in  order  to 
execute an 1/0 request. The supervisor’s control blocks 
contain the “unit  address” of each device attached to the 
system, some control information peculiar to each device 
(“device characteristics”), workspace required by pro- 
cedures common to  all 1/0 requests (including device 
status conditions), and  the  control words (“queue ele- 
ments”) needed to link the supervisor’s control blocks with 
the user’s control blocks when an 1/0 request is made. 

A given set of user control blocks may be used repeatedly 
after each 1/0 request is completed. It  is also possible to 
make several 1/0 requests to  the same resource (device 
or  data file) before previous ones are completed if the 
user’s program contains as many sets of control blocks 
as the number of 1/0 requests that will be made before 
the first one  is completed. The  latter case is typical of a 
PCOS  environment;  any  number of Service Modules may 
independently make 1/0 requests for  the same resources, 
in  particular for  the Transmission Control  Unit. 

It should  be stressed that  the linkage from  the super- 
visor’s to  the user’s control blocks is established only by 
an explicit request for  the next unit of data; when the 1/0 
operation is completed the OS supervisor deletes the 
temporary  linkage between control blocks. This  char- 
acteristic is  in direct conflict with a real-time system re- 
quirement. In particular, as  far as PCOS  is concerned, the 
response to  automatic polling by the Transmission Control 
Unit would be adversely affected. In a later section it is 
described how an  RTCP Appendage  converts the (normal) 
temporary linkage to a permanent  linkage when automatic 
polling is first initiated. From  then  on,  the  RTCP is ready 
to accept request code data  in a continuous fashion  without 
re-initiation of an  I/O request. 

Data routing  through the supervisor 
An area of particular  interest for PCOS concerns the 
data  routing  through  the OS supervisor that  is triggered 
by an I/O interrupt.  Figure 4 illustrates all the possible 
OS data  paths  from component to component from  an 
I/O interrupt  to a problem  program  task. Readers  familiar 
with OS/360 may observe that  the diagram  does not 
illustrate data routing directly from a problem  program 
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to  the Execute Channel Program Supervisor or  to  the 
Dispatcher. The former occurs when a problem  program 
requests an 1/0 operation,  and  the latter when a problem 
program issues the WAIT macro-instruction so that  the 
dispatcher may give control  to a lower priority  program. 
For simplicity, consider the  data routing that begins with 
the completion of an 1/0 request, i.e., an 1/0 interrupt. 

The shortest possible data  path occurs if the problem 
program  does not include supervisory state extensions to 
the OS supervisor. In this case, the  data  route will be 
through  the interruption supervisor and dispatcher only. 
In Fig. 4 the  data  path numbers  (for the shortest path) 
are 1 to 6 and 11. 

The inclusion of one or more supervisory state extensions 
will,  of course, increase the length of the  data  path  and 
the time  required to traverse it since each extension will 
receive control to execute its own instructions. The ex- 
tension  routines (or appendages) have coding restrictions 
and conventions that should  be followed. Additionally, 
OS/360 provides special macro-instructions that must be 
coded for execution before the extensions are needed (e.g., 
when a program begins operating). In this way, the OS 
supervisor establishes linkages (addresses) to each ex- 
tension identified through coding  parameters.  A given 
set of extension routines,  appendages, and macro-instruc- 
tions is associated only with a specific 1/0 device which, 
in  turn, is fully identified by an 1/0 interrupt. For a 
specific device, such as the  TCU,  the OS supervisor can 
link to applicable extensions by using the device each 
time an 1/0 operation  is completed.* 

Assuming that all the extension routines or appendages 
shown in Fig. 4 exist, let us consider the conditions that 
must prevail so that each may receive control. On receiving 
an 1/0 interrupt  the OS interruption supervisor will first 
link to  the  attention  routine defined for the 1/0 device 
if the  status  from  the device indicates  “attention.” As 
indicated in Fig. 4, the  attention  routine returns control 
to  the interruption supervisor. If the  status examined by 
the interruption supervisor contains only the  “attention 
flag” then only the  attention  routine will receive control 
before the interruption supervisor gives control  to  the 
dispatcher. 

The channel end appendage or the  abnormal  end  ap- 
pendage is entered if the status  words of the 1/0 channel 
and 1/0 device indicate the completion of an operation. 
Upon a given 1/0 interrupt,  the  interruption supervisor 
may give control  to either  appendage but  not  to  both. 

Normally, the dispatcher immediately gives control to 
some  problem  program.  But, if the  attention  routine  or 
either  appendage has requested the scheduling of an 
asynchronous exit routine, the dispatcher will first give 
control  to  the  appropriate asynchronous exit routine. 

gram  status  word”  when a n  110 interrupt  takes  place. 
* System/360  hardware  stores  the  address of a  device in  the  “old 110 PI-o- 
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Figure 4 Data routing through the OS supervisor.  Diagram 
illustrates the data routings that may  be triggered by an 
1/0 interrupt. The attention routine  channel  end  appendage, 
abnormal end  appendage, the asynchronous  exit routine 
and  the START I/O appendage are conventional  problem pro- 
gram  extensions to the OS supervisor;  these  extensions 
operate in  supervisor state. 

It may be helpful to consider a typical  application to 
define what is meant by an “asynchronous exit routine.” 
The figures and characters displayed in  an IBM 2250 
display station  are driven through explicit 1/0 requests 
that provide data  to a given unit. Each of these  operations 
is accompanied by an 1/0 interrupt when the (output) 
data transfer is completed. These interrupts  are “syn- 
chronized” with problem execution because they occur as a 
consequence of an 1/0 operation directed to the device. 
But requests made by an  operator  at a display station may 
occur asynchronously to problem program execution. 
To handle  this case, the display stations are designed to 
generate a status of “attention” when the  operator in- 
dicates that  he wishes to communicate with the computer. 
The result: an  attention  routine requests that  the dispatcher 
take  an “asynchronous exit” in place of its  normal (syn- 
chronous) exit to a problem  program. 

An asynchronous exit routine can  perform  any  number 
of 1/0 requests (the  same or different) through  the Execute 
Channel  Program (EXCP) Supervisor (e.g., to  read  in- 
formation being keyed in by an operator).  Conventionally, 
the  attention  routine  cannot perform any 1/0 requests. 
The channel end  and  abnormal  end appendages  can 
request (through modified exits) that  the same 1/0 
operation be  repeated, but  the appendages cannot initiate 
any new 1/0 request. We shall see in  the following section 
that  in  the case of PCOS, if a conventional  implementation 
had been made, an asynchronous exit routine would be 
required to  read request codes buffered by the  TCU. 625 
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Finally, with  reference to Fig. 4, a few comments about 
START I/O appendages are in order. A START I/O appendage 
receives control from the EXCP  supervisor whenever an 
1/0 request is made for its associated device; control is 
given to the appendage  before the 1/0 request is executed. 
As indicated in the figure, a START I/O appendage returns 
control to the EXCP  supervisor. A “normal return” allows 
the execution of the 1/0 request and a “modified return” 
disallows the I/O request.  PCOS uses a START I/O ap- 
pendage to prevent the incorrect use  of commands that 
may  be  issued to  the  TCU (e.g.,  service  modules  may not 
start or stop automatic polling). 

PCOS supervisory  state  extensions of OW360 
PCOS  was  designed to enhance the effectiveness  of  OS/360 
performance in the real-time  environment  represented by 
IBM’s plants. Specifically, 1) it improves the ability of the 
OS supervisor to respond  quickly to data-driven 1/0 
interrupts that request other 1/0 operations and 2) it 
eliminates the need for all other activity in an entire 
partition to wait until the loading of a program, such as 
a Service  Module, is completed. In PCOS  these  enhance- 
ments are accomplished by three supervisory-state  exten- 
sions to OS: the RTCP Attention Routine, the RTCP 
Channel End  Appendage, and the RTCP Fetch  Module. 
Moreover, through the first  two  extensions the TCU is 
supported in a data-driven  mode.  This  section  describes 
how  these operations are accomplished. In addition, the 
PCOS support for “interpartition communication” 
(another supervisory state extension) is also  described. 

It should  be  stressed that the PCOS  express path, the 
PCOS  method of loading  disk-resident  Service  Modules, 
and PCOS support of the TCU provide a means of handling 
TCU request  codes in a very  efficient  way  (when  using OS). 
By combining the individual effects  of these  supervisory 
state extensions, the net  effect is most  significant.  Request 
codes  can  be  quickly  processed  so that the TCU may 
continue polling, Service Modules can be loaded  while 
other Service  Modules continue their execution (or while 
a subsequent  request  code is processed), and Service 
Modules  can use the TCU without  disrupting or delaying 
the handling of request  codes. 

PCOS express path  for reading a request code 
Let us direct our attention to the express path and consider 
a request for a core-resident  Service  Module.  Assume 
that the TCU function of “automatic polling” has been 
started. 

The TCU buffers  request  codes,  one at a time, as they 
are received from a satellite  computer. As soon as a 
request  code has been  buffered, the TCU generates an 
1/0 interrupt to  the central system  with attention status. 
As described  previously, the OS interruption supervisor 
will then give control to the RTCP Attention Routine 

which,  conventionally,  would  never  “request”  nor “ex- 
ecute” an 1/0 operation. But the RTCP Attention Routine 
issues a START I/O instruction to read the request  code 
buffered in the TCU into an input queue and then com- 
pletes the operation by issuing a TEST I/O instruction. 
START I/O and TEST I/O are “privileged instructions” to 
be  used  only by the supervisor, but the attention routine 
can  issue  them  because it operates in supervisory state.* 

A TEST I/O instruction retrieves  ending status due to an 
1/0 operation. Thus, when the attention routine issues a 
TEST I/O to the TCU, the status contained in the Sys- 
tem/360  channel status word  is  changed from “attention” 
to “channel end/device end” (obtained from the TCU). 
When this is done, the attention routine returns control 
to  the interruption supervisor which then detects a status 
of “channel end” (in addition to “device end”) and passes 
control to the RTCP Channel End  Appendage. 

The RTCP Channel End  Appendage  examines the 
request  code read by the attention routine to determine 
the identity of the Service Module (SM) requested. If 
the SM  is in use but is serially  re-usable, the current 
request  code  is  chained to a previous  one in the input 
queue for later retrieval. If the SM is disk  resident, the 
RTCP Channel End Appendage will  set parameters so 
that the OS dispatcher will take an asynchronous  exit 
to the RTCP Fetch Module. If the SM  is  core  resident- 
which is the case  we are considering-the appendage marks 
the SM  ready for execution.  Finally, the RTCP Channel 
End  Appendage  keeps the automatic polling control 
blocks  (a  set of user control blocks)  permanently  open so 
that the attention routine will continue to process  request 
code data. Control is  then returned to the OS interruption 
supervisor. 

The OS interruption supervisor  passes control to the 
OS dispatcher  which, in turn, gives control to the RTCP 
problem  program.  Any  SM that has been  marked “ready” 
for execution  will  receive control (in  problem state) from 
the RTCP SM Initiator. 

In summary, the sequence for initiating execution of a 
core-resident  SM is: 1) an 1/0 interrupt with attention 
status is generated by the TCU, 2) the RTCP Attention 
Routine reads the buffered  request  code  through a START 

I/O-TEST I/O sequence, 3) the resulting status due to TEST I/O 

is channel  end/device end, 4) the RTCP Channel End 
Appendage marks a core-resident  Service  Module  ready 
for execution and 5) the dispatcher gives control to the 
RTCP (in  problem program state). 

As indicated in Fig. 4, the linkage to the attention 
routine, channel  end  appendage and to  the RTCP is 
accomplished via the OS interruption supervisor and the 
OS dispatcher. And, to emphasize the PCOS  express path 
for reading a request  code, note that only one I/O inter- 
- 

* The procedure followed is identical to the one  in the “sense subroutine’’ 
of the OS Supervisor. 

IBM J. RES. DEVELOP. 



rupt takes place and  the  path numbers in Fig.  4 are 1-2- 
3-4-5-6 and 11. 

Conventional approach to reading a request code 
To read a request code using a conventional  approach, 
two 1/0  interrupts  are required. The  path numbers for 
the first 1/0 interrupt  are 1-2-3-6-7-9-12-13-10-8; this 
interrupt is followed immediately by a second 1/0 inter- 
rupt with path numbers of 1-6-7-8 and, finally 11. 

In a conventional  implementation, the logical sequence 
for  the first 1/0 interrupt is: 1) an 1/0 interrupt with 
attention status is generated by the  TCU, 2) the  RTCP 
Attention  routine requests that  the dispatcher  link to  an 
asychronous exit routine-the request code is  not read, 
3) the asynchronous exit routine makes an 1/0 request 
to  the  EXCP supervisor to  read  the request code buffered 
by the  TCU, 5) the EXCP supervisor links to  the  RTCP 
START I/O appendage before executing the 1/0 request, 
6) the 1/0 operation  is initiated and  the  EXCP supervisor 
returns control to the asynchronous exit routine, 7) the 
asynchronous exit routine issues a WAIT macro-instruction 
to cause a wait for completion of request code input  and 
8) the dispatcher receives control as a result of the WAIT 

macro-instruction. 
When the dispatcher enables 1/0 interrupts, the inter- 

rupt will occur immediately because the  TCU will have 
completed transferring its buffered request code  (this 
operation is very fast). 

The logical sequence for this second 1/0 interrupt is: 
1) an 1/0 interrupt with channel end/device end status 
is generated by the  TCU  (the channel end appendage is 
not an essential requirement in this case and may be 
assumed not to exist), 2) the dispatcher gives control  to 
the asynchronous exit routine because the event it was 
“waiting on”  has now completed, 3) the asynchronous 
exit routine marks a core resident Service Module ready for 
execution and 4) the dispatcher gives control  to  the  RTCP 
(in problem  program state). 

Clearly, the express path used by PCOS is much shorter 
than  the  path  that would be used in conventional OS 
operation. Under  normal operating  conditions,  many 
milliseconds are saved by avoiding the queueing and 
retrieving of the 1/0 requests which can occur when the 
System/360 channel is busy servicing some other 1/0 
request. 

Fetch of disk-resident  Service  Modules 
As  indicated  above, whenever the  RTCP  Channel  End 
Appendage finds that a Service Module  is disk resident, 
it sets parameters so that  the OS dispatcher will take  an 
“asynchronous exit” to  the  RTCP Fetch  Module. The 
path  through Fig. 4 to  the  RTCP Fetch  Module, an 
asynchronous exit routine, is 1-2-3-4-5-6-7. 

There  are several important steps involved in  the 
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Figure 5 Fetching  disk-resident  Service  Modules in overlap 
mode.  The  task control block pointer within the interrupt 
queue  element  addresses the partition containing Core 
Common.  Service  Modules  in P1 can  then  continue  execut- 
ing  while a disk-resident  Service  Module is being  loaded 
into P 1. 

loading of disk-resident Service Modules. Some are per- 
formed within the channel end appendage  before the 
fetch  module is entered and  the others within the fetch 
module. 

With reference to Fig. 5, in  order  to link to an asyn- 
cronous exit routine  the dispatcher requires what is called 
an “interrupt  queue element” (IQE). The  IQE must  contain 
a “pointer”  (an address) to  an “interrupt request block” 
(IRB) which, in  turn, contains a pointer to some routine 
or program  (in  PCOS it is  the  RTCP Fetch  Module). 
The  IQE must  also  contain a pointer to  the “task control 
block” (TCB) that  the dispatcher associates with a prob- 
lem program. The  RTCP  Channel  End Appendage 
initializes appropriate parameters but,  in addition, the 
TCB pointer is altered so that  its content addresses the 
TCB  for  Core  Common instead of the  TCB  for  the Real- 
Time Control Program. This situation is depicted in Fig. 5. 
Result: the OS dispatcher treats  the fetch  module in P1 
as if it resided in PO. 

To state  it  more simply, the asynchronous exit routine 
requested in  the  RTCP  Channel  End Appendage is  made 
to belong to  another task, i.e., the  Core  Common problem 
program. 

When the  RTCP Fetch Module is entered,  this asyn- 
chronous exit routine does not perform the  actual loading 
of disk-resident Service Modules.  Instead, it initializes 
parameters  required by the OS Fetch Routine  and branches 
directly to it. OS fetch loads Service Modules into  the 
Real-Time Control  Program  partition  (Pl)  in  the same 
way it loads  any other disk-resident program. In so doing, 
when OS fetch issues a WAIT macro-instruction, the OS 
dispatcher will receive control  and it will place the task 
in PO (Core Common) into  the wait state (because of the 
TCB pointer in  the  IQE)  and pass control to a lower 
priority  task not waiting for completion of some event. 
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Figure 6 Real-Time Control Program  support of Trans- 
mission Control Unit. 

It was stated previously that dormancy of the  Core 
Common  task is used to advantage. It should be clear 
that  on  the occurrence of an 1/0 interrupt for a disk- 
resident Service Module, if the Real-Time Control  Pro- 
gram or its Service Modules are  in some stage of execu- 
tion, processing in PI will be resumed at  the point of 
interruption as OS fetch loads  another Service Module 
into  the same partition. The problem  program  task waiting 
for completion of loading will be the one in PO, Core 
Common. 

When OS fetch finishes loading a Service Module  it 
returns to  the  RTCP Fetch  Module  (the asynchronous 
exit routine) which resumes processing in supervisory 
state. To finish its work, RTCP fetch sets the “ready flag” 
for  the SM just loaded; the SM flags  field is located in the 
request code input queue. Then, RTCP fetch checks the 
event control block (ECB)* used by (RTCP)  SM-Initiator 
Servicer. If the  SM initiator is waiting for  the completion 
of a request code interrupt,  RTCP fetch sets the comple- 
tion flag in SM initiator’s ECB so that  the OS dispatcher 
will  give control  to SM  initiator. If the SM initiator is 
not waiting for completion of a request code interrupt, 
then the Real-Time Control Program or a Service Module 
has been interrupted from its processing. The dispatcher 
will automatically return  control to the  RTCP  or one of 
its Service Modules (so that processing will continue at 
the point of interruption), and  the  SM initiator will 
eventually find a newly loaded SM ready for execution. 

Finally, as far as disk resident Service Modules are 
concerned, the  data routing  through Fig. 4 is 1-2-3-4-5- 
6-7-8 (when OS fetch issues a WAIT to  the dispatcher) and 

* An ECB is  one  control block within a “user control  block”  set of Fig. 3. 

11. After OS fetch completes the loading of a Service 
Module,  the RTCP Fetch Routine (working as if it were 
in PO) will terminate its operations. The OS dispatcher 
will again give control  to the RTCP  or  to one of its 
Service Modules in P1. 

Program support of the TCU 
The PCOS express path and  the method of loading disk- 
resident Service Modules would hardly be effective without 
the  support provided for  the Transmission Control  Unit. 
The real-time response depends largely on  the PCOS 
software-TCU hardware relationship. For programming 
purposes, the  hardware interface between the  TCU  and 
the  central system was designed for three distinct functions: 
1) automatic polling, 2) data transfer and 3) diagnostic 
testing. The programming of these functions can be 
performed by using three unit addresses. That is, although 
the  TCU is actually one device, it will accept commands 
from  the central system on three different addresses.* 

The Real-Time Control Program reserves the first unit 
address solely for automatic polling and  the next higher 
unit address (of the  TCU)  for  data transfer. As stated 
previously, a user program must have a set of user control 
blocks for each 1/0 request. This  situation  is depicted 
in Fig. 6, where the user control blocks of Fig. 3 have been 
assigned to “automatic polling” and  “data transfer.” 

As indicated in Fig. 6, the  control blocks for  automatic 
polling remain permanently active once automatic polling 
has been started. To accomplish this, the  RTCP Channel 
End Appendage executes one  additional  instruction and 
it uses a modified return  to the OS supervisor. The 
modified return is a standard  option  for  any OS appendage. 
Some of the details are discussed in  the following four 
paragraphs. 

When the TCU accepts the  command to  start polling 
it presents a status of “channel end/device end”  (attention 
status is not generated until the  TCU buffers a request 
code) and, as explained previously, the RTCP Channel 
End Appendage will  receive control. The  appenlage 
recognizes the issuance of a start poll  command and 
sets two flags in the supervisor’s “unit  control block” 
(UCB) containing the unit address for  automatic polling. 
They are called UCBBUSY and UCBPOST. These flags indicate 
to  the OS supervisor that  an 1/0 request is pending, and 
any subsequent 1/0 interrupt  (from the unit assigned to 
automatic polling) will  be treated as an explicit 1/0 request. 

The  RTCP Channel End Appendage terminates its 
processing by  using a modified return to  the OS supervisor. 
Through  this  standard  option, the OS supervisor will 
retain what is called a “request queue element” (RQE) 
in  an active status. An  RQE is  a unit of software logic 

address 260 for  automatic  polling, 261 for data  transfer  and 262 for diagnostic 
* For example, at  the  plant in Rochester,  Minn.,  the  system uses TCU 

testing. 
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used by the OS supervisor for each explicit 1/0 request. 
Among other things, an active RQE contains a pointer 
(an address) to a set of user control blocks (in  this case, 
those associated with automatic polling). 

Two  important things have now been explained: 1) 
flags have been “set” in  the supervisor’s control blocks 
so that a subsequent 1/0 interrupt will  be treated like an 
explicit 1/0 request and 2 )  the linkage to a user’s control 
blocks is retained. The result is that when the  TCU 
generates an 1/0 interrupt with attention  status  the OS 
interruption supervisor will handle  it  as if an explicit 
1/0 request had been made. 

The  RTCP  Channel  End Appendage  repeats the same 
procedure whenever it processes a request code. Thus, 
because the  TCU does  not  require a command to continue 
polling, it should  now be clear why the Real-Time Control 
Program is data driven. That is, request codes buffered 
by the  TCU  are processed without the use  of explicit 1/0 
requests to  the OS supervisor. 

With the first unit  address of the  TCU reserved for 
automatic polling, what of the second unit address?  The 
software is conventional in design and use. It  is reserved 
by the  RTCP  for  data transfer  operations by any Service 
Module. 

As for  the  third unit  address of the  TCU,  the  RTCP 
does not use it,  and diagnostic tests can be performed 
without any conflicts from a  separate OS partition while 
the  RTCP is in operation. 

Software implications of multiple TCU addresses 
From a  software  standpoint, the advantages in having 
three unit addresses for  the same TCU are: 1) responsive- 
ness to  automatic polling is optimized, 2 )  it is logically 
convenient to assign each unit  address with the specialized 
functions of polling, data transfer and diagnostic testing 
and 3) it is possible to assign the unit  address for diagnostic 
testing to a  separate  problem  program. As to the latter, 
once a  “unit  address” has been assigned to a “task” 
(a problem  program) of OS/360, the OS supervisor will 
not assign the same “unit address” to  another (indepen- 
dent) task; however, because the  TCU will accept three 
unit addresses, it could in fact  be assigned to three dif- 
ferent  independent OS tasks. 

8 Hardware implicrrfions of multiple TCU addresses 
The relationship between OS control blocks, unit  address, 
and devices led to a specification for three  unit addresses. 
But the  TCU will accept all of its commands on any one 
of its addresses. Thus,  the  TCU is independent of any 
programming system and is designed to work with any 
System/360 computer. 

It  is possible to program the  TCU by using only its 
first unit  address. Nevertheless, there  are characteristics 
of the  TCU  that offer important programming advantages. 
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When the  TCU buffers a request code, it does  two  im- 
portant things: 1) it resets the “polling latch” so that  the 
satellite system is not polled and 2 )  the 1/0 interrupt with 
attention  status will occur only on  the first unit  address. 
From  the  latter, a  programmer wishing to  treat  automatic 
polling as a separate  function (such as in PCOS) must 
use the first unit  address for this  purpose. 

When a central system program (such as a Service 
Module) selects a satellite computer, the  TCU will auto- 
matically re-enable polling of the satellite system. However, 
automatic polling will be re-enabled only if the satellite 
system is selected on  the first or second unit  address. 
Thus, a programmer may use the first unit  address for 
automatic polling and  data transfer. He may, optionally, 
separate the two  functions (such as PCOS). Data transfer 
on either the first or second unit address will produce 
the same result-the TCU will resume automatic polling 
to  the selected satellite after it  has been serviced. 

If a central system program selects a satellite computer 
on  the  third unit address of the  TCU,  the selected satellite 
will not be re-enabled for  automatic polling. In this way, 
the  third unit  address  can be reserved for diagnostic tests 
and  the satellite system will not be polled automatically. 
(It is possible to poll a satellite system through software. 
It  is also possible to enable or disable a satellite system 
for automatic polling by explicitly using a MASK command. 
This may be done on any  unit  address, including the  third.) 

The  TCU characteristic of not  re-enabling  automatic 
polling (unless explicitly requested) on  the  third unit ad- 
dress is significant. It is possible to test one  or more 
satellite systems without affecting the Real-Time Control 
Program. If polling were re-enabled, the  TCU would 
buffer what  could be an undesired request code which, 
in turn, would be processed by the  RTCP. 

The design of the hardware  interface of the  TCU is 
complementary to the design of PCOS. Each  unit  address 
of the  TCU provides features that assist the programming 
of three distinct functions-automatic polling, data  trans- 
fer and diagnostic testing. 

Elimination of stored  polling  list 
Another important characteristic of the TCU is its  ability 
to automatically  poll satellite systems without the con- 
tinuous access of terminal addresses. The  TCU accepts 
a “polling list” through what is called a MASK operation. 
Though this  operation is performed by a  problem state 
function of the  RTCP, it is considered here because of its 
specification for  (and relation to) real-time programming. 

Through the MASK operation,  the  RTCP  TCU Initializa- 
tion Servicer (in problem  state) provides a polling list to 
the  TCU. Once completed, the  TCU does not require a 
polling list from  the central system. In contrast to tele- 
processing devices, a real-time response is not compro- 
mised by 1/0 channel interference. Moreover,  after the 



command to start automatic polling has been  issued, no 
software instruction or polling  list data is needed  (except 
for error conditions). The only normal requirement is 
the ability to process 1/0 interrupts for request  code 
handling. In PCOS, a polling  list  is  provided  only when 
the RTCP begins its operation. The RTCP Attention 
Routine and the RTCP Channel End  Appendage take 
care of request  code  handling. The need for use of a 
permanently  core-resident  polling  list is eliminated. 

Inter-partition communication 
As illustrated in Fig. 2, the Core Common partition is a 
separate area of core  storage. For this reason, to the OS 
supervisor Core Common  is an independent  task  with its 
own  “storage protect key.” A problem  program that 
attempts to store data  into another partition will  be ab- 
normally  terminated by the OS supervisor.  However, the 
PCOS Core Common  Servicer  provides the means to 
store or retrieve data into or from the Core Common 
partition. 

The Core Common  Servicer  was  designed for RTCP 
Service  Modules, but any other problem  program may 
use this servicer  which  stores or retrieves data only into 
or from the Core Common partition. This function is 
implemented through the use of PCOS  macro-instructions 
and a PCOS  SVC Routine.* A user  must  provide a 
unique  eight-byte  “label” to store data and, subsequently, 
to retrieve data; another user  may  retrieve data by using 
the same label. Provisions are available to prevent storing 
data with duplicate  labels and for the deletion of labeled 
data. 

The core  buffer  used  by the Core Common  Servicer 
has a fixed  size that can be determined at each  user installa- 
tion. To prevent  core  storage from becoming  fragmented 
when data records are deleted from a string of records, the 
Core Common  Servicer  links  pieces of core  together when 
necessary. Core Common  is thus limited by the size  of the 
core buffer but not by core fragmentation. 

To use the PCOS Core Common  Servicer, the Core 
Common partition must  be  initialized so that a PCOS 
SVC routine can  place the address of the Core Common 
data buffer into the communications  vector table (CVT) 
of the OS supervisor. (The CVT contains addresses to 
routines and control blocks  used  by the OS supervisor 
or by  SVC routines. A pointer to the CVT is stored in 
core  location 16 in all versions of OS/360 when the OS 
supervisor  is  initialized.) 

Problem  state functions of the  RTCP 
The problem state routines of the Real-Time Control 
Program are loaded by the OS supervisor as one  problem 

* An SVC “supervisor call” routine operates in  supervisor  state as yet 
another extension to the OS supervisor. An SVC routine for Core Common 
operates with all System/360 interrupts disabled (excluding machine check) to 
lock out any interference. 

program. As the RTCP begins its execution,  linkages to 
the supervisory state extensions are established through 
normal conventions of OS/360 and the RTCP initializes 
all the functions it needs to begin its work.  Additionally, 
the RTCP provides  many  service routines for its own 
use and for Service  Modules. The following paragraphs 
describe the highlights of the RTCP services. 

Data Control Block Servicer 
A requirement  common to all Service  Modules is the 
need to access 1/0 devices and data files. The use of these 
1/0 resources  must  be  planned  before  any  Service Module 
can be coded. When the RTCP begins its execution, the 
Data Control Block  (DCB)  Servicer  initializes all the sets 
of  user’s control blocks  (Fig. 3) required by Service 
Modules and by the RTCP. Service  Modules  use the DCB 
Servicer to obtain any defined set of control blocks.  An 
1/0 request  can then be initiated without  delay. 

The DCB  Servicer  uses the OPEN macro-instruction to 
initialize all sets of user control blocks. The significance 
of “opening data control blocks” when the RTCP begins 
its execution may  be understood by considering a typical 
case.  Service  Modules of the PCOS installation at IBM 
Rochester use 13 data files. The processing  performed by 
the open  routines of  OS takes 15.6 sec-an average of 1.2 
sec per  set of control blocks.  Once  initialized, control 
blocks  remain “open” for immediate  use. The time  saved 
for a real-time  system  environment  is  self-evident. 

TCU Initiation Servicer 
The TCU Initiation Servicer  performs the mask operation 
and issues a command to the TCU to start automatic 
polling  (via 1/0 requests). It should be  emphasized that 
the automatic polling control blocks  provide control in- 
formation to the OS supervisor and also to RTCP func- 
tions. In particular, the automatic polling control blocks 
contain the address of the input queue for request  code 
data required by the RTCP Attention Routine and the 
RTCP Channel End  Appendage. This all-important ad- 
dress is made  available when the TCU Initiation Servicer 
starts automatic polling. 

SM Initiation Servicer 
The SM Initiation Servicer  gives control to Service Mod- 
ules that are ready to begin or to resume their execution. 
SM execution  is  resumed when any of its 1/0 operations 
have  completed. 

When two or more SM’s are waiting for completion 
of an 1/0 operation, the SM Initiation Servicer “looks 
ahead” to see if other SM’s are ready to begin or resume 
execution. If no Service  Module is ready for execution, 
this servicer  branches to the PCOSWAIT  Servicer to wait 
for the completion of an 1/0 interrupt (when another 
SM  is ready for execution). 

IBM J. RES. DEVELOP. 



e PCOS WAIT Servicer 
Whenever a problem program performs an 1/0 operation, 
if it  cannot continue processing it should issue a WAIT 

macro-instruction to wait for the completion of its I/O 
request. The OS supervisor will return  control immediately 
if the I/O operation has completed. Otherwise, control is 
given to a problem  program of lower priority. When the 
1/0  operation  is completed, the OS supervisor interrupts 
the lower priority program (triggered by hardware  inter- 
rupt)  and passes control  to the higher priority  program. 

In  the case of RTCP Service Modules, the use of the 
WAIT macro-instruction is not allowed because a lower 
priority  partition may gain control while other Service 
Modules are  in some stage of execution. The PCOSWAIT 

macro-instruction is used by Service Modules  instead 
of the normal WAIT macro-instruction to invoke  the 
PCOSWAIT Servicer routine. 

In performing its functions, the PCOSWAIT Servicer 
uses what is called a “multiple wait,” a special form of 
the WAIT macro-instruction. At  the very least, the SM 
Initiation Servicer will be waiting on  the completion of a 
request code interrupt. Additionally, one or more Service 
Modules may be waiting for completion of an I/O request. 

When the PCOSWAIT Servicer issues a multiple wait, 
the OS supervisor gives control to a lower priority  pro- 
gram if none of the multiple 1/0 events have completed 
,execution. But if one or more of the multiple 1/0 events 
has been completed, or whenever one or more does be- 
come completed, the OS supervisor returns  control to 
the PCOSWAIT Servicer which, in  turn, passes control to 
the  SM Initiator. 

5 Program Check Servicer 
A “program check” is a name given to error  or fault 
conditions associated with the execution of a program. 
In System/360, a program check  will cause a special 
interrupt which is similar to, but  separate  from, an 1/0 
interrupt. The OS supervisor processes a program check 
and,  in many cases, it will allow a problem program to 
continue  operation according to its own error  or fault 
handling routines. In OS/360 these can be provided 
through the use of SPIE and STAE macro-instructions. The 
RTCP Program Check Servicer provides necessary routines 
.and issues SPIE (System Program Interrupt Exit) and STAE 

,(System Task Abend Exit). Its own routines and Service 
Modules can recover from arithmetic  errors. In addition, 
the servicer protects all Service Modules from those opera- 
tions that may generate nonarithmetic errors (e.g., an 
.attempt to store data  in another  partition, overflow of a 
data file, and many others). 

4 SM Termination Servicer 
When a Service Module completes its execution it uses 
.the SM Termination Servicer. This servicer is also used 
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by RTCP routines that (abnormally) terminate a Service 
Module. The SM  termination servicer frees all I/O re- 
sources that may have been requested by a Service Module 
from  the DCB Servicer. The SM  Termination Servicer 
also clears flags in  the  input queue to make the space 
available for  another request code. 

Present  status of PCOS 
PCOS was first installed at IBM’s Boulder manufacturing 
plant in September, 1968. San Jose, Kingston, Raleigh 
and Rochester each installed a PCOS facility within a 
year. By September 1969 the user plants had gained 
experience and acquired programming skills at  the central 
system as well as  at satellite systems, and  it was time to 
improve the original design. 

Again, a development mission was assigned to  the 
manufacturing  plant in Kingston. PCOS was modified to 
support “re-entrant’’ Service Modules. Additionally, with 
the availability of Release 18 of  OS/360, PCOS could 
use the STAE feature described earlier in  the paper. 

Re-entrant Service Modules are those that can accept 
many request code inputs regardless of their execution 
stage. In contrast, a “serially re-usable’’ SM is  one that 
can handle  only  one request code input  at a time. Re- 
entrant SM’s are most useful when they can provide a 
commonly used function. The most obvious common func- 
tions are program  storage or retrieval and  data storage 
or retrieval. A core-resident Service Module that is used 
often enough can provide faster service if it is re-entrant 
since a satellite user does not have to wait for the com- 
pletion of a previous service request. 

Efforts have been made,  notably by the San Jose plant, 
to provide a set of re-entrant Service Modules for  common 
use. These efforts have been partially successful. There 
has been some difficulty, however, in defining a data 
management scheme common to all plants. Service 
Modules offered from one  plant may include features 
peculiar to its own installation, e.g., the way error con- 
ditions are handled, use of different error control codes, 
need for additional services, and so on.  Thus, satellite 
systems at  the various plants are  not using identical 
Service Modules. Those SM’s that  are shared  are usually 
modified. 

In interfacing the  RTCP with OS/360 no attempt was 
made to develop new core management or data manage- 
ment techniques. Thus, in addition to  the problems in- 
volved in developing a set of compatible re-entrant Service 
Modules, some problems exist that  are  not specifically 
restricted to  the real-time process control environment in 
which PCOS operates. 

One  problem associated with OS/360 is called “core 
fragmentation.” Its existence has been recognized since 
the first development of PCOS but,  up  to now, there 
have been ways of overcoming it by providing “enough” 



core  storage. All the details concerning core  fragmenta- 
tion  are beyond the scope of this article. The effect, how- 
ever, is that  at some  point a Service Module  cannot 
obtain core for  its work or  the  RTCP  cannot  load  another 
SM. If this point should ever be reached the central 
computer would become inoperative. 

There is a problem, too, if Service Modules  require 
many different data files. For maximum speed, the core 
required for “user control blocks” becomes prohibitively 
large. At 200 bytes per  set of control blocks, 50 data 
files  will require 10,000 bytes of core  storage. IBM 
Rochester has overcome this  problem by using two data 
files for most Service Modules. The first one is an “index 
file” which contains the location of each  record or  data 
file stored in  the second file. This  procedure conserves 
core at  the expense of time. 

Proposals  have been made  to  take care of known 
deficiencies. Kingston has suggested that selected control 
blocks be  stored on disk after  a data file has been “opened.” 
Rochester has suggested improvement of its system by 
keeping a core-resident directory of commonly used data 
records and  data files and also a new core management 
technique. 

The acceptance and development of PCOS  have  con- 
tinued to progress satisfactorily in spite of certain prob- 
lems. The design goals and performance specifications of 
1968 have been met. 
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