
G. G. Langdon, Jr.
C. K. Tang

Concurrent Error Detection for Group
Look-ahead Binary Adders

Abstract: This paper presents an evaluation of the relative merits of two schemes for performing concurrent error detection in group
look-ahead adders. One of the schemes is a residue mod 3 check and the other is a parity prediction check. The Boolean statements
that define the operation of group look-ahead adders, concurrent error detection and the Boolean difference serve as background
for interpreting the results of the study. The Boolean difference is a tool for calculating the “coverage” of elements in a logical network
by error-checking schemes. Some weaknesses in prior studies of coverage calculation are brought to light. Tables showing the number
of circuit elements in the various portions of adder and error-checking circuits are given. It is shown that the residue mod 3 check
adder is not economical unless the addition operands are already provided with the mod 3 check bits. Thus, a worthwhile comparison
of the checking schemes should not proceed without considering the overall data flow checking strategy. In machine organizations
with three or more data transfer checks, the parity-checked adder seems to offer a cost advantage.

1. Introduction
Most medium- and high-performance computers have
a parallel binary adder with either carry look-ahead or
some other means of speeding up operation of the arith-
metic unit. It is desirable to incorporate error detection
methods in the design of this type of adder. The purpose
of the study reported in this paper is to compare the
merits of two methods of checking a 16-bit group look-
ahead binary adder: 1) residue mod 3, and 2) parity
prediction plus additional checking. Since we are con-
sidering error detection in high-speed adders, we assume
that the data flow outside the adder also has means to
check data transfers (such as a parity bit), and that there
are no unnecessary delays from the time data enters the
adder until the result reaches its destination in the CPU.

2. The carry look-ahead adder
The principle of carry look-ahead is well
The notation used in Chapter 6 of the book* by F. F.
Sellers, Jr., M. Y. Hsiao and L. W. Bearnson2 is followed
in the discussion. Two operands A and B are added to
give sum S. Sum bit Si depends on the carry from the
previous stage? Ci-l, as well as on ai and b;:

Laboratory in Endicott, New York.
The authors are located at the IBM Systems Developnlent Division

subsequently be referred to by Sellers’ name alone.
* Since this work is referenced a number of times in this paper, it will

low-order to high. We accept this with some reluctance. Bit positions in an
t The convention in the literature is that the adder position subscripts run

n-bit register are usually labeled position 0 for the high-order and position
n “1 for the low order. As a result, in actual practice. the low-order position
of a 16-bit adder is position 15; i.e., the subscripts run high-order to low.
Note also that the carry subscript is one less than the adder stage into which
it carries.

s, = a, 0 b; 0 C*-l, (1)

ci = U,bi + a,ci-1 + biCi-1. (2)

In the Boolean equations, “+” denotes OR, ‘‘.” or
juxtaposition denotes AND, ‘‘e” denotes EXCLUSIVE-OR,

and the overbar denotes negation.
In look-ahead adders, the half-udder functions Hi =

a , @ bi, Gi = aibi and Ti = ai + b; are called the
half sum, generate and transmit signals, respectively.

The carry-signal equations for a 16-bit adder with full
look-ahead are stated as

c-1 = tin, (3)

co = Go + CinTo, (4)

In an adder with full look-ahead, the sum is normally
generated by the equation

In considering the ripple-carry adder, it is well known
that an error in the carry-in to position i may cause a
sequence (or burst) of sum bits to be in error, while the
numeric value of the error, the error value, will be only f 2 ‘
(where 2i is the numeric value of bit position i). The
following theorem is taken from Sellers2 563

ERROR DETECTION IN BINARY ADDERS SEPTEMBER 1970

564

Theorem I: In ripple-carry adders, if an error in C,,
causes an error in C,,,, then Cn also causes an error
in C,,l, c,,,, * * * 9 c n + a - 1 *

In an adder with full carry look-ahead, an error in
some Ci-l affects only bit position i. However, Sellers
(Ref. 2, p. 101) has proven that a failure in either Gi or Ti
may cause a sequence of sum bits to be in error. Again,
the error value will be f 2 i . The following theorem, also
taken from Sellers’ work, is valid for full look-ahead
adders under certain conditions. Gaddess4 claims a
similar result.

Theorem 2: In full look-ahead adders, if an error in
T,, or G, causes an error in C,,,,, then T, or G, will also
cause errors in C,,,,, C,,,, ... 3 Cn+a-l.

This theorem is invalid if signals T, or G , are duplicated
to increase the fan-out capability. For example, consider
adding 8-bit numbers. Suppose a fan-out capability of
five is the limit. Signal TI must be duplicated into T ;
and T:. If T ; feeds bit positions 1 , 2 and 3, and T ; feeds
positions 4, 5 and 6, then the theorem obviously does
not hold if T t fails and causes C5 to be in error, since
C,, C, and C3 will still be correct. Interestingly enough,
in this instance the error value is f 2 ‘ ; when Tr fails, the
theorem holds, but the error value may be f 7 X 2l.

In situations where the adder must operate at high
speed, the ripple-carry adder is unsuitable because it is
too slow. As early as 1959, Lourie et ai.‘ stated that a
parallel accumulator without speed-up techniques is an
extremely wasteful device. However, an adder with full
look-ahead is also unsuitable for technical reasons.
Equation (6) requires AND gates with fan-in capabilities
of up to 15 inputs and an OR gate with a fan-in of 16.
Furthermore, signals Go and To require a fan-out capa-
bility of 15. It is therefore customary in practice to factor
Eqs. (3) to (6) systematically. This is generally done
(See Refs. 1, 3, 6) by forming groups of from 4 to 6
consecutive bit positions and forming group “generate”
and “transmit” signals analogous to Gi and T i . For the
16-bit adder divided into four-bit groups, for example,
the following equations are typical:

G12-15 = G I z T ~ T M T E + GBTI~TE

+ G14T1.5 + GI59 (8)

Tv-15 = T , , T ~ T I ~ T X . (9)

With the group generate and transmit signals available,
the group carry-in signals may be designed by using
ripple-carry techniques as derived below:

Cin 12-15 = G8-11 + Cin S- I ITS-I I , (10)

Cin 8-11 = G4-7 + Cin 4-7T4-7, (11)

G. G. LANGDON, JR. AND C. K. TANG

Cin4-7 = GO-3 + CinTO-3. (12)

However, it may be more advantageous to use look-
ahead on the group signals:

c i n 12-15 = G8-11 f G4-7T8-11 + ~ 0 - 3 ~ 4 - 7 ~ S - l l

+ CinTO”3T4-7T8-ll,

C i n S - 1 1 = G4-7 GO-3T4-7 CinTo-3T4-7,

Cin4-7 = GO--3 + CinTO-3-

Since the high-order carry-out signal (C15) is an adder
output (like the sum bits), it may be obtained by a ripple
as in Eqs. (10) to (12):

e15 = Cin12-15Tl2-15 + G12-15. (13d)

Similarly, once the carry-in signals between groups are
formed using either the ripple or look-ahead technique,
the bit carries within the group may also be designed with
either the ripple principle or the look-ahead principle.
As an example, for look-ahead within group 4-7, the
following equations are used:

C6 = Cin4-~T4T5T6 G4T5Tg G5T6 + Go, (14a)

C5 Cin4-7T4T5 + G4T5 + G5, (14b)

C4 = Cin4-7T4 + G,, (1 4c)

c3 = ci, 4-7. (144

With the bit carry-in explicitly formed, the sum bit is
formed as in Eq. (7). But this adds an unnecessary delay
to the critical signal C i n 4-7 for sum bits 5 , 6 and 7. In
the STRETCH computer adder (Ref. 6, p. 445, Fig. S),
S7 is formed as:

S7 = Cin4-7B7(T4T5T6) + R7(G,TgTs + G5Ts + G6)

f (T4T5Ts) (G4T5T6 G5T6 + G 6) H 7

+ c;in4-7H7(G4T5T6 + G ~ T B + GB),

s6 = Cin4”7R6(T4T5) + R6(G4T5 + G5)

+ (T4T5) (G4T5 + G5)He

+ Cin4”7HB(G4T5 G5), (1 5b)

S, = Cin4-7R5T4 + R5G4 + T4G4H5 + cin4.-7H5c4.
(15c)

s4 = Cin4-7R4 + C i n 4 - 7 H 4 . (1 5d)

The formation of the sum in this manner utilizes func-
tions called the “group internal auxiliary functions.”
For bit 7, these functions are defined below:

Bit 7 group internal propagate = T4T5T6, (16)

Bit 7 group internal generate = G4T5T6

+ G5T6 + G6-

IBM J. RES. DEVELOP.

The look-ahead adder considered in this study is
16 bits wide, has four groups of four bits each, and has
full look-ahead between and within each group. This
represents a reasonable compromise among speed,
fan-in, and fan-out capabilities. Thus Eqs. (8), (9), (13),
(1 3 , (16) and (17) are representative of this adder. Figure 1
shows the adder block diagram.

3. Concurrent error detection
Concurrent error detection means that adder errors are
detected by checking circuits during normal operations
within one adder cycle of their occurrence. Gate failures
will be assumed to occur as the output either “stuck-at-0”
(s-a-0) or “stuck-at-1’’ (s-a-1). Actually, this assumption
is more general than it might first appear. The coverage
calculation for the error detection schemes studied here
must satisfy the concurrent check assumption; that is,
under a single gate failure of a completely covered gate,
for any given input state either the network output state
is correct or the checking circuit shows that a failure
occurred. Thus all gate input failures and grounded
interconnections, many open interconnections, and even
some connections shorted together, appear under the
concurrent check assumption and a particular input
state as a gate s-a-0 or s-a-1. A property of the con-
current check assumption is that the coverage of a gate
may be incomplete. The following definitions on coverage
are an attempt to formalize the preceding intuitive con-
cepts. We assume s-a-1 or s-a-0 gate failures may occur.

Definition I* : A gate is (fully or completely) covered,
if: a) under all valid input combinations or states, gate
failures result in either the correct network output (i.e.,
the fault is masked) or an error indication (i.e., the fault
is detected), and b) for at least one input state (not neces-
sarily a valid input), the failure causes an error indication.
(An example of an invalid input for the parity-checked
adder would be an operand with incorrect parity.)

The presence of condition b) in the definition is moti-
vated by the fact that if a gate in the checking circuit
fails without ever indicating an error, the gate cannot
properly be considered covered. It may then be said that
a gate failure is partially covered if there is some valid
input state for which the failure is detected, and another
valid input state for which the network output is wrong
with no error indication given. If a gate is neither fully
nor partially covered it is uncovered.

In studying concurrent checking techniques it becomes
apparent that the coverage calculation is a nontrivial
exercise. When a gate G, in a logic network fails, it is
important to focus upon the input conditions (set of

W. C . Bouricius, W. C. Carter and D. C. Jessup. Jr., of the IBM Research
* One of the authors was influenced in this definition by discussions with

Division. Another influence was Sellers (Ref. 2, p. 21 1).

Group
internal aux.

functions

Eqs. (16), (17)
G, T

Group internal
Half adder

A rceister Half sum (H)

I Group gen.
and transmit carry-in I Gsp. Tgp 4 1

Figure 1 Block diagram of a group look-ahead adder.

input states) for which the fault is not masked at the
network outputs. In order for Gi to be covered, the
concurrent error detection circuitry must signal an error
for these “fault unmasking input states.” To assist in
the determination of the fault unmasking input states,
Sellers’ describes the Boolean difference operation
dF(X)/dxi of Boolean function F(X) with respect to
input signal x i , where X is a Boolean vector xl, x2, . . . , x,.
Each value of X is an input state.

Definition 2: The Boolean difference dF(X)/dx, of
function F with respect to variable xi is F(xl, . . . 3 1,

is the EXCLUSIVE-OR of function F with x i set to 1 and
function Fwith x i set to 0. In any case, the result dF(X)/dx,
is a Boolean expression that describes the conditions under
which a fault in the signal x , changes the logic network
output F.*

The Boolean difference, as defined above, concerns
the effect of failed inputs on the output F of a logic
network. Here, as in Chapter 6 of Sellers’ work, we
apply the technique to failed gates inside a multiple-
output logic network. Consider the coverage calculation
for gate i in Fig. 2.

In calculating the Boolean difference dFi/dgi, i.e., the
input states for which a failure in gate i changes output F,,
the gate output signal gi must be treated as an independent
variable. The gate output is now a primary input to the
circuit, and F j becomes a function of n + 1 variables

Fi(xl, . . . , x,,, 0). The Boolean difference is seen to be

. * * , X J @ F(X1, * * * , 0, ... , x,,). That is, dF(X)/dx,

Fi(xl, . . * , X,,, g,) . NOW dFi/dg, = Fi(x1, . . , X,, 1) @

are the fault unmasking input states.
* Input states for which the Boolean expression dF/dxi assumes the value I

565

SEPTEMBER 1970 ERROR DETECnON IN BINARY ADDERS

566

the EXCLUSIVE-OR of a) Fi with gi s-a-1 and b) Fi with
gi s-a-0. It is our opinion that treating gate outputs as
independent variables is important as a means of ad-
dressing the problem of independent failures in the
complement of a signal. Suppose, for example, that gate k
inverts the output of gate i. When analyzing a s-a-1
failure in gate k , we cannot assume that the logical com-
plement, i.e., the output of gate i, is s-a-0. This problem
is avoided by treating the gate output g , as an independent
input variable.

Since gi is itself a function of X , it is now possible to
determine whether gi(X) must be s-a-0 or s-a-1 for certain
fault-unmasking input states. The expression (dFi/dg,).
g,(X) gives the conditions for which g, s-a-0 causes Fi to
be in error. Similarly, (dFi/dgi).gi(X) describes the
input conditions for which gi s-a-1 affects F,.’ As an
example, consider the circuit of Fig. 3.

In the figure F(A, B) = A @ B. Consider a failure in
Gate 1. Since F(A, B, 1) = A + B and F(A, B, 0) = 0,
we have dF/dg, =_<A + B) @ 0 = A + B. For g, s-a-0,
input (A + B) - (AB) = A @ B causes F to be in error;
for g, s-a-1, input (A + B). (AB) = AB causes F to be
in error. (We note here the possibility that a gate may
be covered against s-a-0 but uncovered against s-a-1.)

To calculate the coverage of a checking scheme for
an adder, it is necessary to determine the effect of each
gate failure on all the sum bits plus the check circuits.
In the case of an independent mod 3 check, a gate i is
covered if the error value of each possible fault unmasking
input state for the gate is not divisible by 3. To accomplish
this, the Boolean difference alone is not sufficient because
no information is given about whether a failure causes
an output F to go erroneously to 1 or to 0 under the
given input state.

An example may illustrate this point. Suppose that,
under a particular input state, a failure in gate i causes
an error in sum bits Sk and S,,,. If Sk and S,,, are changed
in the same direction, the error value is f3 X 2,; if
Sk and S,,, are changed in opposite directions, the error
value is f2k. In the latter case the fault is caught under
a residue mod 3 check. In the former case, it goes un-
detected. Therefore, knowledge of the Boolean difference
alone is not sufficient to calculate the coverage.

The definition of the Boolean difference may be modified
to remedy this defect. In this context, let the positive
Boolean difference dF(X)’/dx, denote the fault un-
masking input states for which F(X) changes in the same
direction as x,; i.e., dF’/dx, are the conditions when xi
changes from 1 to 0 (or 0 to 1) then F must also change
from 1 to 0 (or 0 to l), respectively. Similarly, the negative
Boolean difference dF(X)-/dx, denotes the fault un-
masking conditions for which an error in xi causes F(X)
to change in the opposite direction. The positive and
negative (polarized) Boolean differences apply, with

G. G. LANGDON, JR. AND C. K. TANG

Logic nctwork

Figure 2 Coverage calculation for gate 1 .

Figure 3 Example circuit, F (A , B) = A @ B. Figure 3 Example circuit, F (A , B) = A @ B.

A

R
F

A

R
F

appropriate modifications, to gate outputs g , within a
network. The Boolean expression of the polarized Boolean
difference can easily be obtained by its definition. A posi-
tive Boolean difference implies that when the signal under
consideration xi is at the 0 state, the function F(X) should
also be at the 0 state. The input states that satisfy the above
condition can be written as the Boolean expression

also implies that when xi is at the 1 state, the function
F(X) should stay at the 1 state. The input states that
satisfy this condition are, in terms of a Boolean expression,
F(xl, . . , 1, . . . , x,). The positive Boolean difference is
defined as the input states that satisfy both of the above
conditions. This means that when the two Boolean
expressions shown above are “ANDed” together, the
positive Boolean difference results. The negative Boolean
difference is similarly defined.

F(Xl, . ’ . , 0, . . . , xn). A positive Boolean difference

Definition 3: The polarized Boolean differences are
given by

This definition leads to the following identities:

dF(X) + dF(x)- ~.~ -
dx, dxi - 0 ,

IBM J. RES. DEVELOP.

I I I

1
M 2

I

L

L
‘U

Figure 4 Residue mod 3 of a 4-bit group.

where A , B and C are independent of x,

d(A + Bx + C2)- = ABC,
dx

In the case of an adder checked by the odd parity-check
alone, a gate i is covered if each fault-unmasking con-
dition causes the predicted panty bit to be in error.
In other words, a gate is covered if each fault-unmasking
input state causes an odd number of the output signals
(sum-bit and predicted parity) to be affected. In this case,
the polarity (positive or negative) of the Boolean difference
is not a consideration.

For additional and more theoretical considerations on
concurrent error detection, see Carter and S~hneider .~

4. Mod 3 residue check
Checking addition by a residue check has been discussed
by Peterson: Garner1’”’ and Henderson.” For the
residue arithmetic check using base 3 , it is necessary to
obtain the residue mod 3 of the operands A and B, re-
spectively, where A mod 3 is the remainder (0, 1 or 2)
of A divided by 3. The basis for the check is that the
mod 3 sum of A mod 3 and B mod 3 should be equivalent
to the residue mod 3 of the sum S of A and B.

The key logic function to this check is the calculation
of the residue mod 3 of a binary number. This can be
done by means of a “building block” approach, where the
residue mod 3 is calculated 4 bits at a time. Sellers’
presents several circuits for performing this function.
Figure 4 presents another such circuit that seems to have
a cost advantage.

In this circuit, the outputs M1 and M2 represent an
encoding of the residues 0, 1 and 2 into M2 M1 (00),
M2 M1 (l l) , M1 (01) and M2 E (lo), respectively.
In turn, the outputs of two of these circuits may be fed
to a similar circuit for the residue mod 3 of an eight-bit
binary number. In this way a “mod 3 tree” can be built
to form the mod 3 residue of any length binary number.
This is shown in Fig. 5, where each building block (labeled
mod 3) is the circuit of Fig. 4, except that the complement
signal lines are not shown.

~~

5. Mod 3 adder coverage
The mod 3 residue check detects all failures for which
the difference between the correct answer and incorrect
answer (error value) is not a multiple of 3 .

Gates that can affect only a single sum-bit are, of course,
fully covered. Consider the generate and transmit signals
Gi and Ti. If the group generate and transmit signals
are formed as in Eqs. (8) and (9), the group internal
propagate and generate signals are formed as in Eqs. (16)
and (17), Theorem 2 then holds for the adder with group
look-ahead.

Gaddess4 has studied the “parallel” adder in general
terms. He makes the claim, using reasoning similar to
that of Sellers’ in Theorem 2, that faults in gates whose

ERROR DETECTION 1

567

IN BINARY ADDERS SEPTEMBER 1970

568

v
Figure 5 Residue mod 3 of a 16-bit number.

outputs affect more than one carry-in signal will cause
an error burst in such a way that the error value is f 2 i
for some i. The conclusion follows that a residue mod 3
check is sufficient to catch single-gate errors. The following
examples demonstrate where this conclusion fails in adders
using group look-ahead.

Case 1
Suppose, for example, that signals T4, T5 and T6 of
Eqs. (16) and (17) were replaced by H4, H5 and H6 as
in Eqs. (16') and (17'):

Bit 7 group internal propagate = H4H5H6, (1 6')

Bit 7 group internal generate = G4H5H6+G5H6+G6. (17')

Also suppose that a similar substitution is made for the
Bit 6 internal propagate and generate signals H4H5 and
G4H5 + G5, respectively. Logically, the adder behaves
the same as before, because, for the purpose of propagating
a carry through stage i, either signal Ti or H i does the job.
However, the Boolean difference shows that if G5 should
be 1 but is s-a-0 and G4H6H7 = 1, then &, and S, will
both be 1 instead of 0. S, will be correct, because signal
Cin 8-11 will correctly be 1 due to the first term of G4-, =
G4T5T6T7 + G5T6T7 + G6T7 + G7. For this example,
the error value is 3 X 26. The same error value results
if G5H, = 1 , and H6 should be 1 but is s-a-0. The applica-
tion of the Boolean difference to this coverage calculation
for gate G5 appears in Appendix A.

Case 2
If the carry is rippled within each group, there is a larger
variety of possible error values. For example, if C5 fails
when H6H7 = I , an error value of f 3 X 26 will ensue;
if C4 fails when H5H6H7 = 1, an error of f 7 X 25 will
ensue. The reason these error values are not of the form
f 2 i is that, with signal H7 in the 1-state, an error in

G. G. LANGDON, JR. AND C. K. TANG

the carry-in to bit position 7 is expected to propagate
up to position 8. This is not the case because Cin 8"11

is independently and correctly generated.
In both Cases 1 and 2, the problem of error values

not of the form f 2 i may be circumvented by providing
look-ahead within the group that utilizes the transmit
signal as in Eqs. (16) and (17).

Case 3
For group look-ahead adders that use look-ahead between
groups [see Eq. (13)], error values not of the form 2' are
unavoidable when a group carry-in signal fails. For
example, assume H4H5H6H7 = 1. Under this condition
a fault in Ci, 4-7 can cause error values of f 15 X 24.
This error magnitude is not caught by a mod 3 check.
Since Cin 8"11 is independently generated, the carry
error does not propagate to position 8 as it should if
the error value is to be f 2 4 .

One means of reducing this error value to f 2 4 is to
employ the ripple-carry technique between groups. This
technique is accomplished at the cost of increased adder
cycle time. Another option is to avoid an error magnitude
that is a multiple of 3 by redesigning the group look-ahead
so that each group contains an odd number of bits.
A third possible method is to duplicate the group carry-in
signals and perform a comparison. In a group look-ahead
adder that does rippling between groups and look-
ahead within groups, no special problem is presented
for mod 3 check; however, Cases 2 and 3 indicate combina-
tions that may give error values not of the form ~ t 2 ~ .

Case 4
It is noted that in Eq. (15) the complement of the group
carry-in signal Cin 4"7 is required. In the STRETCH com-
puter indexing adder, the current-mode circuits had the
capability of providing both true and complement outputs,
so that both polarities of the group carry-in signals
were available. If it is possible for the polarities of the
group carry-in signals to fail independently, then a fault
in Ci, 4-7 can cause many problems. Applying the Boolean
difference to Cin 4"7 shows, for example, that with the
sum generated as in Eq. (15), an error value of 3 X 24
results if H4H5R6g7 = 1. One alternative here is to
reduce the adder performance and obtain Cin 4-7 by
inverting Cin 4-7. Then, building the duplicate carry-in
signal and checking against Cin 4-7 provides the addi-
tional coverage needed. A simpler solution might be
to invert Ci, 4-7 four times, once for each sum bit, so
that a single gate failure involving a Cin 4-7 signal affects
only one sum bit.

Note that the types of gate failures exemplified do
not give error values of the f 2 < variety. Thus, they
may also act to the detriment of product (or An) code
schemes.13

-

IBM J. RES. DEVELOP.

6. The parity-checked adder
A description of checking addition by means of a parity
check is described by Garner.lO’ll Let PA denote the
odd parity bit of an n-bit word A , and PB denote the odd
parity bit of an n-bit word B; i.e., P A = a, 0 al @ . @
~ , - ~ @ l a n d P , = b o @ b l @ . . . @ b n _ l ~ l . I n f o r m i n g
the sum S of binary numbers A and B, let PC denote
the even parity of the carries; i.e., PC = Ci, @ C, 0
. . . @ Cn-l. The basic parity check equation is

p5 = P A @ pB@ PC@ 1. (1 8)

The right side of this equation is called the predictedparity.
It is known that a failure in the carry circuit will change

the sum S and hence P 5 . It will, however, also affect PC
the same way so that Eq. (18) is satisfied, and no indication
of failure is given. It was this absence of a check on the
carry generation process that motivated Garner (Ref. 11,
p. 765) to say that the parity check was “useless.” It is
possible, however, to remedy these deficiencies without
abandoning the notion of a parity check. (In fact, Hsiao
and Sellers15 have given an elegant remedy for the ripple-
carry adder.)

Let us consider the implementation of Eq. (18) in a
look-ahead adder. Once the carries have been formed,
only one more level of delay* is needed to calculate the
sum S , whereas to calculate P C , an EXCLUSIVE-OR tree
is needed. Thus the predicted parity is available con-
siderably later than the sum; this adversely affects adder
cycle time. Ideally, the sum with its predicted parity
should be available at the same time so it can be entered
into the 2 register, freeing the A and B registers for the
next adder cycle.

Sellers,’ and Pitkowsky and Godfrey“ report high-
speed means to perform this parity prediction. Parity
prediction is done for the same groups over which look-
ahead is performed by using the group carry-in (Ci, gr)

and the group half-adder (Hi, Ti , Gi) signals. If the
group input parity signals P A and P B are available,
the following equation (which is a corrected version of
the one derived by Sellers’) specifies the predicted group
parity PP., for group 0-3:

PP., = P& P , @ G , @ G,@ G,

@ (GoHlRz + G I H z) ~ Cin gr(no + H I ~ z) . (19)

However, by a similar derivation procedure, the fol-
lowing equation of Pitkowsky and Godfrey“ was imple-
mented in the IBM System/360 Model 50 adder and
using one less EXCLUSIVE-OR gate. It also does not require
the input parity bits.

PP., = (To@ T I) @ (Tz@ f&)@ (GoHlBz + GIHz)

0 (Gin g r n o + Cin grH1nz) . (20)

AND gates followed by a DOT-OR is considered “one level.”

SEPTEMBER 1970

In the group look-ahead adder, Eq. (20) provides
coverage against the group internal carry look-ahead
and sum bit generation circuits, because only one sum
bit can be affected by these faults. However, no detection
of errors in the group look-ahead signals is provided,
and the coverage against faults in the half-adder signals
is incomplete. To increase the coverage, two supplementary
checks are provided2’16-the half-sum check and the
carry check.

The supplemental checks
Let PH = Ho @ HI 0 . . 0 H,-l. The half-sum check
equation that must be satisfied is

pH = Pa 0 PB. (21)

The half-sum check is used to check the validity of the
input parity and also to check the half-sum signals H , .

The duplicate-carry check can be implemented using
the high-order group internal generate and propagate
signals for each group. For example, to check signal
Cins-ll the following signal may be used:

Duplicate Ci, = (Bit 7 group internal generate). H7

+ (Bit 7 group internal propagate) H 7 . Ci, 4-7

+ G?. (22)

When compared with Cin8”11 of the group look-ahead,
the output generated by the operation in Eq. (22) detects
errors in Cin8”ll, G4-,, and T4”7.

The remedies given in Case 4 of the mod 3 check for
independent failures in Cin apply as well to the parity
checked adder.

So far, no specific check has been provided to check
the bit generate and transmit signals Gi and Ti. An idea
mentioned in Sellers (Ref. 2, pp. 106-107) is to implement

Hi = Gi 0 T i . (23)

In this way, a failure in Gi or Ti appears as a failure
in Hi and is caught by the half-sum check. A problem
exists in the implementation of Eq. (23). Implementation,
as Gi Ti + GiTi, provides partial coverage if the com-
plement signals fail independently. Another possibility
is to implement Hi as Tic i . This latter idea generally
provides partial coverage. An example of applying the
Boolean difference to determine the coverage of a generate
signal G5 is given in Appendix B.

7. The comparison
Whenever logic designers implement logic functions into
circuitry and attempt to draw general comparisons by
“circuit count” (or “can count” or “gate count”), the
ancient problem of what constitutes a “logic circuit” or
“gate” arises. For the adder studied here, the use of
current-switch emitter-follower circuits is assumed.14 569

ERROR DETECTION IN BINARY ADDERS

Table 1 Basic group look-ahead adder circuit count.

Half adders 80

Look-ahead 34
Group internal carry 24
Sum generation 56

Total 194

Table 2 Residue mod 3 checking circuits.

A 16-bit mod 3 tree 70

Mod 3 adder (A , B, Gin, C,,J 20

Mod 3 comparison circuit 4

Group carry check and compare 24

Table 3 Circuit count for parity-checked adder.

16-way EXCLUSIVE-OR tree (half-sum check,
sum parity, etc.) 32

High-speed parity prediction and compare 64

Parity comparison circuit 2

Coverage of G and T signals 16
Group carry check and compare 24

570

The current switch performs, basically, an AND function.
By “dotting” (i.e., connecting) the emitters of the emitter-
follower transistor to a common load resistor, an OR

function (known as DOT-OR or WIRE-OR) is performed.
We therefore estimate the “number of circuits” to be
the number of AND gates (current switches). If the com-
plement polarity of a dotted signal is required, another
circuit is charged. In addition, a 2-circuit EXCLUSIVE-OR

gate is assumed to be a ~ a i l a b l e . ~ . ~ Thus Eq. (14a) costs 4
circuits or gates and Eq. (13a) costs 5 circuits; the addi-
tional circuit is due to the fact that Cin 12”15 is also required.
Equation (20) for PPa, is more complicated and involves
EXCLUSIVE-OR gates; it costs 14 circuits. The mod 3 circuit
of Fig. 4 takes 8 AND gates and 2 inverters-a cost of
10 circuits.

Before reading the details of the comparison, the
reader should be aware that “gate count” figures will

vary depending on the technology used. We feel, however,
that the general conclusions will still be valid if the two
designs are implemented in some other technology.
It is also pointed out that although both adders have been
designed for complete coverage against single gate failures,
the mod 3 adder should provide better coverage against
multiple gate failures.

The basic group look-ahead adder may be divided
into four parts for the purpose of evaluating its cost:

1) the half-adder functions (Hi, Gi, Ti),
2) the look-ahead functions [Eqs. (S), (9) and (13)],
3) the group internal carry signals [Eqs. (16) and (17)],

4) the sum generation [Eqs. (15) and (7)].

Table 1 shows the calculated circuit count.
In the mod 3 checking scheme the group carry-in

signals are partially covered. This may be remedied by
going to a five-bit group or by employing the duplicate-
carry check. Rather than design an adder on a five-bit
group basis, we assume the mod 3 checking scheme is
supplemented by group-carry check and compare circuits.
Table 2 gives circuit counts for components in a residue
mod 3 checking scheme.

To estimate the circuit count for the parity-checked
adder, we must state how the G and T signals are covered.
Since we have assumed the availability of a two-circuit
EXCLUSIVE-OR gate, Eq. (23) is used to form each half-sum
signal Hi. Since it could have been formed as T$, at a
cost of one circuit, an additional 16 circuits are charged
the parity-checked adder as shown in Table 3.

From Tables 2 and 3 it can be seen that it takes more
circuits to check or generate the residue mod 3 bits than
the parity bit (compare line 1 of Tables 2 and 3). However,
it takes more circuits in the parity-checked adder to
predict the parity bits for the sum (line 2 of Tables 2 and 3).
Therefore, the relative cost of mod 3 checking versus
the parity check depends on the overall checking strategy
for the data flow. For example, the use of the mod 3
check only to check addition, as in Fig. 6, would involve
three residue mod 3 trees (210 circuits), the mod 3 adder
and comparator (24 circuits) and the group-carry check
(24 circuits)-for a total of 258 circuits. It would cost
less to duplicate the adder and compare the outputs.
Therefore, one assumes that the decision to use the mod 3
check in the adder is coupled with the decision to use
it throughout the data flow, and that the adder operands
are already provided with the residue mod 3 bits. The
data flow should then have at least one mod 3 residue
generator and one mod 3 checker. Now the cost is at
least 188 circuits. Similarly, for a parity-checked adder
and data flow consisting of adder checking (138 circuits),
one parity generator (30 circuits) and one parity checker
(32 circuits), the circuit count is at least 200 circuits.

and

G. G. LANGDON, JR. AND C. K. TANG IBM J. RES. DEVELOP.

Actually, for the purpose of better failure isolation, a
data flow checking strategy may use at least four and
possibly five checking trees (Ref. 2, Fig. 5.4, p. 90).
Since four mod 3 checking trees cost 280 circuits, com-
pared to 128 circuits for the same number of EXCLUSIVE-OR

trees, the less expensive EXCLUSIVE-OR tree indicates why
the parity check and parity-checked adder is popular
in practice.

8. Additional considerations
For residues above mod 3, a circuit such as Fig. 4 becomes
difficult to design. For example, a mod 15 residue calcu-
lator for an 8-bit number is an 8-input, 4-output com-
binational circuit. Sellers (Ref. 2, p. 79) mentions that
residues mod 2l-l can be derived using an n-bit adder
with end-around carry. Combining this technique with
carry look-ahead, the authors designed an 8-bit mod 15
residue building block that costs 40 circuits and 4 levels
of delay. The mod 15 residue check for a 16-bit number
using this building block costs 120 circuits and 8 levels
of delay. This should be compared with 70 circuits and
9 levels of delay for the mod 3 tree. This result is con-
sistent with Pertman,” whose analysis of the cost and
complexity of residue generation for modulus 3, 7, 15
and 29 shows that the cost increases with the modulus
when an attempt is made to maintain the speed (Ref. 17,
p. 64). Thus, the use of a larger modulus will detect a
larger variety of failures but will also cost a little more.
At this point it should be recalled that one can always
duplicate the adder unit and compare the outputs to
achieve detection of a wide variety of failures, including
any combination of failures within a single unit.

It may be pointed out that the arithmetic unit also
performs shifting and Boolean (AND, OR or EXCLUSIVE-OR)

operations, for which checking is also desired. Rao”
discusses shifting, complementing and rotating for mod 3
residue checking. Pitkowsky and Godfrey“ discuss
shifter checking with parity bits. Sellers (Ref. 2, p. 174)
comments that the use of a parity-checked adder implies
a relatively inexpensive bit-by-bit AND and OR check
because most of the necessary circuitry is already in the
adder for checking addition. The half-sum check provides
the parity for the EXCLUSIVE-OR operation. We have
not extensively investigated these additional operations,
although such considerations are necessary for the im-
plementation of the over-all checking strategy. However,
based upon our experience, we do not expect that deeper
studies would invalidate any of our general conclusions.

9. Conclusions
This study is an attempt to evaluate the effectiveness
and cost of a parity-checked group look-ahead adder
similar (but 16-bits wide instead of 32-bits wide) to that
used in the IBM System/360 Model 5016 and to compare

Z rceister *

7 B register

‘in

Compare

Latch

od 3 Mod 3

I

Figure 6 Basic residue mod 3 adder-checking scheme.

it with the implementation of a residue mod 3 check.
The practical aspect of this study has led us to some
interesting conclusions.

The calculation of the single gate failure coverage of a
concurrent error detection scheme for a look-ahead
adder should, in general, not proceed independent of
the adder implementation. In particular, prior studies
have ignored the size of the group, the implications of
gate fan-out limitations, and the fact that the complement
of a signal may fail independently of the signal itself.

The Boolean difference has shown itself to be a useful
tool in demonstrating the input conditions under which
a gate may be uncovered. For evaluation of the coverage
of a residue-checked adder it was necessary to define the
“polarized” Boolean difference.
0 If the residue mod 3 of both operands must be generated
in parallel by the adder, the adder cost with mod 3 checking
exceeds the cost of the adder with parity checking. How-
ever, this is not the case if the operands are initially
designed with the residue mod 3 bits as a part of the
data flow register transfer checking. Therefore, the selection
of the adder checking scheme is not independent of the
over-all system and its data transfer checking strategy.
For conventional machine organizations with three or
more data transfer checks, the parity check seems to
offer a cost advantage.

Acknowledgments
The authors thank their colleague D. R. Daykin for his
encouragement, suggestions and critical comments. We
are also grateful to M. Y . Hsiao for his comments and
suggestions. In addition, we thank an anonymous referee
for his suggestions, and in particular for motivating
us to present the considerations given in Section 8. 571

SEPTEMBER 1970 ERROR DETECTION IN BINARY ADDERT

572

Table A-1 Undetected error patterns of sum bits 4-7.

Error
calue -~

1 3 x 24

+9 x 24

1 1 2 x 24

+15 x 24

Appendix A
When the transmit signals in the group internal look-ahead
for sum generation are replaced by the half-sum signals,
the adder function is unchanged. However, adder failures
behave in a different manner. They will have an error
value other than f2' under some input states when
certain single gate failures occur. The polarized Boolean
difference must be used to calculate the coverage. The
failure of the single gate G5 is used to illustrate the cal-
culation. Table A-l is first constructed to show all the
sum-bit error patterns of the group that are not detected
by the mod 3 residue check. The + and - entries in
the table show the polarity of the error; where the plus
sign indicates the sum signals should be 0 but changes
to 1, and the minus sign indicates that the sum signal
should be 1 but changes to 0. Error patterns (rows) in
the table are grouped together according to their error
value. For example, the second row indicates that when
S, and SB should be 1 (or 0) and 0 (or l), respectively,
but change to 0 (or 1) and 1 (or 0), respectively, the
error value is 3 X 2, (or - 3 X 24).

The error values in the table are divisible by 3, thus
the error patterns shown are not detectable by the mod 3
residue check.

The polarized Boolean differences of sum signals S,,
S,, S , and S , are calculated next. Equations (15a) and
(15b) are replaced by Eqs. (15a') and (15b') respectively
to reflect the replacement of bit transmits by bit half sum
described at the beginning of Case 1.

d:: G. LANGWN, JR. AND C. K. TANG

+ C ~ ~ ~ - T H S (G ~ H ~ + G,) . (1 5b')

Using the above two equations and Eqs. (1%) and (15d),
the following is obtained:

Since S4 and S, are independent of G5, Table A-1 is
searched for error patterns in which only and S, are in
error. It is found that the 11 th row corresponds to an error
value of f12 X 24. The input state that produces such an
error pattern when G5 fails is thus

d S : d S l d S - d S -
dG5 dG, dGa dG,
~.~ + 7.3

x H7H6[R5 f G 4 (c i n 4 - 7 + R44)1. ('46)

The conjunction (AND) of the above result and dG4-,/dG5
must be made to assure that the influence of the G5 failure
is confined to the adder group of bits 4-7. (If the G5 error
propagates to group 8-11 and/or group 12-15, the error
value will then be f z 5 , which is detectable by the mod 3
residue check.

= G6H7 G4TsT6H7 + + Ri. ('47)

Hence the undetected input states are obtained by forming
the conjunction of Eqs. (A6) and (A7) and the result is
H,H6G5H4. This result means that when G, should be 1
but is s-a-0 and G4 = H6 = H, = 1, both S, and S, are
affected in the same direction. The error value is f 1 2 X 2,,
which is undetectable by the mod 3 residue check and thus
G, is only partially covered.

IBM J. RES. DEVELOP.

Appendix B
An example is given below to illustrate how the Boolean
difference can be used to determine the coverage of the
gates in the parity-checked adder. The sum Eqs. (15a’),
(15b‘), (1%) and (15d) will be used and it will be shown
that G5 is fully covered in this situation. Note that for
these equations, G, is not fully covered by the mod 3
residue check as shown in Appendix A.

The Boolean differences of the sum bits and the predicted
group parity with respect to G, are first calculated.

- = ~ Z ~ [R S (7 4 (c i n 4 - 7 -k R4)4)1,
dS7
dG.5

(B1)

[(Ta 0 Ts) @ (T6 @ H7) @ (G4&R6 + Gs&)

@ (c i n 4 - 7 R 4 Cin4--7H5n6)6)1 = H6. (B4)

The undetectable input states are those that change an even
number of signals among the signals S7, &, S5, S4 and
PP,,4-7 when G5 changes. Noting that S4 and S5 are
unaffected by G,, the undetectable states are:

dG, dG, dG5 ’ dG5 dG5 dG,

The reader may verify that the above Boolean expression
reduces to zero. This result means that G5 is fully covered.

References
1 . 0. L. MacSorley, “High-speed Arithmetic in Binary

2. F. F. Sellers, Jr., M.-Y. Hsiao and L. W. Bearnson,
Computers,” Proc. IRE 49, 67 (1961).

Error Detecting Logic for Digital Computers, Mc-
Graw-Hill Book Co., Inc., New York, 1968.

3. I. Flores, The Logic of Computer Arithmetic, Pren-
tice Hall Inc., Englewood Cliffs, N. J., 1963, Chap. 5.

4. T. G. Gaddess, “An Error Detecting Binary Adder:
A Hardware-shared Implementation,” Proc. First An-
nual IEEE Computer Conference, September 1967, pp.

5 . N. Lourie, H. Schrimpf, R. Reach and W. Kahn, “Arith-
metic and Control Techniques in a Multi-program
Computer,” Proc. EJCC, 1959, pp. 75-81.

6. M. E. Homan, “A 4-megacycle 24-bit Checked Binary
Adder,” AIEE Transactions (Communications and
Electronics), 443 (1961).

7. W. C. Carter and P. R. Schneider, “Design of Dy-
namically Checked Computers,” Proc. IFIPS Congress
68, Edinburgh, Booklet E, pp. 34-38.

8. Y . T. Yen, “A Method of Automatic Fault-detection
Test Generation for Four-phase MOS LSI Circuits,”
Proc. SJCC, AFIPS Conf. Proc., Vol. 34, 1969, p. 215.

9. W. W. Peterson, “On Checking an Adder,” IBM J .
Res. Develop. 2, 166 (1958).

10. H. L. Garner, “Generalized Parity Checking,” IRE
Trans. Electronic Computers EC-7, 207 (1958).

11. H. L. Gamer, “Error Codes for Arithmetic Operations,”
IEEE Trans. Electronic Computers EC-15, 763 (1966).

12. D. S. Henderson, “Residue Class Error Checking
Codes,” Proc. 16th National Meeting of the ACM,

September 1961.
13. D. T. Brown, “Error Detecting and Correcting Codes

for Arithmetic Operations,” IRE Trans. Electronic Com-
puters EC-15, 333 (1960).

14. R. F. Sechler, et al., “ASLT Circuit Design,” IBM I .
Res. Develop. 11,74 (1967).

15. M. Y. Hsiao and F. F. Sellers, “The Carry Dependent
Sum Adder,” IEEE Trans. Computers EC-12, 265
(1963).

16. S. H. Pitkowsky and R. B. Godfrey, “Parity Checking
and Parity Generating Means for Binary Adders,” U. S.
Patent 3,342,983, September 19, 1967 (Filed June 25,
1963).

17. A. E. Pertman, “Circuits for Checking Arithmetic
Errors by Means of Residue Coding,” U. S. Naval
Ordnance Laboratory Report NOLTR 69-38, February
12, 1969, 115 pages. (Available from U. S. Govern-
ment Clearinghouse as AD 687095.)

18. T. R. N. Rao, “Error-checking Logic for Arithmetic-
type Operations of a Processor,” IEEE Trans. Com-
puters C-17, 845 (1968).

38-41.

Received November 26, 1969

SEPTEMBER 1970 ERROR DETECTION IN BINARY I

573

LDDERS

