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Abstract: This  paper  presents an evaluation  of  the  relative  merits of  two  schemes for  performing  concurrent  error  detection in group 
look-ahead  adders.  One of the schemes  is a residue  mod 3 check and the other  is a parity  prediction  check.  The  Boolean  statements 
that define the  operation of group  look-ahead  adders,  concurrent error detection and the Boolean  difference  serve as background 
for interpreting  the  results of  the  study. The Boolean  difference is a tool for calculating the “coverage” of elements  in a logical  network 
by error-checking  schemes.  Some  weaknesses  in  prior  studies of coverage calculation are brought to light.  Tables  showing the number 
of  circuit  elements  in the various  portions of adder  and  error-checking  circuits are given. It is  shown that the residue  mod 3 check 
adder is not  economical  unless the addition  operands  are  already  provided  with  the  mod 3 check  bits. Thus, a worthwhile  comparison 
of the checking  schemes  should not  proceed  without  considering the overall data flow  checking strategy.  In  machine  organizations 
with  three  or  more data transfer  checks, the parity-checked  adder  seems to offer a cost  advantage. 

1. Introduction 
Most medium- and high-performance computers have 
a parallel binary adder with either  carry  look-ahead or 
some other means of speeding up  operation of the  arith- 
metic unit. It  is desirable to incorporate  error detection 
methods in  the design of this  type of adder.  The purpose 
of the study  reported in this paper is to compare  the 
merits of two methods of checking a 16-bit group  look- 
ahead binary  adder: 1) residue mod 3, and 2 )  parity 
prediction plus additional checking. Since we are con- 
sidering error detection in high-speed adders, we assume 
that  the  data flow outside the  adder also has means to 
check data transfers (such as a parity bit), and  that there 
are  no unnecessary delays from  the time data enters the 
adder until the result reaches its destination in  the  CPU. 

2. The  carry look-ahead adder 
The principle of carry  look-ahead is well 
The  notation used in  Chapter 6 of the  book* by F. F. 
Sellers, Jr., M. Y. Hsiao  and L. W. Bearnson2 is followed 
in  the discussion. Two operands A and B are  added  to 
give sum S. Sum bit Si depends on  the carry from  the 
previous stage? Ci-l, as well as  on ai and b;: 
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subsequently be referred to by Sellers’ name alone. 
* Since this work is referenced a number of times in this paper, it will 

low-order to high. We accept this with some reluctance. Bit positions in an 
t The convention  in the literature is that the adder position subscripts run 

n-bit register are usually labeled position 0 for the high-order and position 
n “1 for the low order. As a result, in actual practice. the low-order position 
of a 16-bit adder is position 15; i.e., the subscripts run high-order to low. 
Note also that the  carry  subscript is one less than the adder stage into which 
it carries. 

s, = a, 0 b; 0 C*-l, (1) 

ci = U,bi + a,ci-1 + biCi-1. (2) 

In  the Boolean equations, “+” denotes OR, ‘‘.” or 
juxtaposition  denotes AND, ‘‘e” denotes EXCLUSIVE-OR, 

and  the overbar  denotes negation. 
In look-ahead  adders, the half-udder functions Hi = 

a ,  @ bi, Gi  = aibi and Ti  = ai + b; are called the 
half sum, generate and transmit signals, respectively. 

The carry-signal equations for a 16-bit adder with full 
look-ahead are stated  as 

c-1 = tin, (3) 

co = Go + CinTo, (4) 

In  an  adder with full  look-ahead, the  sum is normally 
generated by the equation 

In considering the ripple-carry adder, it is well known 
that  an  error  in  the carry-in to position i may cause  a 
sequence (or burst) of sum bits to be in  error, while the 
numeric value of the  error,  the error value, will be only f 2 ‘  
(where 2i is the numeric  value of bit  position i). The 
following theorem is taken  from  Sellers2 563 
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Theorem I: In ripple-carry adders, if an error in C,, 
causes an error in C,,,, then Cn also  causes an error 
in C,,l, c,,,, * *  * 9 c n + a - 1 *  

In an adder with  full  carry look-ahead, an error in 
some Ci-l  affects  only  bit  position i. However,  Sellers 
(Ref. 2, p. 101) has proven that a failure in either Gi or Ti 
may  cause a sequence of sum bits to be in error. Again, 
the error value will  be f 2 i .  The following  theorem,  also 
taken from Sellers’ work,  is  valid for full  look-ahead 
adders under  certain  conditions. Gaddess4 claims a 
similar  result. 

Theorem 2:  In full  look-ahead adders, if an error in 
T,, or G, causes an error in C,,,,, then T, or G, will also 
cause errors in C,,,,, C,,,, ... 3 Cn+a-l. 

This theorem is invalid if signals T,  or G ,  are duplicated 
to increase the fan-out capability. For example,  consider 
adding 8-bit  numbers.  Suppose a fan-out capability  of 
five is the limit.  Signal TI must  be  duplicated into T ;  
and T:. If T ;  feeds  bit  positions 1 , 2 and 3, and T ;  feeds 
positions 4, 5 and 6, then the theorem  obviously  does 
not hold if T t  fails and causes C5 to be in error, since 
C,,  C, and C3 will still  be correct. Interestingly  enough, 
in this instance the error value  is f 2 ‘ ;  when Tr fails, the 
theorem  holds, but the error value  may  be f 7  X 2l. 

In situations where the adder must operate at high 
speed, the ripple-carry adder is unsuitable  because it is 
too slow. As early as 1959, Lourie et ai.‘ stated that a 
parallel  accumulator  without  speed-up  techniques is an 
extremely  wasteful  device.  However, an adder with full 
look-ahead is also  unsuitable for technical  reasons. 
Equation (6) requires AND gates  with fan-in capabilities 
of up to 15 inputs and an OR gate with a fan-in of  16. 
Furthermore, signals Go and To require a fan-out capa- 
bility  of  15. It is therefore  customary in practice to factor 
Eqs. (3) to (6)  systematically.  This is generally done 
(See Refs. 1, 3, 6) by forming  groups of from 4 to 6 
consecutive  bit  positions and forming group “generate” 
and “transmit” signals  analogous to Gi and T i .  For the 
16-bit adder divided into four-bit groups, for example, 
the following equations are typical: 

G12-15 = G I z T ~ T M T E  + GBTI~TE 

+ G14T1.5 + GI59 (8) 

Tv-15 = T , , T ~ T I ~ T X .  (9) 

With the group generate and transmit signals  available, 
the group  carry-in  signals may  be  designed by using 
ripple-carry  techniques as derived  below: 

Cin 12-15 = G8-11 + Cin S- I ITS-I I ,  (10) 

Cin 8-11 = G4-7 + Cin 4-7T4-7, (11) 
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Cin4-7 = GO-3 + CinTO-3. (12) 

However, it may  be more advantageous to use look- 
ahead on the group signals: 

c i n  12-15 = G8-11 f G4-7T8-11 + ~ 0 - 3 ~ 4 - 7 ~ S - l l  

+ CinTO”3T4-7T8-ll, 

C i n S - 1 1  = G4-7  GO-3T4-7  CinTo-3T4-7, 

Cin4-7 = GO--3 + CinTO-3- 

Since the high-order carry-out signal (C15) is an adder 
output (like the sum  bits), it may be obtained by a ripple 
as in Eqs. (10) to (12): 

e15 = Cin12-15Tl2-15 + G12-15. (13d) 

Similarly,  once the carry-in  signals between groups are 
formed  using either the ripple or look-ahead technique, 
the bit  carries within the group may also  be  designed  with 
either the ripple  principle or the look-ahead  principle. 
As an example, for look-ahead  within group 4-7, the 
following equations are used: 

C6 = Cin4-~T4T5T6 G4T5Tg  G5T6 + Go, (14a) 

C5 Cin4-7T4T5 + G4T5 + G5, (14b) 

C4 = Cin4-7T4 + G,, (1  4c) 

c3 = ci, 4-7.  (144 

With the bit  carry-in  explicitly  formed, the sum  bit is 
formed as  in Eq. (7). But this adds an unnecessary  delay 
to the critical  signal C i n  4-7 for sum bits 5 ,  6 and 7. In 
the STRETCH computer adder (Ref. 6,  p.  445,  Fig. S), 
S7 is  formed as: 

S7 = Cin4-7B7(T4T5T6) + R7(G,TgTs + G5Ts + G6) 

f (T4T5Ts) (G4T5T6  G5T6 + G 6 ) H 7  

+ c;in4-7H7(G4T5T6 + G ~ T B  + GB), 

s6 = Cin4”7R6(T4T5) + R6(G4T5 + G5) 

+ (T4T5) (G4T5 + G5)He 

+ Cin4”7HB(G4T5 G5),  (1 5b) 

S, = Cin4-7R5T4  + R5G4 + T4G4H5 + cin4.-7H5c4. 
(15c) 

s4 = Cin4-7R4 + C i n 4 - 7 H 4 .  (1 5d) 

The formation of the sum in this manner  utilizes  func- 
tions called the “group internal auxiliary functions.” 
For bit 7, these  functions are defined  below: 

Bit 7 group internal propagate = T4T5T6, (16) 

Bit 7 group internal generate = G4T5T6 

+ G5T6 + G6- 
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The look-ahead adder considered  in  this  study  is 
16 bits wide, has four groups of four bits  each, and has 
full  look-ahead between and within  each  group.  This 
represents a reasonable  compromise  among  speed, 
fan-in, and fan-out capabilities. Thus Eqs. (8), (9), (13), 
(1 3 ,  (16) and (17) are representative of this adder. Figure 1 
shows the adder block  diagram. 

3. Concurrent  error  detection 
Concurrent error detection  means that adder errors are 
detected by checking  circuits during normal operations 
within one adder cycle  of their occurrence. Gate failures 
will  be  assumed to occur as the output either “stuck-at-0” 
(s-a-0) or “stuck-at-1’’  (s-a-1).  Actually, this assumption 
is  more  general than  it might  first appear. The coverage 
calculation for the error detection  schemes  studied  here 
must  satisfy the concurrent check assumption; that is, 
under a single gate failure of a completely  covered  gate, 
for any given input state either the network output state 
is correct or the checking  circuit  shows that a failure 
occurred. Thus all gate input failures and grounded 
interconnections,  many  open  interconnections, and even 
some  connections shorted together, appear under the 
concurrent check  assumption and a particular input 
state as a gate  s-a-0 or s-a-1. A property of the con- 
current check assumption  is that the coverage  of a gate 
may be  incomplete. The following  definitions on coverage 
are an attempt to formalize the preceding intuitive con- 
cepts. We assume  s-a-1 or s-a-0  gate  failures  may  occur. 

Definition I* : A gate is  (fully or completely) covered, 
if: a) under  all  valid input combinations or states, gate 
failures  result in either the correct  network output (i.e., 
the fault is masked) or  an error indication  (i.e., the fault 
is  detected), and b) for at least one input state (not neces- 
sarily a valid input), the failure causes an error indication. 
(An  example of an invalid input for the parity-checked 
adder would be an operand with incorrect  parity.) 

The presence  of condition b) in  the definition is moti- 
vated by the fact that if a gate in the checking  circuit 
fails  without ever indicating an error, the gate  cannot 
properly  be  considered  covered. It may then be  said that 
a gate failure is partially covered if there is some valid 
input state for which the failure is detected, and another 
valid input state for which the network output is wrong 
with no error indication given. If a gate  is  neither  fully 
nor  partially  covered it is uncovered. 

In studying concurrent checking  techniques it becomes 
apparent that the coverage  calculation  is a nontrivial 
exercise.  When a gate G, in a logic  network  fails, it is 
important to focus  upon the input conditions (set of 

W. C .  Bouricius, W. C. Carter  and D. C. Jessup. Jr., of the IBM Research 
* One of the authors was influenced in  this definition by discussions with 

Division. Another influence was Sellers (Ref. 2, p. 21 1). 

Group 
internal aux. 

functions 

Eqs. (16), (17) 
G, T 

Group internal 
Half adder 

A rceister Half sum ( H )  

I Group gen. 
and transmit carry-in I Gsp. Tgp 4 1 

Figure 1 Block diagram of a  group  look-ahead  adder. 

input states) for which the fault is not masked at the 
network outputs. In order for Gi to be covered, the 
concurrent error detection  circuitry  must  signal an error 
for these “fault unmasking input states.” To assist  in 
the determination of the fault unmasking input states, 
Sellers’  describes the Boolean  difference operation 
dF(X)/dxi of  Boolean function F(X) with  respect to 
input signal x i  , where X is a Boolean  vector xl, x2, . . . , x,. 
Each  value  of X is an input state. 

Definition 2: The Boolean  difference dF(X)/dx, of 
function F with  respect to variable xi is F(xl, . . . 3 1, 

is the EXCLUSIVE-OR of function F with x i  set to 1 and 
function Fwith x i  set to 0. In any  case, the result dF(X)/dx, 
is a Boolean  expression that describes the conditions  under 
which a fault in the signal x ,  changes the logic  network 
output F.* 

The Boolean  difference, as defined  above,  concerns 
the effect  of failed inputs on the output F of a logic 
network. Here, as in Chapter 6 of  Sellers’ work, we 
apply the technique to failed  gates  inside a multiple- 
output logic  network.  Consider the coverage  calculation 
for gate i in Fig. 2. 

In calculating the Boolean  difference dFi/dgi, i.e., the 
input states for which a failure in gate i changes output F,, 
the gate output signal gi must  be treated as an independent 
variable. The gate output is now a primary input to the 
circuit, and F j  becomes a function of n + 1 variables 

Fi(xl, . . . , x,,, 0). The Boolean  difference  is  seen to be 

. * *  , X J @  F(X1, * * *  , 0, ... , x,,). That is, dF(X)/dx, 

Fi(xl, . . * , X,,, g,) .  NOW dFi/dg, = Fi(x1, . . , X,, 1) @ 

are  the  fault unmasking input states. 
* Input  states  for which the Boolean expression dF/dxi assumes the value I 
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the EXCLUSIVE-OR of a) Fi with gi s-a-1 and b) Fi with 
gi s-a-0. It is our opinion that treating gate outputs as 
independent  variables  is important as a means of ad- 
dressing the problem of independent  failures in the 
complement of a signal.  Suppose, for example, that gate k 
inverts the output of gate i. When analyzing a s-a-1 
failure in gate k ,  we cannot assume that the logical  com- 
plement, i.e., the output of gate i, is  s-a-0. This problem 
is  avoided by treating the gate output g ,  as an independent 
input variable. 

Since gi is itself a function of X ,  it is now  possible to 
determine  whether gi(X) must  be s-a-0 or s-a-1 for certain 
fault-unmasking input states. The expression (dFi/dg,). 
g,(X) gives the conditions for which g, s-a-0 causes Fi to 
be in error. Similarly, (dFi/dgi).gi(X) describes the 
input conditions for which gi s-a-1 affects F,.’ As an 
example,  consider the circuit of Fig. 3. 

In the figure F(A, B)  = A @ B. Consider a failure in 
Gate 1. Since F(A, B, 1) = A + B and F(A, B, 0) = 0,  
we have dF/dg, =_<A + B) @ 0 = A + B. For g, s-a-0, 
input ( A  + B ) - (  AB) = A @ B causes F to be in error; 
for g, s-a-1, input ( A  + B).  (AB) = AB causes F to be 
in error. (We note here the possibility that a gate may 
be  covered  against  s-a-0 but uncovered  against  s-a-1.) 

To calculate the coverage of a checking  scheme for 
an adder, it is necessary to determine the effect  of each 
gate failure on all the sum  bits  plus the check  circuits. 
In the case  of an independent  mod 3 check, a gate i is 
covered if the error value of each  possible fault unmasking 
input state for the gate is not divisible by 3. To accomplish 
this, the Boolean  difference alone is not sufficient  because 
no information is given about whether a failure causes 
an output F to go erroneously to 1 or  to 0 under the 
given input state. 

An  example  may illustrate this point. Suppose that, 
under a particular input state, a failure in gate i causes 
an error in sum  bits Sk and S,,,. If Sk and S,,, are changed 
in the same  direction, the error value is f3 X 2,; if 
Sk and S,,, are changed in opposite directions, the error 
value is f2k.  In  the latter case the fault is caught  under 
a residue  mod 3 check. In the former case, it goes un- 
detected.  Therefore,  knowledge of the Boolean  difference 
alone is not sufficient to calculate the coverage. 

The definition of the Boolean  difference  may  be  modified 
to remedy this defect. In this context,  let the positive 
Boolean  difference dF(X)’/dx, denote the fault un- 
masking input states for which F(X) changes in the same 
direction as x,; i.e., dF’/dx, are the conditions when xi 
changes from 1 to 0 (or 0 to 1) then F must also change 
from 1 to 0 (or 0 to  l), respectively.  Similarly, the negative 
Boolean  difference dF(X)-/dx, denotes the fault un- 
masking  conditions for which an error in xi causes F(X) 
to change in the opposite  direction. The positive and 
negative  (polarized)  Boolean  differences  apply, with 
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Figure 2 Coverage calculation for gate 1 .  

Figure 3 Example circuit, F ( A ,  B )  = A @ B.  Figure 3 Example circuit, F ( A ,  B )  = A @ B.  
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appropriate modifications, to gate outputs g ,  within a 
network. The Boolean  expression of the polarized  Boolean 
difference can easily  be  obtained by its definition. A posi- 
tive  Boolean  difference  implies that when the signal  under 
consideration xi is at the 0 state, the function F(X) should 
also  be at the 0 state. The input states that satisfy the above 
condition  can be written  as the Boolean  expression 

also  implies that when xi is at the 1 state, the function 
F(X) should  stay at the 1 state. The input states that 
satisfy  this  condition are, in terms of a Boolean  expression, 
F(xl,  . . , 1, . . . , x,). The positive  Boolean  difference is 
defined as the input states that satisfy  both of the above 
conditions.  This  means that when the two  Boolean 
expressions  shown  above are “ANDed” together, the 
positive  Boolean  difference  results. The negative  Boolean 
difference is similarly  defined. 

F(Xl, . ’ . , 0, . . .  , xn). A positive  Boolean  difference 

Definition 3: The polarized  Boolean  differences are 
given  by 

This  definition  leads to the following  identities: 

dF( X ) +  dF( x)- ~.~ - 
dx, dxi - 0 ,  
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Figure 4 Residue mod 3 of a 4-bit group. 

where A ,  B and C are independent of x, 

d( A + Bx + C2)- = ABC, 
dx 

In  the case of an  adder checked by the  odd parity-check 
alone, a gate i is covered if each fault-unmasking  con- 
dition causes the predicted panty bit to be in  error. 
In  other words, a gate is covered if each fault-unmasking 
input  state causes an  odd number of the  output signals 
(sum-bit and predicted parity) to be affected. In this case, 
the polarity (positive or negative) of the Boolean difference 
is not a consideration. 

For additional  and more  theoretical  considerations on 
concurrent error detection, see Carter  and S~hneider .~  

4. Mod 3 residue check 
Checking  addition by a residue check has been discussed 
by  Peterson: Garner1’”’ and Henderson.” For  the 
residue arithmetic check using base 3 ,  it is necessary to 
obtain  the residue mod 3 of the operands A and B, re- 
spectively, where A mod 3 is the remainder (0, 1 or 2) 
of A divided by 3. The basis for  the check is that  the 
mod 3 sum of A mod 3 and B mod 3 should be equivalent 
to  the residue mod 3 of the  sum S of A and B. 

The key logic function to this check is the calculation 
of the residue mod 3 of a binary number.  This  can be 
done by means of a “building block” approach, where the 
residue mod 3 is calculated 4 bits at a time. Sellers’ 
presents several circuits for performing this  function. 
Figure 4 presents another such circuit that seems to have 
a cost advantage. 

In this circuit, the  outputs M1 and M2 represent an 
encoding of the residues 0, 1 and 2 into M2 M1 (00), 
M2 M1 ( l l ) ,  M1 (01) and M2 E (lo), respectively. 
In  turn,  the  outputs of two of these circuits may be  fed 
to a similar circuit for  the residue mod 3 of an eight-bit 
binary  number. In this way a “mod 3 tree” can be built 
to  form  the  mod 3 residue of any length binary  number. 
This is shown in Fig. 5, where each building block (labeled 
mod 3 )  is the circuit of Fig. 4, except that  the complement 
signal lines are  not shown. 

~~ 

5. Mod 3 adder  coverage 
The  mod 3 residue check detects all failures for which 
the difference between the correct answer and incorrect 
answer (error value) is not a multiple of 3 .  

Gates  that can affect only a single sum-bit are, of course, 
fully covered. Consider the generate and transmit signals 
Gi and Ti. If the  group generate and transmit signals 
are formed  as in Eqs. (8) and (9), the  group internal 
propagate and generate signals are formed as  in Eqs. (16) 
and (17), Theorem 2 then holds for  the  adder with group 
look-ahead. 

Gaddess4 has studied the “parallel” adder  in general 
terms. He makes the claim, using reasoning similar to 
that of  Sellers’ in Theorem 2, that faults in gates whose 
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v 
Figure 5 Residue mod 3 of a 16-bit number. 

outputs affect more than one  carry-in  signal will  cause 
an error burst in such a way that the error value  is f 2 i  
for some i. The conclusion  follows that a residue  mod 3 
check  is  sufficient to catch  single-gate errors. The following 
examples demonstrate where this conclusion  fails in adders 
using group look-ahead. 

Case 1 
Suppose, for example, that signals T4, T5 and T6 of 
Eqs. (16) and (17) were  replaced  by H4,  H5 and H6 as 
in Eqs. (16') and (17'): 

Bit 7 group internal propagate = H4H5H6, (1 6') 

Bit 7 group internal generate = G4H5H6+G5H6+G6. (17') 

Also suppose that a similar substitution is made for the 
Bit 6 internal propagate and generate  signals H4H5 and 
G4H5 + G5, respectively.  Logically, the adder behaves 
the same as before,  because, for the purpose of propagating 
a carry through stage i, either  signal Ti  or H i  does the job. 
However, the Boolean  difference  shows that if G5 should 
be 1 but  is  s-a-0 and G4H6H7 = 1, then &, and S, will 
both be 1 instead of 0. S, will  be correct,  because  signal 
Cin 8-11 will correctly  be 1 due to  the first term of G4-, = 
G4T5T6T7 + G5T6T7 + G6T7 + G7. For this example, 
the error value is 3 X 26. The same error value  results 
if G5H, = 1 , and H6 should be 1 but is s-a-0. The applica- 
tion of the Boolean  difference to this coverage calculation 
for gate G5 appears in Appendix A. 

Case 2 
If the carry  is  rippled  within  each group, there is a larger 
variety of possible error values. For example, if C5 fails 
when H6H7 = I ,  an error value of f 3  X 26 will ensue; 
if C4 fails when H5H6H7 = 1, an error of f 7  X 25 will 
ensue. The reason  these error values are not of the form 
f 2 i  is that, with  signal H7 in the 1-state, an error in 
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the carry-in to bit  position 7 is  expected  to  propagate 
up to position 8. This  is  not the case  because Cin 8"11 

is independently and correctly  generated. 
In both  Cases 1 and 2, the problem of error values 

not of the form f 2 i  may  be  circumvented  by  providing 
look-ahead within the group that utilizes  the transmit 
signal  as in Eqs. (16) and (17). 

Case 3 
For group look-ahead adders that use look-ahead between 
groups [see Eq. (13)], error values not of the form 2' are 
unavoidable when a group carry-in  signal  fails. For 
example,  assume H4H5H6H7 = 1. Under this condition 
a fault in Ci, 4-7 can  cause error values of f 15 X 24. 
This error magnitude is not caught by a mod 3 check. 
Since Cin 8"11 is independently  generated, the carry 
error does not propagate to position 8 as it should if 
the error value is to be f 2 4 .  

One  means of reducing this error value to f 2 4  is to 
employ the ripple-carry  technique  between  groups.  This 
technique is accomplished at the cost of increased adder 
cycle time. Another option is to avoid an error magnitude 
that is a multiple of 3 by redesigning the group  look-ahead 
so that each group contains an  odd number of  bits. 
A third possible  method is to duplicate the group carry-in 
signals and perform a comparison. In a group look-ahead 
adder that does  rippling  between  groups and look- 
ahead within groups, no special  problem  is  presented 
for mod 3 check;  however,  Cases 2 and 3 indicate combina- 
tions that may  give error values not of the form ~ t 2 ~ .  

Case 4 
It is noted that in Eq. (15) the complement of the group 
carry-in  signal Cin 4"7 is  required. In  the STRETCH com- 
puter indexing adder, the current-mode circuits had the 
capability of providing both true and complement outputs, 
so that both polarities of the group carry-in  signals 
were available. If it is possible for the polarities of the 
group carry-in  signals to fail  independently, then a fault 
in Ci, 4-7 can  cause  many  problems.  Applying the Boolean 
difference to Cin 4"7 shows, for example, that with the 
sum  generated as in Eq. (15), an error value  of 3 X 24 
results if H4H5R6g7 = 1. One alternative here is to 
reduce the adder performance and obtain Cin 4-7 by 
inverting Cin 4-7. Then, building the duplicate carry-in 
signal and checking  against Cin 4-7 provides the addi- 
tional coverage  needed. A simpler solution might be 
to invert Ci, 4-7 four times,  once for each  sum bit, so 
that a single  gate failure involving a Cin 4-7 signal  affects 
only one sum bit. 

Note  that  the types of gate  failures exemplified do 
not give error values of the f 2 <  variety. Thus, they 
may also act to the detriment of product (or An) code 
schemes.13 

- 
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6. The  parity-checked  adder 
A description of checking addition by means of a parity 
check  is  described by Garner.lO’ll Let PA denote the 
odd parity bit of an n-bit  word A ,  and PB denote the odd 
parity bit of an n-bit  word B; i.e., P A  = a, 0 al @ . @ 
~ , - ~ @ l a n d P , =  b o @ b l @ . . . @ b n _ l ~ l . I n f o r m i n g  
the sum S of binary  numbers A and B, let PC denote 
the even parity of the carries;  i.e., PC = Ci, @ C, 0 
. . . @ Cn-l. The basic  parity  check equation is 

p5 = P A @  pB@  PC@ 1. (1 8) 

The right  side of this equation is  called the predictedparity. 
It is known that a failure in the carry  circuit will change 

the sum S and hence P 5 .  It will,  however,  also  affect PC 
the same way so that Eq. (18)  is  satisfied, and no indication 
of failure is  given. It was this  absence of a check on the 
carry generation  process that motivated Garner (Ref.  11, 
p.  765) to say that the parity  check was  “useless.” It is 
possible,  however, to remedy  these  deficiencies  without 
abandoning the notion of a parity check. (In fact, Hsiao 
and Sellers15  have given an elegant  remedy for the ripple- 
carry adder.) 

Let us consider the implementation of Eq. (18) in a 
look-ahead adder. Once the carries  have been formed, 
only one more level  of  delay* is needed to calculate the 
sum S ,  whereas to calculate P C ,  an EXCLUSIVE-OR tree 
is needed. Thus the predicted  parity  is  available  con- 
siderably later than the sum;  this  adversely  affects adder 
cycle time.  Ideally, the sum  with its predicted parity 
should be available at the same  time  so it can be  entered 
into the 2 register,  freeing the A and B registers for the 
next adder cycle. 

Sellers,’ and Pitkowsky and Godfrey“ report high- 
speed  means to perform  this parity prediction.  Parity 
prediction  is done for the same  groups  over which look- 
ahead is  performed by  using the group carry-in (Ci, gr) 

and the group half-adder (Hi, Ti ,  Gi) signals. If the 
group input parity signals P A  and P B  are available, 
the following equation (which is a corrected  version of 
the one derived by  Sellers’)  specifies the predicted group 
parity PP., for group 0-3: 

PP., = P& P , @ G , @  G,@ G, 

@ (GoHlRz + G I H z ) ~  Cin gr(no + H I ~ z ) .  (19) 

However, by a similar  derivation  procedure, the fol- 
lowing equation of Pitkowsky and Godfrey“ was  imple- 
mented in the IBM  System/360  Model 50 adder and 
using one  less EXCLUSIVE-OR gate. It also does not require 
the input parity  bits. 

PP., = (To@ T I ) @  (Tz@ f&)@ (GoHlBz + GIHz) 

0 (Gin g r n o  + Cin grH1nz) .  (20) 

AND gates followed by a DOT-OR is considered “one level.” 
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In the group look-ahead adder, Eq. (20) provides 
coverage  against the group internal carry look-ahead 
and sum  bit  generation  circuits,  because  only  one  sum 
bit can be  affected by these faults. However, no detection 
of errors in the group look-ahead  signals  is  provided, 
and the coverage  against faults in the half-adder  signals 
is  incomplete. To increase the coverage,  two  supplementary 
checks are provided2’16-the  half-sum check and the 
carry  check. 

The supplemental checks 
Let PH = Ho @ HI 0 . . 0 H,-l. The half-sum check 
equation that must  be  satisfied  is 

pH = Pa 0 PB. (21) 

The half-sum  check  is used to check the validity of the 
input parity and also to check the half-sum  signals H , .  

The duplicate-carry check can  be  implemented  using 
the high-order group internal generate and propagate 
signals for each group. For example, to check  signal 
Cins-ll the following  signal  may  be  used: 

Duplicate Ci, = (Bit 7 group internal generate). H7 

+ (Bit 7 group internal propagate) H 7 .  Ci, 4-7 

+ G?. (22) 

When compared with Cin8”11 of the group look-ahead, 
the output generated by the operation in Eq. (22) detects 
errors in Cin8”ll, G4-,, and T4”7. 

The remedies  given in Case 4 of the mod 3 check for 
independent  failures  in Cin apply  as well to the parity 
checked adder. 

So far, no specific  check has been provided to check 
the bit  generate and transmit signals Gi and Ti. An idea 
mentioned in Sellers  (Ref. 2, pp. 106-107) is to implement 

Hi = Gi 0 T i .  (23) 

In this way, a failure in Gi or Ti appears as a failure 
in Hi and is caught by the half-sum  check. A problem 
exists in the implementation of Eq. (23). Implementation, 
as Gi Ti + GiTi, provides partial coverage if the com- 
plement  signals  fail  independently. Another possibility 
is to implement Hi as Tic i .  This latter idea generally 
provides partial coverage. An example of applying the 
Boolean  difference to determine the coverage of a generate 
signal G5 is  given in Appendix B. 

7. The  comparison 
Whenever  logic  designers  implement  logic functions into 
circuitry and attempt to draw general  comparisons by 
“circuit count” (or “can count” or “gate count”), the 
ancient  problem of what  constitutes a “logic  circuit” or 
“gate” arises. For the adder studied  here, the use  of 
current-switch  emitter-follower  circuits  is  assumed.14 569 
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Table 1 Basic group  look-ahead  adder  circuit  count. 

Half adders 80 

Look-ahead  34 
Group internal  carry 24 
Sum  generation  56 

Total 194 

Table 2 Residue  mod 3 checking  circuits. 

A 16-bit  mod 3 tree 70 

Mod 3 adder ( A ,  B, Gin, C,,J 20 

Mod 3 comparison  circuit 4 

Group carry  check and  compare 24 

Table 3 Circuit  count  for  parity-checked adder. 

16-way EXCLUSIVE-OR tree  (half-sum  check, 
sum  parity,  etc.) 32 

High-speed  parity  prediction and  compare 64 

Parity  comparison  circuit 2 

Coverage of G and T signals  16 
Group carry check and compare 24 
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The current switch performs, basically, an AND function. 
By “dotting” (i.e., connecting) the emitters of the emitter- 
follower transistor to a common load resistor, an OR 

function (known as DOT-OR or WIRE-OR) is performed. 
We therefore  estimate the “number of circuits” to be 
the number of AND gates (current switches). If the com- 
plement polarity of a dotted signal is required, another 
circuit is charged. In  addition, a 2-circuit EXCLUSIVE-OR 

gate is assumed to be a ~ a i l a b l e . ~ . ~  Thus  Eq. (14a) costs 4 
circuits or gates and  Eq. (13a) costs 5 circuits; the  addi- 
tional circuit is  due to the fact that Cin 12”15 is also  required. 
Equation (20) for PPa, is more complicated and involves 
EXCLUSIVE-OR gates; it costs 14 circuits. The  mod 3 circuit 
of Fig. 4 takes 8 AND gates and 2 inverters-a cost of 
10 circuits. 

Before reading the details of the comparison, the 
reader  should be aware that “gate count” figures will 

vary depending on  the technology used. We feel, however, 
that  the general conclusions will still be valid if the two 
designs are implemented in some other technology. 
It is also  pointed out  that  although  both  adders have been 
designed for complete coverage against single gate failures, 
the  mod 3 adder should  provide  better coverage against 
multiple gate failures. 

The basic group look-ahead adder may be divided 
into  four  parts  for  the purpose of evaluating  its cost: 

1) the half-adder  functions (Hi, Gi, Ti), 
2) the look-ahead  functions [Eqs. (S), (9) and (13)], 
3) the  group internal  carry signals [Eqs. (16) and (17)], 

4) the sum generation [Eqs. (15) and (7)]. 

Table 1 shows the calculated circuit  count. 
In  the  mod 3 checking scheme the  group carry-in 

signals are partially covered. This may be remedied by 
going to a five-bit group  or by employing the duplicate- 
carry check. Rather  than design an  adder  on a five-bit 
group basis, we assume the  mod 3 checking scheme is 
supplemented by group-carry check and compare circuits. 
Table 2 gives circuit counts for components in a residue 
mod 3 checking scheme. 

To estimate the circuit  count for the parity-checked 
adder, we must state how the G and T signals are covered. 
Since we have assumed the availability of a two-circuit 
EXCLUSIVE-OR gate, Eq. (23) is used to  form each half-sum 
signal Hi. Since it could  have been formed as T$, at a 
cost of one circuit, an  additional 16 circuits are charged 
the parity-checked adder  as shown in Table 3. 

From Tables 2 and 3 it can  be seen that it takes  more 
circuits to check or generate the residue mod 3 bits than 
the parity bit (compare line 1 of Tables 2 and 3). However, 
it takes  more circuits in  the parity-checked adder  to 
predict the parity  bits for  the sum (line 2 of Tables 2 and 3). 
Therefore, the relative cost of mod 3 checking versus 
the parity check depends on  the overall checking strategy 
for  the  data flow. For example, the use of the mod 3 
check only to check addition,  as  in Fig. 6, would involve 
three residue mod 3 trees (210 circuits), the mod 3 adder 
and  comparator (24 circuits) and  the group-carry check 
(24 circuits)-for a total of 258 circuits. It would cost 
less to duplicate the  adder  and compare the  outputs. 
Therefore, one assumes that  the decision to use the  mod 3 
check in  the  adder  is coupled with the decision to use 
it throughout  the  data flow, and  that  the  adder operands 
are already provided with the residue mod 3 bits. The 
data flow should then have at least one  mod 3 residue 
generator and  one  mod 3 checker. Now  the cost is at 
least 188 circuits. Similarly, for a parity-checked adder 
and  data flow consisting of adder checking (138 circuits), 
one parity  generator (30 circuits) and  one parity checker 
(32 circuits), the circuit count is at least 200 circuits. 

and 

G. G. LANGDON, JR. AND C. K. TANG IBM J. RES. DEVELOP. 



Actually, for  the purpose of better failure isolation, a 
data flow checking strategy may  use at least four and 
possibly five checking trees (Ref. 2, Fig. 5.4, p. 90). 
Since four mod 3 checking trees cost 280 circuits, com- 
pared to 128 circuits for the same number of EXCLUSIVE-OR 

trees, the less expensive EXCLUSIVE-OR tree indicates why 
the parity check and parity-checked adder is popular 
in practice. 

8. Additional  considerations 
For residues above mod 3, a circuit such as Fig. 4 becomes 
difficult to design. For example, a mod 15 residue calcu- 
lator for  an 8-bit number  is an 8-input, 4-output com- 
binational circuit. Sellers (Ref. 2, p.  79) mentions that 
residues mod 2l-l  can be derived using an n-bit adder 
with end-around carry. Combining this technique with 
carry look-ahead, the  authors designed an 8-bit mod 15 
residue building block that costs 40 circuits and 4 levels 
of delay. The  mod 15 residue check for a 16-bit number 
using this building block costs 120 circuits and 8 levels 
of delay. This should be compared with 70 circuits and 
9 levels  of  delay for  the mod 3 tree. This result is con- 
sistent with Pertman,” whose analysis of the cost and 
complexity of residue generation for modulus 3, 7, 15 
and 29 shows that  the cost increases with the modulus 
when an attempt is made to maintain  the speed (Ref. 17, 
p. 64). Thus, the use of a larger modulus will detect a 
larger variety of failures but will also cost a little more. 
At this point  it  should be recalled that one can always 
duplicate the adder unit and compare  the outputs  to 
achieve detection of a wide variety of failures, including 
any combination of failures within a single unit. 

It may be pointed out  that  the arithmetic  unit also 
performs shifting and Boolean (AND, OR or EXCLUSIVE-OR) 

operations,  for which checking is also desired. Rao” 
discusses shifting, complementing and rotating  for  mod 3 
residue checking. Pitkowsky and Godfrey“ discuss 
shifter checking with parity bits. Sellers (Ref. 2, p.  174) 
comments that  the use of a parity-checked adder implies 
a relatively inexpensive bit-by-bit AND and OR check 
because most of the necessary circuitry is already in the 
adder for checking addition. The half-sum check provides 
the parity for the EXCLUSIVE-OR operation. We have 
not extensively investigated these additional  operations, 
although such considerations are necessary for the im- 
plementation of the over-all checking strategy. However, 
based upon  our experience, we do  not expect that deeper 
studies would invalidate any of our general conclusions. 

9. Conclusions 
This study is an  attempt  to evaluate the effectiveness 
and cost of a parity-checked group look-ahead adder 
similar (but 16-bits wide instead of  32-bits  wide) to  that 
used in the  IBM System/360 Model 5016 and  to compare 

Z rceister * 

7 B register 
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Compare 

Latch 

od 3 Mod 3 
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Figure 6 Basic residue mod 3 adder-checking scheme. 

it with the implementation of a residue mod 3 check. 
The practical aspect of this  study has led us to some 
interesting conclusions. 

The calculation of the single gate failure coverage of a 
concurrent error detection scheme for a look-ahead 
adder  should, in general, not proceed independent of 
the  adder implementation. In particular,  prior studies 
have ignored the size  of the group, the implications of 
gate  fan-out limitations, and  the fact that  the complement 
of a signal may fail independently of the signal itself. 

The Boolean difference has shown itself to be a useful 
tool  in demonstrating the  input conditions under which 
a gate may be uncovered. For evaluation of the coverage 
of a residue-checked adder it was necessary to define the 
“polarized” Boolean difference. 
0 If the residue mod 3 of both  operands must be generated 
in parallel by the adder, the adder cost with mod 3 checking 
exceeds the cost of the adder with parity checking. How- 
ever, this is not  the case if the operands are initially 
designed with the residue mod 3 bits as a part of the 
data flow register transfer checking. Therefore, the selection 
of the  adder  checking  scheme is not  independent of the 
over-all system and its data transfer  checking strategy. 
For conventional machine organizations with three or 
more data transfer checks, the parity check  seems to 
offer a cost advantage. 
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Table A-1 Undetected error patterns of sum bits 4-7. 

Error 
calue -~ 

1 3  x 24 

+9 x 24 

1 1 2  x 24 

+15 x 24 

Appendix A 
When the transmit signals in  the group internal look-ahead 
for sum  generation are replaced by the half-sum  signals, 
the adder function is unchanged.  However, adder failures 
behave in a different  manner.  They  will  have an error 
value other than f2' under  some input states when 
certain single  gate  failures  occur. The polarized  Boolean 
difference  must  be  used to calculate the coverage. The 
failure of the single  gate G5 is used to illustrate the cal- 
culation. Table A-l is first  constructed to show  all the 
sum-bit error patterns of the group that  are not detected 
by the mod 3 residue  check. The + and - entries in 
the table show the polarity of the error; where the plus 
sign  indicates the sum  signals should be 0 but changes 
to 1, and the minus  sign  indicates that the sum  signal 
should be 1 but changes to 0. Error patterns (rows) in 
the table are grouped  together  according to their error 
value. For example, the second  row  indicates that when 
S, and SB should be 1 (or 0)  and 0 (or l), respectively, 
but  change to 0 (or 1) and 1 (or 0), respectively, the 
error value is 3 X 2, (or - 3  X 24). 

The error values in the table are divisible by 3, thus 
the error patterns shown are not detectable by the mod 3 
residue  check. 

The polarized  Boolean  differences of sum  signals S,, 
S,, S ,  and S ,  are calculated  next. Equations (15a) and 
(15b) are replaced by Eqs. (15a') and (15b')  respectively 
to reflect the replacement of bit transmits by bit half  sum 
described at the beginning  of  Case 1. 

d:: G. LANGWN, JR. AND C. K. TANG 

+ C ~ ~ ~ - T H S ( G ~ H ~  + G,) .  ( 1  5b') 

Using the above  two equations and Eqs. (1%) and (15d), 
the following  is  obtained: 

Since S4 and S, are independent of G5, Table A-1 is 
searched for error patterns in which  only and S, are in 
error. It is found that the 11  th row  corresponds to  an error 
value of f12  X 24. The input state that produces  such an 
error pattern when G5 fails  is thus 

d S :   d S l  d S -   d S -  
dG5  dG, dGa  dG, 
~.~ + 7.3 

x H7H6[R5 f G 4 ( c i n 4 - 7  + R44)1. ('46) 

The conjunction (AND) of the above  result and dG4-,/dG5 
must  be  made to assure that the influence of the G5 failure 
is  confined to the adder group of bits 4-7. (If the G5 error 
propagates to group 8-11 and/or group 12-15, the error 
value  will then be f z 5 ,  which  is detectable by the mod 3 
residue  check. 

= G6H7  G4TsT6H7 + + Ri. ('47) 

Hence the undetected input states are obtained by forming 
the conjunction of Eqs. (A6) and (A7) and the result is 
H,H6G5H4. This result  means that when G, should be 1 
but is s-a-0 and G4 = H6 = H, = 1, both S, and S,  are 
affected in the same  direction. The error value  is f 1 2  X 2,, 
which  is undetectable by the mod 3 residue check and thus 
G, is  only  partially  covered. 
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Appendix B 
An example is  given below to illustrate how the Boolean 
difference can be used to determine the coverage of the 
gates in  the parity-checked adder. The  sum Eqs. (15a’), 
(15b‘),  (1%) and (15d) will be used and  it will be shown 
that G5 is fully covered in this  situation. Note  that  for 
these  equations, G, is not fully covered by the  mod 3 
residue check as shown in Appendix A. 

The Boolean differences of the sum  bits and  the predicted 
group parity with respect to G, are first calculated. 

- = ~ Z ~ [ R S  ( 7 4 ( c i n 4 - 7  -k R4)4)1, 
dS7 
dG.5 

(B1) 

[(Ta 0 Ts) @ (T6 @ H7) @ (G4&R6 + Gs&) 

@ ( c i n 4 - 7 R 4  Cin4--7H5n6)6)1 = H6. (B4) 

The undetectable input states are those that change an even 
number of signals among  the signals S7, &, S5, S4 and 
PP,,4-7 when G5 changes. Noting  that S4 and S5 are 
unaffected by G,, the undetectable states are: 

dG,  dG, dG5 ’ dG5 dG5 dG, 

The reader may verify that  the above Boolean expression 
reduces to zero. This result  means that G5 is fully covered. 
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