G. G. Langdon, Jr.
C. K. Tang

Concurrent Error Detection for Group

Look-ahead Binary Adders

Abstract: This paper presents an evaluation of the relative merits of two schemes for performing concurrent error detection in group
look-ahead adders. One of the schemes is a residue mod 3 check and the other is a parity prediction check. The Boolean statements
that define the operation of group look-ahead adders, concurrent error detection and the Boolean difference serve as background
for interpreting the results of the study. The Boolean difference is a tool for calculating the “coverage™ of elements in a logical network
by error-checking schemes. Some weaknesses in prior studies of coverage calculation are brought to light. Tables showing the number
of circuit elements in the various portions of adder and error-checking circuits are given. It is shown that the residue mod 3 check
adder is not economical unless the addition operands are already provided with the mod 3 check bits. Thus, a worthwhile comparison
of the checking schemes should not proceed without considering the overall data flow checking strategy. In machine organizations
with three or more data transfer checks, the parity-checked adder seems to offer a cost advantage.

1. Introduction

Most medium- and high-performance computers have
a parallel binary adder with either carry look-ahead or
some other means of speeding up operation of the arith-
metic unit. It is desirable to incorporate error detection
methods in the design of this type of adder. The purpose
of the study reported in this paper is to compare the
merits of two methods of checking a 16-bit group look-
ahead binary adder: 1) residue mod 3, and 2) parity
prediction plus additional checking. Since we are con-
sidering error detection in high-speed adders, we assume
that the data flow outside the adder also has means to
check data transfers (such as a parity bit), and that there
are no unnecessary delays from the time data enters the
adder until the result reaches its destination in the CPU.

2. The carry look-ahead adder

The principle of carry look-ahead is well known.'~
The notation used in Chapter 6 of the book* by F. F.
Sellers, Jr., M. Y. Hsiao and L. W. Bearnson® is followed
in the discussion. Two operands 4 and B are added to
give sum S. Sum bit S; depends on the carry from the
previous staget C,_;, as well as on a; and b;:

3

The authors are located at the IBM. Systems Development Division
Laboratory in Endicott, New York.

* Since this work is referenced a number of times in this paper, it will
subsequently be referred to by Sellers’ name aione.

t The convention in the literature is that the adder position subscripts run
low-order to high. We accept this with some reluctance. Bit positions in an
n-bit register are usually labeled position 0 for the high-order and position
n =1 for the low order. As a result, in actual practice, the low-order position
of a 16-bit adder is position 15; i.e., the subscripts run high-order to low.
Note also that the carry subscript is one less than the adder stage into which
it carries.

SEPTEMBER .1970

Si=a,PDbPC;y, 1)
C, = ab; + a,Ciey + b,Ci1. ¢))

[T 1}

In the Boolean equations, “4” denotes OR, or
juxtaposition denotes AND, “@D” denotes EXCLUSIVE-OR,
and the overbar denotes negation.

In look-ahead adders, the half-adder functions H, =
a, P b, G, = a;b, and T; = a; + b, are called the
half sum, generate and transmit signals, respectively.

The carry-signal equations for a 16-bit adder with full
look-ahead are stated as

C..= Ci, &)
Co = Go+ CiTo,)
¢ =G + GoT, + Ci T, T, (5)

Cis = Gis + GuTs + GisTuTis + G2T13T14Ts
+ Tt + CinTOTl cer Ty (6)

In an adder with full look-ahead, the sum is normally
generated by the equation

51 = ng_) C,‘_l. (7)

In considering the ripple-carry adder, it is well known
that an error in the carry-in to position i may cause a
sequence (or burst) of sum bits to be in error, while the
numeric value of the error, the error value, will be only 4=2°
(where 2° is the numeric value of bit position i). The
following theorem is taken from Sellers.”

563

ERROR DETECTION IN BINARY ADDERS

564

Theorem I: In ripple-carry adders, if an error in C,
causes an error in C,.,, then C, also causes an error

mn Cn+1’ Cn+29 Y Cn+q—1~

In an adder with full carry look-ahead, an error in
some C,_; affects only bit position i. However, Sellers
(Ref. 2, p. 101) has proven that a failure in either G; or T;
may cause a sequence of sum bits to be in error. Again,
the error value will be 4=2°, The following theorem, also
taken from Sellers’ work, is valid for full look-ahead
adders under certain conditions. Gaddess* claims a
similar result.

Theorem 2: In full look-ahead adders, if an error in
T, or G, causes an error in C,,, then T, or G, will also

cause errors in Cpy1, Chio, *** 5 Chpeo1.

This theorem is invalid if signals T, or G, are duplicated
to increase the fan-out capability. For example, consider
adding 8-bit numbers. Suppose a fan-out capability of
five is the limit. Signal 7; must be duplicated into T3
and T%. If T* feeds bit positions 1, 2 and 3, and 7% feeds
positions 4, 5 and 6, then the theorem obviously does
not hold if 7% fails and causes C; to be in error, since
C,, C, and C; will still be correct. Interestingly enough,
in this instance the error value is ==2°; when T fails, the
theorem holds, but the error value may be 47 X 2.

In situations where the adder must operate at high
speed, the ripple-carry adder is unsuitable because it is
too slow. As early as 1959, Lourie et al.’ stated that a
parallel accumulator without speed-up techniques is an
extremely wasteful device. However, an adder with full
look-ahead is also unsuitable for technical reasons.
Equation (6) requires AND gates with fan-in capabilities
of up to 15 inputs and an OR gate with a fan-in of 16.
Furthermore, signals G, and T, require a fan-out capa-
bility of 15. It is therefore customary in practice to factor
Egs. (3) to (6) systematically. This is generally done
(See Refs. 1, 3, 6) by forming groups of from 4 to 6
consecutive bit positions and forming group ‘“‘generate”
and “transmit” signals analogous to G; and T;. For the
16-bit adder divided into four-bit groups, for example,
the following equations are typical:

Gio-15 = G1eT13T14T15 + Gi3T14T5
+ G Ty + Gis, (8)
Ty 15 = T12T13T14T15- (9)

With the group generate and transmit signals available,
the group carry-in signals may be designed by using
ripple-carry techniques as derived below:

Ciniz-15 = Gs_1u + Cins-uTs-11, (10)

Cins-n = G4—7 -+ CinarTy s, (11)

G. G. LANGDON, JR. AND C. K. TANG

Cin4—-7 = Go—a + CinTo~3- (12)

However, it may be more advantageous to use look-
ahead on the group signals:

Cin 12—-15 = GS-—]] + G4—7T8—11 + G0—3T4—7T8—-11

+ CiiTo-sTs 7Ts11, (13a)
Cin 8-11 = G4—7 + Go—3T4—7 + CinT0—3T4—7a (13b)
Cinsr = Goz+ CiTos. 13¢)

Since the high-order carry-out signal (C;;) is an adder
output (like the sum bits), it may be obtained by a ripple
as in Egs. (10) to (12)

Ci5 = Cin1a-15T12-15 + Gra-1s. (13d)

Similarly, once the carry-in signals between groups are
formed using either the ripple or look-ahead technique,
the bit carries within the group may also be designed with
either the ripple principle or the look-ahead principle.
As an example, for look-ahead within group 4-7, the
following equations are used:

Cs = CinsrTuTsTs + GuT5Ts + G5Te + G, (14a)
Cs = CipsrTuTs + G T5+ Gs, (14b)
Ci= Cinarls+ Gy (14c)
Cy = Ciyyr. (14d)

With the bit carry-in explicitly formed, the sum bit is
formed as in Eq. (7). But this adds an unnecessary delay
to the critical signal C;, ., for sum bits 5, 6 and 7. In
the sTrRETCH computer adder (Ref. 6, p. 445, Fig. 8),
S7 is formed as:

Sy = CinagHA(T,TsTg) + Hi(GyTsTs + G5Ts + Gs)
+ (TTsTs) (GyTsTs + GsTs + Go)H;
+ CinarHAGLT:Ts - GsTs + G). (15a)
Se = CinsrHo(T\T5) + Ho(G,T5 + G5)
+ (T.T5) (G:Ts + G;)H,

+ CiaamrHo(GsTs + Gs), (15b)

Ss = Cinser BTy + BG, + TiGiHs + CivoorHsGa,
(15¢)

Sy = CinszH, + CinsrH,. (15d)

The formation of the sum in this manner utilizes func-
tions called the “group internal auxiliary functions.”
For bit 7, these functions are defined below:

Bit 7 group internal propagate = T,TsT, (16)
Bit 7 group internal generate = G,7T;T,

+ GsTs + Gs. an

IBM J. RES. DEVELOP.

The look-ahead adder considered in this study is
16 bits wide, has four groups of four bits each, and has
full look-ahead between and within each group. This
represents a reasonable compromise among speed,
fan-in, and fan-out capabilities. Thus Eqgs. (8), (9), (13),
(15), (16) and (17) are representative of this adder. Figure 1
shows the adder block diagram.

3. Concurrent error detection

Concurrent error detection means that adder errors are
detected by checking circuits during normal operations
within one adder cycle of their occurrence. Gate failures
will be assumed to occur as the output either ““stuck-at-0
(s-a-0) or “stuck-at-1” (s-a-1). Actually, this assumption
is more general than it might first appear. The coverage
calculation for the error detection schemes studied here
must satisfy the concurrent check assumption; that is,
under a single gate failure of a completely covered gate,
for any given input state either the network output state
is correct or the checking circuit shows that a failure
occurred. Thus all gate input failures and grounded
interconnections, many open interconnections, and even
some connections shorted together, appear under the
concurrent check assumption and a particular input
state as a gate s-a-0 or s-a-1. A property of the con-
current check assumption is that the coverage of a gate
may be incomplete. The following definitions on coverage
are an attempt to formalize the preceding intuitive con-
cepts. We assume s-a-1 or s-a-0 gate failures may occur.

Definition 1*: A gate is (fully or completely) covered,
if: a) under all valid input combinations or states, gate
failures result in either the correct network output (i.e.,
the fault is masked) or an error indication (i.e., the fault
is detected), and b) for at least one input state (not neces-
sarily a valid input), the failure causes an error indication.
(An example of an invalid input for the parity-checked
adder would be an operand with incorrect parity.)

The presence of condition b) in the definition is moti-
vated by the fact that if a gate in the checking circuit
fails without ever indicating an error, the gate cannot
properly be considered covered. It may then be said that
a gate failure is partially covered if there is some valid
input state for which the failure is detected, and another
valid input state for which the network output is wrong
with no error indication given. If a gate is neither fully
nor partially covered it is uncovered.

In studying concurrent checking techniques it becomes
apparent that the coverage calculation is a nontrivial
exercise. When a gate G; in a logic network fails, it is
important to focus upon the input conditions (set of

* One of the authors was influenced in this definition by discussions with
W. C. Bouricius, W. C. Carter and D. C. Jessup, Jr., of the IBM Research
Division. Another influence was Sellers (Ref. 2, p. 211).

SEPTEMBER 1970

Group
internal aux.
functions

Egs. (16), (17)

G, T
Group internal
Half adder generate and
propagate
A register A Half sum (H)
e Sum (§) s
Generate (G) = Z register
_ B Eq. (15)
B register Transmit (7))
Cingp
G, T
Group gen. G.T Group
and transmit ep ep carry-in
Eq. (13)

Eqgs. (8), (9)
Cin(C—])

Figure 1 Block diagram of a group look-ahead adder.

input states) for which the fault is not masked at the
network outputs. In order for G, to be covered, the
concurrent error detection circuitry must signal an error
for these “fault unmasking input states.” To assist in
the determination of the fault unmasking input states,
Sellers’ describes the Boolean difference operation
dF(X)/dx; of Boolean function F(X) with respect to
input signal x,, where X is a Boolean vector x;, xa, * * - , X,.
Each value of X is an input state.

Definition 2: The Boolean difference dF(X)/dx; of
function F with respect to variable x; is F(x,, --- , 1,

-y X))@ Fxy, --+ , 0, --- , x,). That is, dF(X)/dx,
is the ExcLusive-or of function F with x; set to 1 and
function F with x; set to 0. In any case, the result dF(X)/dx
is a Boolean expression that describes the conditions under
which a fault in the signal x; changes the logic network
output F.*

The Boolean difference, as defined above, concerns
the effect of failed inputs on the output F of a logic
network. Here, as in Chapter 6 of Sellers’ work, we
apply the technique to failed gates inside a multiple-
output logic network. Consider the coverage calculation
for gate i in Fig. 2.

In calculating the Boolean difference dF;/dg;, i.e., the
input states for which a failure in gate i changes output F,,
the gate output signal g; must be treated as an independent
variable. The gate output is now a primary input to the
circuit, and F; becomes a function of n 4 1 variables
Fi(xi, -+, Xn, g:). Now dF;/dg; = Fi(x1, *-+ , x,, DEP
Fi(x,, -+ , X., 0). The Boolean difference is seen to be

* Input states for which the Boolean expression dF /dx: assumes the vatue 1
are the fault unmasking input states.

565

ERROR DETECTION IN BINARY ADDERS

566

the ExCLUSIVE-OR of a) F; with g; s-a-1 and b) F; with
g: s-a-0. It is our opinion that treating gate outputs as
independent variables is important as a means of ad-
dressing the problem of independent failures in the
complement of a signal. Suppose, for example, that gate k
inverts the output of gate i. When analyzing a s-a-1
failure in gate k, we cannot assume that the logical com-
plement, i.e., the output of gate i, is s-a-0. This problem
is avoided by treating the gate output g, as an independent
input variable.

Since g; is itself a function of X, it is now possible to
determine whether g,(X) must be s-a-0 or s-a-1 for certain
fault-unmasking input states. The expression (dF;/dg.):
g:(X) gives the conditions for which g; s-a-0 causes F; to
be in error. Similarly, (dF;/dg;)-§.(X) describes the
input conditions for which g, s-a-1 affects F,-.8 As an
example, consider the circuit of Fig. 3.

In the figure F(4, B) = AP B. Consider a failure in
Gate 1. Since F(4, B, 1) = A+ B and F(4, B, 0) = 0,
we have dF/dg, = (4+ B)Ad 0 = A4 + B. For g; s-a-0,
input (4 + B)-(4B) = AP) B causes F to be in error;
for g, s-a-1, input (4 4+ B)-(4B) = AB causes F to be
in error. (We note here the possibility that a gate may
be covered against s-a-0 but uncovered against s-a-1.)

To calculate the coverage of a checking scheme for
an adder, it is necessary to determine the effect of each
gate failure on all the sum bits plus the check circuits.
In the case of an independent mod 3 check, a gate i is
covered if the error value of each possible fault unmasking
input state for the gate is not divisible by 3. To accomplish
this, the Boolean difference alone is not sufficient because
no information is given about whether a failure causes
an output F to go erroneously to 1 or to 0 under the
given input state.

An example may illustrate this point. Suppose that,
under a particular input state, a failure in gate i causes
an error in sum bits S, and S,.,. If S, and S, are changed
in the same direction, the error value is 3 X 2% if
S and S,., are changed in opposite directions, the error
value is #=2*, In the latter case the fault is caught under
a residue mod 3 check. In the former case, it goes un-
detected. Therefore, knowledge of the Boolean difference
alone is not sufficient to calculate the coverage.

The definition of the Boolean difference may be modified
to remedy this defect. In this context, let the positive
Boolean difference dF(X)"/dx; denote the fault un-
masking input states for which F(X) changes in the same
direction as x,; i.e., dF' /dx, are the conditions when x;
changes from 1 to 0 (or O to 1) then F must also change
from 1 to 0 (or O to 1), respectively. Similarly, the negative
Boolean difference dF(X) /dx; denotes the fault un-
masking conditions for which an error in x; causes F(X)
to change in the opposite direction. The positive and
negative (polarized) Boolean differences apply, with

G. G. LANGDON, :JR. AND C. K. TANG

Logic network

.V! _ Fl
2 - 8 o F2

] 5
""l - — F”l

Figure 2 Coverage calculation for gate 1.

Figure 3 Example circuit, F(4, B) = A4 & B.

g1=A_B

AND

LN

appropriate modifications, to gate outputs g, within a
network. The Boolean expression of the polarized Boolean
difference can easily be obtained by its definition. A posi-
tive Boolean difference implies that when the signal under
consideration x; is at the O state, the function F(X) should
also be at the 0 state. The input states that satisfy the above
condition can be written as the Boolean expression
F(x,, -+, 0, -+, x,). A positive Boolean difference
also implies that when x; is at the 1 state, the function
F(X) should stay at the 1 state. The input states that
satisfy this condition are, in terms of a Boolean expression,
F(x,, --- ,1, ---, x,). The positive Boolean difference is
defined as the input states that satisfy both of the above
conditions. This means that when the two Boolean
expressions shown above are “ANped” together, the
positive Boolean difference results. The negative Boolean
difference is similarly defined.

Definition 3: The polarized Boolean differences are
given by

dF(X)" .
() :F(xla".’o’..'$-xn)
dxi
'F(xly...’ls.'.:xn)y
RO pa, 0,00 x)
dx;
'F(xla'."ls"'axn)'

This definition leads to the following identities:

dF(X)" AF(X)” _

09
dx; dx;

IBM J. RES. DEVELOP.

13
Al AND
42 — \ i YN
10 AND } ' OR) M2
\ M2
0 L— AND NOT 2
A — anp NOT
12 I I—‘
FE
AND }
—1
o e O e IO
AND OR M1
] / _Z /
NoOT
L.q | ™~ NOT m
J— p [— AND }

=

Figure 4 Residue mod 3 of a 4-bit group.

dF(X)* L AFO)” AR
dx; dx; dx; ’
d(4 + Bx + CO° _ 1.0
dx

where A4, B and C are independent of x,

d(A + Bx + Cx)”
dx

= A4BcC,

dF(X)" dF(X)"
dx,' o di,

In the case of an adder checked by the odd parity-check
alone, a gate i is covered if each fault-unmasking con-
dition causes the predicted parity bit to be in error.
In other words, a gate is covered if each fault-unmasking
input state causes an odd number of the output signals
(sum-bit and predicted parity) to be affected. In this case,
the polarity (positive or negative) of the Boolean difference
is not a consideration.

For additional and more theoretical considerations on
concurrent error detection, see Carter and Schneider.”

4. Mod 3 residue check

Checking addition by a residue check has been discussed
by Peterson,’ Garner'®'' and Henderson.'”> For the
residue arithmetic check using base 3, it is necessary to
obtain the residue mod 3 of the operands 4 and B, re-
spectively, where 4 mod 3 is the remainder (0, 1 or 2)
of 4 divided by 3. The basis for the check is that the
mod 3 sum of 4 mod 3 and B mod 3 should be equivalent
to the residue mod 3 of the sum S of 4 and B.

SEPTEMBER 1970

The key logic function to this check is the calculation
of the residue mod 3 of a binary number. This can be
done by means of a “building block’ approach, where the
residue mod 3 is calculated 4 bits at a time. Sellers®
presents several circuits for performing this function.
Figure 4 presents another such circuit that seems to have
a cost advantage.

In this circuit, the outputs M1 and M2 represent an
encoding of thiresidues 0, 1 and 2 into M2 M1 (00),
M2 M1 (11), M2 M1 (01) and M2 M1 (10), respectively.
In turn, the outputs of two of these circuits may be fed
to a similar circuit for the residue mod 3 of an eight-bit
binary number. In this way a “mod 3 tree” can be built
to form the mod 3 residue of any length binary number.
This is shown in Fig. 5, where each building block (labeled
mod 3) is the circuit of Fig. 4, except that the complement
signal lines are not shown.

5. Mod 3 adder coverage

The mod 3 residue check detects all failures for which
the difference between the correct answer and incorrect
answer (error value) is not a multiple of 3.

Gates that can affect only a single sum-bit are, of course,
fully covered. Consider the generate and transmit signals
G, and T,. If the group generate and transmit signals
are formed as in Egs. (8) and (9), the group internal
propagate and generate signals are formed as in Egs. (16)
and (17), Theorem 2 then holds for the adder with group
look-ahead.

Gaddess* has studied the “parallel” adder in general
terms. He makes the claim, using reasoning similar to
that of Sellers” in Theorem 2, that faults in gates whose

567

ERROR DETECTION IN BINARY ADDERS

568

40— M2

4 Mod 3 l
A3 M1
| Mod 3 |
— } Mod3
Mod 3

Mod 3

Mod 3

b

il

Mod 3

Figure 5 Residue mod 3 of a 16-bit number.

outputs affect more than one carry-in signal will cause
an error burst in such a way that the error value is -£2°
for some i. The conclusion follows that a residue mod 3
check is sufficient to catch single-gate errors. The following
examples demonstrate where this conclusion fails in adders
using group look-ahead.

o Case 1

Suppose, for example, that signals 7,, 7; and 75 of
Eqgs. (16) and (17) were replaced by H,, H; and H; as
in Egs. (16") and (17'):

Bit 7 group internal propagate = H,H;H;, 16"
Bit 7 group internal generate = G H;Hs-GsHy+G,. (177

Also suppose that a similar substitution is made for the
Bit 6 internal propagate and generate signals H,H, and
G.H; + G, respectively. Logically, the adder behaves
the same as before, because, for the purpose of propagating
a carry through stage i, either signal T'; or H; does the job.
However, the Boolean difference shows that if G; should
be 1 but is s-a-0 and G,H;H, = 1, then S; and S, will
both be 1 instead of 0. Sz will be correct, because signal
Cin s-11 Will correctly be 1 due to the first term of G,_; =
G TI:T;T, + GsTsT; 4+ G;T; + G;. For this example,
the error value is 3 X 2° The same error value results
if GsH; = 1, and H, should be 1 but is s-a-0. The applica-
tion of the Boolean difference to this coverage calculation
for gate G, appears in Appendix A.

o Case 2

If the carry is rippled within each group, there is a larger
variety of possible error values. For example, if C; fails
when H H, = 1, an error value of &3 X 2° will ensue;
if C, fails when HyH;H, = 1, an error of &7 X 2° will
ensue. The reason these error values are not of the form
+2° is that, with signal H, in the 1-state, an error in

G. G. LANGDON, JR. AND C. K. TANG

the carry-in to bit position 7 is expected to propagate
up to position 8. This is not the case because Ci, 511
is independently and correctly generated.

In both Cases 1 and 2, the problem of error values
not of the form -£2° may be circumvented by providing
look-ahead within the group that utilizes the transmit
signal as in Eqgs. (16) and (17).

s Case 3

For group look-ahead adders that use look-ahead between
groups [see Eq. (13)], error values not of the form 2° are
unavoidable when a group carry-in signal fails. For
example, assume HyH;HzH; = 1. Under this condition
a fault in C,, ., can cause error values of 4 15 X 2%
This error magnitude is not caught by a mod 3 check.
Since C;,s_1; is independently generated, the carry
error does not propagate to position 8 as it should if
the error value is to be +2°.

One means of reducing this error value to +2* is to
employ the ripple-carry technique between groups. This
technique is accomplished at the cost of increased adder
cycle time. Another option is to avoid an error magnitude
that is a multiple of 3 by redesigning the group look-ahead
so that each group contains an odd number of bits.
A third possible method is to duplicate the group carry-in
signals and perform a comparison. In a group look-ahead
adder that does rippling between groups and look-
ahead within groups, no special problem is presented
for mod 3 check; however, Cases 2 and 3 indicate combina-
tions that may give error values not of the form =+2°.

s Case 4

It is noted that in Eq. (15) the complement of the group
carry-in signal C;, +_; is required. In the STRETCH com-
puter indexing adder, the current-mode circuits had the
capability of providing both true and complement outputs,
so that both polarities of the group carry-in signals
were available. If it is possible for the polarities of the
group carry-in signals to fail independently, then a fault
in C;, 4_; can cause many problems. Applying the Boolean
difference to C;, «+—; shows, for example, that with the
sum generated as in Eq. (15), an error value of 3 X 2*
results if H H;H;H, = 1. One alternative here is to
reduce the adder performance and obtain C;, ., by
inverting C;, .;. Then, building the duplicate carry-in
signal and checking against €, ,_, provides the addi-
tional coverage needed. A simpler solution might be
to invert Ci, 4—; four times, once for each sum bit, so
that a single gate failure involving a Ci, 4_; signal affects
only one sum bit.

Note that the types of gate failures exemplified do
not give error values of the ==2° variety. Thus, they
may also act to the detriment of product (or An) code
schemes."®

IBM J. RES. DEVELOP.

6. The parity-checked adder

A description of checking addition by means of a parity
check is described by Garner.'”'' Let P, denote the
odd parity bit of an n-bit word A4, and P denote the odd
parity bit of an »n-bit word B;ie., Pa = ay@P a® --- P
a, P land Py = b, Db P - D b,_.P 1. Informing
the sum S of binary numbers 4 and B, let P, denote
the even parity of the carries; i.e., Pc = Ci, P Co P
-+« @ C,_,. The basic parity check equation is

PS=PA®PB@P0®1. (18)

The right side of this equation is called the predicted parity.

It is known that a failure in the carry circuit will change
the sum S and hence Pg. It will, however, also affect P
the same way so that Eq. (18) is satisfied, and no indication
of failure is given. It was this absence of a check on the
carry generation process that motivated Garner (Ref. 11,
p. 765) to say that the parity check was “useless.” It is
possible, however, to remedy these deficiencies without
abandoning the notion of a parity check. (In fact, Hsiao
and Sellers'® have given an elegant remedy for the ripple-
carry adder.)

Let us consider the implementation of Eq. (18) in a
look-ahead adder. Once the carries have been formed,
only one more level of delay* is needed to calculate the
sum S, whereas to calculate P,, an EXCLUSIVE-OR tree
is needed. Thus the predicted parity is available con-
siderably later than the sum; this adversely affects adder
cycle time. Ideally, the sum with its predicted parity
should be available at the same time so it can be entered
into the Z register, freeing the 4 and B registers for the
next adder cycle.

Sellers,” and Pitkowsky and Godfrey'® report high-
speed means to perform this parity prediction. Parity
prediction is done for the same groups over which look-
ahead is performed by using the group carry-in (C;,)
and the group half-adder (H;, T;, G;) signals. If the
group input parity signals P, and P, are available,
the following equation (which is a corrected version of
the one derived by Sellers®) specifies the predicted group
parity PP,, for group 0-3:

PP, = P,POPsPGPGP G
@ (GoH,H; + G Hy)D Cin oo(Ho+ HiHp). (19)

However, by a similar derivation procedure, the fol-
lowing equation of Pitkowsky and Godfrey'® was imple-
mented in the IBM System/360 Model 50 adder and
using one less EXCLUSIVE-OR gate. It also does not require
the input parity bits.

PPsg = (To@ Tl)@ (T2® H3)® (GOH1H2 + G1H2)
@ (Cin oo Ho + Cin o HiHy). (20)

® AND gates followed by a DOT-OR is considered “one level.”

SEPTEMBER 1970

In the group look-ahead adder, Eq. (20) provides
coverage against the group internal carry look-ahead
and sum bit generation circuits, because only one sum
bit can be affected by these faults. However, no detection
of errors in the group look-ahead signals is provided,
and the coverage against faults in the half-adder signals
is incomplete. To increase the coverage, two supplementary
checks are provided®'®—the half-sum check and the
carry check.

o The supplemental checks
Let Py = HoD H D --- B H,_,. The half-sum check
equation that must be satisfied is

PH=PA®PB. (21)

The half-sum check is used to check the validity of the
input parity and also to check the half-sum signals H,.

The duplicate-carry check can be implemented using
the high-order group internal generate and propagate
signals for each group. For example, to check signal
Cins-11 the following signal may be used:

Duplicate C;, 5s_;; = (Bit 7 group internal generate): H,
-+ (Bit 7 group internal propagate) H;-C;, 4 7
+ G (22)

When compared with C;,s.;; of the group look-ahead,
the output generated by the operation in Eq. (22) detects
errors in Ci,g_11, Gay, and Ty_;.

The remedies given in Case 4 of the mod 3 check for
independent failures in C;, apply as well to the parity
checked adder.

So far, no specific check has been provided to check
the bit generate and transmit signals G; and T;. An idea
mentioned in Sellers (Ref. 2, pp. 106-107) is to implement

H,' = G,@ T". (23)

In this way, a failure in G; or T; appears as a failure
in H; and is caught by the half-sum check. A problem
exists in the implementation of Eq. (23). Implementation,
as G,T; + G.T;, provides partial coverage if the com-
plement signals fail independently. Another possibility
is to implement H; as T.G.. This latter idea generally
provides partial coverage. An example of applying the
Boolean difference to determine the coverage of a generate
signal G; is given in Appendix B.

7. The comparison

Whenever logic designers implement logic functions into
circuitry and attempt to draw general comparisons by
“circuit count” (or ‘“‘can count” or “‘gate count’), the
ancient problem of what constitutes a “logic circuit™ or
‘“gate” arises. For the adder studied here, the use of
current-switch emitter-follower circuits is assumed.'*

569

ERROR DETECTION IN BINARY ADDERS

570

Table 1 Basic group look-ahead adder circuit count.

Half adders 80
Look-ahead 34
Group internal carry 24
Sum generation 56
Total 194

Table 2 Residue mod 3 checking circuits.

A 16-bit mod 3 tree 70
Mod 3 adder (4, B, Cin, Cour) 20
Mod 3 comparison circuit 4
Group carry check and compare 24

Table 3 Circuit count for parity-checked adder.

16-way EXCLUSIVE-OR tree (half-sum check,

sum parity, etc.) 32
High-speed parity prediction and compare 64
Parity comparison circuit 2
Coverage of G and T signals 16
Group carry check and compare 24

The current switch performs, basically, an AND function.
By “dotting” (i.e., connecting) the emitters of the emitter-
follower transistor to a common load resistor, an OR
function (known as DOT-OR or WIRE-OR) is performed.
We therefore estimate the “number of circuits” to be
the number of AND gates (current switches). If the com-
plement polarity of a dotted signal is required, another
circuit is charged. In addition, a 2-circuit EXCLUSIVE-OR
gate is assumed to be available.®® Thus Eq. (14a) costs 4
circuits or gates and Eq. (13a) costs 5 circuits; the addi-
tional circuit is due to the fact that C;,, 1,15 is also required.
Equation (20) for PP,, is more complicated and involves
EXCLUSIVE-OR gates; it costs 14 circuits. The mod 3 circuit
of Fig. 4 takes 8§ anD gates and 2 inverters—a cost of
10 circuits.

Before reading the details of the comparison, the
reader should be aware that “gate count” figures will

G. G. LANGDON, JR. AND C. K. TANG

vary depending on the technology used. We feel, however,
that the general conclusions will still be valid if the two
designs are implemented in some other technology.
It is also pointed out that although both adders have been
designed for complete coverage against single gate failures,
the mod 3 adder should provide better coverage against
multiple gate failures.

The basic group look-ahead adder may be divided
into four parts for the purpose of evaluating its cost:

1) the half-adder functions (H;, G,, T;),

2) the look-ahead functions [Egs. (8), (9) and (13)],

3) the group internal carry signals [Egs. (16) and (17)],
and

4) the sum generation [Egs. (15) and (7)].

Table 1 shows the calculated circuit count.

In the mod 3 checking scheme the group carry-in
signals are partially covered. This may be remedied by
going to a five-bit group or by employing the duplicate-
carry check. Rather than design an adder on a five-bit
group basis, we assume the mod 3 checking scheme is
supplemented by group-carry check and compare circuits.
Table 2 gives circuit counts for components in a residue
mod 3 checking scheme.

To estimate the circuit count for the parity-checked
adder, we must state how the G and T signals are covered.
Since we have assumed the availability of a two-circuit
EXCLUSIVE-OR gate, Eq. (23) is used to form each half-sum
signal H;. Since it could have been formed as 7.G; at a
cost of one circuit, an additional 16 circuits are charged
the parity-checked adder as shown in Table 3.

From Tables 2 and 3 it can be seen that it takes more
circuits to check or generate the residue mod 3 bits than
the parity bit (compare line 1 of Tables 2 and 3). However,
it takes more circuits in the parity-checked adder to
predict the parity bits for the sum (line 2 of Tables 2 and 3).
Therefore, the relative cost of mod 3 checking versus
the parity check depends on the overall checking strategy
for the data flow. For example, the use of the mod 3
check only to check addition, as in Fig. 6, would involve
three residue mod 3 trees (210 circuits), the mod 3 adder
and comparator (24 circuits) and the group-carry check
(24 circuits)—for a total of 258 circuits. It would cost
less to duplicate the adder and compare the outputs.
Therefore, one assumes that the decision to use the mod 3
check in the adder is coupled with the decision to use
it throughout the data flow, and that the adder operands
are already provided with the residue mod 3 bits. The
data flow should then have at least one mod 3 residue
generator and one mod 3 checker. Now the cost is at
least 188 circuits. Similarly, for a parity-checked adder
and data flow consisting of adder checking (138 circuits),
one parity generator (30 circuits) and one parity checker
(32 circuits), the circuit count is at least 200 circuits.

IBM J. RES. DEVELOP.

Actually, for the purpose of better failure isolation, a
data flow checking strategy may use at least four and
possibly five checking trees (Ref. 2, Fig. 54, p. 90).
Since four mod 3 checking trees cost 280 circuits, com-
pared to 128 circuits for the same number of EXCLUSIVE-OR
trees, the less expensive EXCLUSIVE-OR tree indicates why
the parity check and parity-checked adder is popular
in practice.

8. Additional considerations

For residues above mod 3, a circuit such as Fig. 4 becomes
difficult to design. For example, a mod 15 residue calcu-
lator for an 8-bit number is an 8-input, 4-output com-
binational circuit. Sellers (Ref. 2, p. 79) mentions that
residues mod 27! can be derived using an »-bit adder
with end-around carry. Combining this technique with
carry look-ahead, the authors designed an 8-bit mod 15
residue building block that costs 40 circuits and 4 levels
of delay. The mod 15 residue check for a 16-bit number
using this building block costs 120 circuits and 8 levels
of delay. This should be compared with 70 circuits and
9 levels of delay for the mod 3 tree. This result is con-
sistent with Pertman,'” whose analysis of the cost and
complexity of residue generation for modulus 3, 7, 15
and 29 shows that the cost increases with the modulus
when an attempt is made to maintain the speed (Ref. 17,
p. 64). Thus, the use of a larger modulus will detect a
larger variety of failures but will also cost a little more.
At this point it should be recalled that one can always
duplicate the adder unit and compare the outputs to
achieve detection of a wide variety of failures, including
any combination of failures within a single unit.

It may be pointed out that the arithmetic unit also
performs shifting and Boolean (AND, OR Or EXCLUSIVE-OR)
operations, for which checking is also desired. Rao*®
discusses shifting, complementing and rotating for mod 3
residue checking. Pitkowsky and Godfrey'® discuss
shifter checking with parity bits. Sellers (Ref. 2, p. 174)
comments that the use of a parity-checked adder implies
a relatively inexpensive bit-by-bit AND and or check
because most of the necessary circuitry is already in the
adder for checking addition. The half-sum check provides
the parity for the EXCLUSIVE-OR operation. We have
not extensively investigated these additional operations,
although such considerations are necessary for the im-
plementation of the over-all checking strategy. However,
based upon our experience, we do not expect that deeper
studies would invalidate any of our general conclusions.

9. Conclusions

This study is an attempt to evaluate the effectiveness
and cost of a parity-checked group look-ahead adder
similar (but 16-bits wide instead of 32-bits wide) to that
used in the IBM System/360 Model 50'° and to compare

SEPTEMBER 1970

A register Group

look-ahead |—= Z register

adder

Mod 3
tree

B register |—q

Compare |—»

Mod 3 Latch
tree

Mod 3
tree

Mod 3
tree

C

in

|l

Figure 6 Basic residue mod 3 adder-checking scheme.

it with the implementation of a residue mod 3 check.
The practical aspect of this study has led us to some
interesting conclusions.

o The calculation of the single gate failure coverage of a
concurrent error detection scheme for a look-ahead
adder should, in general, not proceed independent of
the adder implementation. In particular, prior studies
have ignored the size of the group, the implications of
gate fan-out limitations, and the fact that the complement
of a signal may fail independently of the signal itself.

¢ The Boolean difference has shown itself to be a useful
tool in demonstrating the input conditions under which
a gate may be uncovered. For evaluation of the coverage
of a residue-checked adder it was necessary to define the
“polarized” Boolean difference.

o If the residue mod 3 of both operands must be generated
in parallel by the adder, the adder cost with mod 3 checking
exceeds the cost of the adder with parity checking. How-
ever, this is not the case if the operands are initially
designed with the residue mod 3 bits as a part of the
data flow register transfer checking. Therefore, the selection
of the adder checking scheme is not independent of the
over-all system and its data transfer checking strategy.
For conventional machine organizations with three or
more data transfer checks, the parity check seems to
offer a cost advantage.

Acknowledgments

The authors thank their colleague D. R. Daykin for his
encouragement, suggestions and critical comments. We
are also grateful to M. Y. Hsiao for his comments and
suggestions. In addition, we thank an anonymous referee
for his suggestions, and in particular for motivating
us to present the considerations given in Section 8.

571

ERROR DETECTION IN BINARY ADDERS

572

Table A-1 Undetected error patterns of sum bits 4-7.

Error
S @29)Ss @S ()| Se Q)] value
+ |+
+ (=) - P
£3 X 24
+ |- B - (P
+ |- Bf- B+ =
+)|+)
+ |- B+) +6 X 2
+ (=) - (H)
+ + |- P
+ + (=) £IX2
+ |+ = B - B
+)+) +£12 X 24
+ |+ |+ |+ (D EIEX2
Appendix A

When the transmit signals in the group internal look-ahead
for sum generation are replaced by the half-sum signals,
the adder function is unchanged. However, adder failures
behave in a different manner. They will have an error
value other than =2° under some input states when
certain single gate failures occur. The polarized Boolean
difference must be used to calculate the coverage. The
failure of the single gate G; is used to illustrate the cal-
culation. Table A-1 is first constructed to show all the
sum-bit error patterns of the group that are not detected
by the mod 3 residue check. The 4+ and — entries in
the table show the polarity of the error; where the plus
sign indicates the sum signals should be 0 but changes
to 1, and the minus sign indicates that the sum signal
should be 1 but changes to 0. Error patterns (rows) in
the table are grouped together according to their error
value. For example, the second row indicates that when
S, and S5 should be 1 (or 0) and 0 (or 1), respectively,
but change to 0 (or 1) and 1 (or 0), respectively, the
error value is 3 X 2* (or —3 X 2.

The error values in the table are divisible by 3, thus
the error patterns shown are not detectable by the mod 3
residue check.

The polarized Boolean differences of sum signals S,
Ss, Se and S, are calculated next. Equations (15a) and
(15b) are replaced by Egs. (152”) and (15b") respectively
to reflect the replacement of bit transmits by bit half sum
described at the beginning of Case 1.

G''G. LANGDON, JR. AND C. K. TANG

S; = CinsrH(H,HHg)

+ H,(G,H:Hs; + G;Hs + G¢)

+ (H,H;H)GH:;Hs + GsHs + Gg)H-

+ CinsrHAGH:H; + G;Hs; + Gy), (15a")
Se = Cins_rHy(H,Hy) + H(G,H;s + G)

+ (H4H5)(G4H5 + GS)HG
+ Cins-7Ho(GiHs + Gs). (15b")

Using the above two equations and Eqs. (15¢) and (15d),
the following is obtained:

ds; _ _ . = _

o = EHH; + Gi(Cinar + HOI, (A1)
ds; _ = _

;1'6: = H,Hi[H; + GiCinu-r + HJ), (A2)
ds, o o= _

E‘ = Hy[H; + G4(Cin 7 + HYI, (A3)

5
dSs _ I _
d—G—~ = Hy[H; + Gu(Cins—r -+ HJ, (A4)

dSs _dS; _ dS; dS;
dGs—;é:——Ea—s——dGs—O. (A5)

Since S, and S; are independent of G;, Table A-1 is
searched for error patterns in which only S; and S; are in
error. It is found that the 11th row corresponds to an error
value of 412 X 2*. The input state that produces such an
error pattern when G fails is thus

ds;.dsﬁ+ n dS7 dSs
dGs dG; = dGs; dGs

= H7H6[F15 + G4(6in4—7 + 1'_14)]~ (A6)

The conjunction (aND) of the above result and dG,_7/dGs
must be made to assure that the influence of the G5 failure
is confined to the adder group of bits 4-7. (If the G; error
propagates to group 8-11 and/or group 12-15, the error
value will then be 4=2°, which is detectable by the mod 3
residue check.

dG,._ d
—déj = dG, (G; + GsH: + G;TsH; + G,T;T:H7)
= G¢H; + G, T;TsH; + Ts + H7- (A7)

Hence the undetected input states are obtained by forming
the conjunction of Egs. (A6) and (A7) and the result is
H,HGsH,. This result means that when G5 should be 1
but is s-a-0 and G, = Hy; = H; = 1, both S; and S; are
affected in the same direction. The error value is =12 X 2,
which is undetectable by the mod 3 residue check and thus
G; is only partially covered.

IBM J. RES.: DEVELOP.

Appendix B
An example is given below to illustrate how the Boolean
difference can be used to determine the coverage of the
gates in the parity-checked adder. The sum Egs. (15a),
(15b"), (15¢) and (15d) will be used and it will be shown
that G5 is fully covered in this situation. Note that for
these equations, G5 is not fully covered by the mod 3
residue check as shown in Appendix A.

The Boolean differences of the sum bits and the predicted
group parity with respect to Gs are first calculated.

ds _ - _
—L = Hsl{H; + G(Cinsr + H4)], (Bl)
dG5
ds _ - = —
"}6—6' = Hjs; + G(Cins—7 + H,), (BZ)
5
ds; _ dS, _
dGs ~ dGs 0. (B3)
dPP,, 4_; _ L
dGs ~ dGs
(T.@D T D (T D H) D (GsH:H; + GsHp)
(‘B (Cin4—7174 + Cin4—7H5ﬁ6)] = Hg. (B4)

The undetectable input states are those that change an even
number of signals among the signals S;, S, S5, Ss and
PP,. 4, ; when G, changes. Noting that S, and S, are
unaffected by G;, the undetectable states are:

dS, dS; dPP,,_,
dGs dG; dG,

dS; dSs dPP,, .-
dGs; dG; dG;
o 48 dSy dPPyusy,
dGs dGs; dG,
The reader may verify that the above Boolean expression
reduces to zero. This result means that G; is fully covered.

References

1. O. L. MacSorley, “High-Speed Arithmetic in Binary
Computers,” Proc. IRE 49, 67 (1961).

2. F. F. Sellers, Jr., M.-Y. Hsiao and L. W. Bearnson,

SEPTEMBER 1970

10.

11.

12.

13.

14.

15.

16.

17.

18.

Error Detecting Logic for Digital Computers, Mc-
Graw-Hill Book Co., Inc., New York, 1968.

. L. Flores, The Logic of Computer Arithmetic, Pren-

tice Hall Inc., Englewood Cliffs, N. J., 1963, Chap. 5.

. T. G. Gaddess, “An Error Detecting Binary Adder:

A Hardware-shared Implementation,” Proc. First An-
nual IEEE Computer Conference, September 1967, pp.
38-41.

. N. Lourie, H. Schrimpf, R. Reach and W. Kahn, “Arith-

metic and Control Techniques in a Multi-program
Computer,” Proc. EJCC, 1959, pp. 75-81.

. M. E. Homan, “A 4-megacycle 24-bit Checked Binary

Adder,” AIEE Transactions (Communications and
Electronics), 443 (1961).

. W. C. Carter and P. R. Schneider, “Design of Dy-

namically Checked Computers,” Proc. IFIPS Congress
68, Edinburgh, Booklet E, pp. 34-38.

. Y. T. Yen, “A Method of Automatic Fault-detection

Test Generation for Four-phase MOS LSI Circuits,”
Proc. SICC, AFIPS Conf. Proc., Vol. 34, 1969, p. 215.

. W. W. Peterson, “On Checking an Adder,” IBM J.

Res. Develop. 2, 166 (1958).

H. L. Garner, “Generalized Parity Checking,” IRE
Trans. Electronic Computers EC-7, 207 (1958).

H. L. Garner, “Error Codes for Arithmetic Operations,”
IEEE Trans. Electronic Computers EC-15, 763 (1966).
D. S. Henderson, “Residue Class Error Checking
Codes,” Proc. 16th National Meeting of the ACM,
September 1961.

D. T. Brown, “Error Detecting and Correcting Codes
for Arithmetic Operations,” IRE Trans. Electronic Com-
puters EC-15, 333 (1960).

R. F. Sechler, et al., “ASLT Circuit Design,” IBM J.
Res. Develop. 11, 74 (1967).

M. Y. Hsiao and F. F. Sellers, “The Carry Dependent
Sum Adder,” IEEE Trans. Computers EC-12, 265
(1963).

S. H. Pitkowsky and R. B. Godfrey, “Parity Checking
and Parity Generating Means for Binary Adders,” U. S.
Patent 3,342,983, September 19, 1967 (Filed June 25,
1963).

A. E. Pertman, “Circuits for Checking Arithmetic
Errors by Means of Residue Coding,” U. S. Naval
Ordnance Laboratory Report NOLTR 69-38, February
12, 1969, 115 pages. (Available from U. S. Govern-
ment Clearinghouse as AD 687095.)

T. R. N. Rao, “Error-checking Logic for Arithmetic-
type Operations of a Processor,” IEEE Trans. Com-
puters C-17, 845 (1968).

Received November 26, 1969

573

ERROR DETECTION IN BINARY ADDERS

