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Performance  Equivalence of Suboptimally 
Controlled  Nonlinear  Systems 

Abstract: A procedure  is  described that shows  how a technique  used to develop  performance  bounds for a large  class of nonlinear 
dynamic  systems  with state-dependent  control policies  can  be  extended to  determine  whether a nonlinear  system  can  be controlled 
so that it is at least  “performance  equivalent” to an  associated  optimally  controlled linear system. A procedure for generating  one or 
more  control  policies to attain this  equivalence  is  also  discussed.  An  example  illustrates  the  fact that more than one  control  policy 
may  satisfy the  equivalence  criterion. 

Introduction: performance bounds 
In  order  to circumvent many of the practical difficulties 
associated with the determination of optimal control 
policies for certain classes of nonlinear  dynamic systems, 
many near-optimal  control  techniques  have been suggested 
in  the control  literature (e.g., Refs. 1, 2 and 3). When 
considering any one of these techniques, one should, 
ideally, know a priori whether the system is stable  under 
the control policy in question, and whether the resulting 
system performance can be  bounded with meaningful and 
informative  bounds or can  be  compared with the per- 
formance of another system. 

There  has been a continuing  number of technical 
investigations that have  addressed the general area of 
performance bounds  for linear and nonlinear systems. 
Rekasius2 investigated performance bounds associated 
with the suboptimal design of intentionally  nonlinear 
controllers.  Durbeck‘ developed upper and lower per- 
formance  bounds to evaluate an approximation  technique 
for suboptimal control of nonlinear systems. Rissanen‘ 
investigated the influence of system parameter changes on 
system performance, and Rissanen and Durbeck4 general- 
ized certain of their  earlier work and derived bounds  for 
systems associated with the so-called Lurie  problem. 

McClamrock and Aggarwa17 investigated the existence 
of upper  bounds on  the performance index of nonlinear 
systems, and McClamrock’ has studied  suboptimality and 
sensitivity in the  control  and filtering of linear processes. 

The purpose of this  paper is to show  how  some of the 
techniques developed in Refs. 1 , 2 , 4  and 5 can be  extended 
to determine  whether a particular  nonlinear system can be 

controlled so that  its resulting performance is at least as 
good  as an associated optimally controlled  linear system. 

The class of nonlinear  time-invariant systems considered 
here may be described by” 

x = f(x, u) (1 a) 

x(0) = x,; f(0, 0) = 0. (1 b) 

Equations (1) denote  the relationship between the  state 
vector x(t) and  the  control vector u(t). The system is 
assumed to have an associated performance index (to be 
minimized) 

J = Lrn L(x, u) d t .  (2) 

It is further assumed that  the class of control policies 
u to be  studied may be described in terms of the  state 
vector x( t )  [i.e., u(x); u(0) = 01. Therefore, the  control 
policy is said to be a “state-dependent’’ or feedback control. 
It is also implied throughout  that  the scalar  function 
L(x, u) and  the vector function f(x, u) are of class C“’, 
and  that L(x, u) is positive definite. 

In  the following discussion, system performance bounds 
associated with arbitrary control policies u*(x) are 
investigated; i.e., bounds  on  the resulting value of (4 are 
developed for all initial values of the  state vector x, in a 
region R defined in Euclidean space. 
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Define the cost functional  (not assumed to be optimal) 
associated with the system (1) and  an  arbitrary control 
policy u*(x )  as 

J*(X,) = L [ x ,   u * ( x ) J   d t .  1- 
Without direct evaluation of (3) subject to (1) over a 

region R, the functional J*(xo) is usually very  difficult or 
impossible to  obtain except for very special systems. 
Assume that by any  feasible  technique (e.g.,  see Ref. l), 
an approximation V*(xo) to  the cost surface J*(xo) of 
class C"' has been formulated. (In  the next section, another 
means of selecting V*(xo)  is suggested). In  the discussion 
that follows, V*(xo) may be considered as  any  arbitrarily 
chosen positive definite function of x .  The choice is limited 
practically, however, by demands on such functions  as 
described in  the following. 

Define H*(x)  such that 

H*(x)  = (dV* /dx)Tf [x ,   u* (x ) ]  + L[x, u*(x)] ,  (4) 

where T indicates the transposed matrix and H*(x)  is 
analogous to  the Hamiltonian based on  the minimal cost 
functional p ( x o )  associated with the optimal control 
policy. 

Consider a closed region RM in  the space R'"' defined by 
1 1x1 I I M and 0 < M < m , and define an  arbitrary region 
R, E RM such that  the function ( H * ( x )  - L[x, u*(x ) ] )  is 
zero for x = u* = 0 and negative elsewhere in R,. Further, 
let Rh C R, be the closed region defined by V*(x)  I X, 
X > 0. Then, if nonvacuous, Rh is a region of asymptotic 
stability for system (1) subject to control policy u*(x) .  

To determine if an  arbitrary region R,, E RM possesses 
the properties required of R,, it is only necessary to find 

max { H * ( x )  - L [ x ,   u * ( x ) ] J ,  
x E R 7 '  

and ascertain whether a unique maximum occurs at x = 0 
with value 0. The search over R,, may be done utilizing 
nonlinear  programming techniques. 

The above discussion furnishes sufficient background to 
develop several bounds associated with the system per- 
formance  parameter J using the  arbitrary  control policy 
u*(x) .  

Lemma 1:  If with u( t )  = u*[x(t)] ,  t 2 0, the inequality 

"P'Lb, u*(x)l 5 f f* (x )  I P a x ,  u*(x>l (6) 

is valid for all x E Rh, p' 2 0, l  > p 2 0, then  the resulting 
system performance  indicator J*(xo) may be bounded by 

V*(XO)/(l + P') I J*(xo) I V*(xo)/(l  - P )  (7) 

for all x. E Rh. 

The proof of this lemma was first given by the  author  in 
Ref. 1 and generalized in Refs. 4 and 5. Note  that  the 

"tightness" of the bounds expressed in (7) depends on  the 
relative magnitudes of H*(x)  and L[x,   u*(x) ] .  Several 
examples of such "performance-bounded'' regions Rx(p, p') 

are given in Ref. 1 for a specific system. 
The limiting case of this  lemma is of much interest. 

Assume that our control policy is given by 

u*(x )  3 H*(x)  = 0 (8) 

for all x E Rh. If  this is possible for u*(x )  real, the per- 
formance of the system can  be given a priori  as 

J*(xo) = V*(xo). (9) 

This result follows directly from (7) where p, p'+ 0. Thus, 
for this  particular control policy, which yields a control 
law that may not  be unique, the performance of the system 
is identically equal  to  the proposed cost function V*(x) .  

A necessary, but not sufficient, condition that there exists 
a realizable u*(x )  3 H*(x)  = 0 for all x E Rh is that 
V*(x)  2 p ( x )  for all x E Rh, where v"(x) is the minimal 
cost functional associated with the optimal control policy. 

Clearly, however, a control policy given  by 

u**(x) 3 H*(x)  I 0; X E R h  (loa) 

is superior to the control policy 

u*(x) 3 H*(x)  = 0; X E Rx, (lob) 

since with control policy (loa), 

J * ( X O )  = V*(X,) + H*[x( t ) l  dt  5 V*(X,). ( 1 1 )  { Lrn } 
One further comment should be made concerning con- 

trol policy (lob). A control law satisfying this  nonoptimal 
policy may not be  unique, i.e., there may be two or more 
control laws and, hence, trajectories from  the same point 
x. E Rh which will yield identical performance. For 
example, one trajectory may rapidly converge to the 
desired operating  point while expending a great amount 
of control energy (cost), and  another may converge slowly 
while using only a small amount of control energy. The 
simple example described below gives several illustrations 
of these two types of trajectories. 

Performance equivalent systems 
This section deals with the problem of defining a control 
policy associated with a nonlinear system such that  the 
resulting controlled system is "performance equivalent" 
to a particular optimally controlled associated linear 
system. The exact meaning of the  term "performance 
equivalent" will be made clear in  the following. 

The nonlinear system with state vector of dimension n 
described by (1) will again  be considered. However, now 
the system performance index is restricted to  the class of 
a separable quadratic criterion, i.e., 559 
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where Q1, Q2 are assumed to be  positive  definite. In 
addition, an associated  linear  system  (also with state 
dimension n) is  defined by 

x= A x + B u  (13) 

with  performance criterion (12). The linear  system  (13)  is 
assumed to be  controllable. 

Define V*,(xo) such that 

subject to the linear  system  relation  (13). It is  well  known 
that 

V*,(xO,) = IIxoll& (1 5 )  

where 0 is the positive  definite  solution to  the matrix 
equation 

Qa + OTA -j- AT@ - OTBQ;'BTO = 0. (16) 

Lemma 2: If there exists a region Rh in the space R'"' 
defined  by 11x1 [d 5 X, x E RA, such that for realizable 
u(x), 

min [IIxII& + I I u [ l &  + (8 Vc*/ax)'f(x, U)I I 0 ,  
u (X) 

(1 7a) 

and 

max ~ 1 x 1  I;, + I bII& + (a vc*/ax)'fb, U>I 2 0 
u (X )  

(17b) 

for all x E R h ,  then: 

(1) There  exists at least one realizable control policy u*(x) 
such that the system  performance  described by (12) for the 
nonlinear  system (1) resulting from u*(x) is equal to I [ x , , [  14 
for all initial states X, E Rh. 
2) A control policy to achieve this performance  equiv- 
alence is given  by 

u*(x) 3 tllxll& + [Iu*lG* + (a v:/ax)'f(x. u*)l = 0 

(1 8) 

for  all x E Rh. Note that there may  be more than one 
control algorithm satisfying  (18), as illustrated in the exam- 
ple  below, and that the control law  will  typically  be 
nonlinear. 

Proof: Since f(x, u) is assumed to be  of  class C'" the 
bracketed  expression in (17)  is a continuous function of u 
for all x E RA. Thus if conditions (17) are met, there will 
always  exist a u(x) for all x E Rk so that (18)  is  satisfied. 
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Since L(x, u) = 1[x11:, + l[u1!& is  positive  definite, 
with control policy  (18), 

35 = (eV:/ax)Tf(x, u*(x)] 

is  clearly  negative  definite in Rh and, therefore, the system 
is  asymptotically stable in Rh. In addition, by  (18), v5 = 

-L[x,  u*(x)] and therefore, 

J&(xo> = W X O )  ; X, E Rh, 
where J&(x0) is the nonlinear  system  performance 
using control policy  (18) and V*,(xo) is the optimal linear 
system  performance. 

It is of interest to note that the optimal cost functional 
V?(X,) for  the linear  system  may  also  serve as the approxi- 
mation V*(xo) to the cost function J*(xo) for the nonlinear 
system  (1)  subject to the arbitrary control policy u*(x). 
Thus, as described  above, if the inequality (6) can be 
established for V*(xo) = V $ ( q ) ,  p' 2 0 and 1 > p 2 0, 
the performance J*(xo) may also  be  bounded by (7). This 
alternative way  of approximating J*(xo) is of importance 
because of the general  difficulty in obtaining a suitable 
approximation (see Refs. 1 ,4  and 7). 

A simple  example is presented to illustrate the ideas 
expressed in this section.  Let the nonlinear  system be 
represented by 

il = tanh ( x2 )  

x 2  = x1 + x2 + u ,  (20) 

which exhibit saturation. Let the associated  linear  system 
be represented by 

x = @(Ax + bu), 

where j? is a positive  scalar  and 

For @ = 1.0, the associated  linear  system  approximates 
the  nonlinear  system very  well for [x2\ < 0.8. For larger 
values  of lx21 the nonlinear  system is near saturation; for 
[xzl > 2.0, XI becomes  essentially invariant, with a value 
close to f 1 .O. For @ < 1.0, the response of the linear 
system  becomes  more  sluggish, and tends to roughly 
approximate the nonlinear  system for large  values of [x2\  . 

It is assumed  here that the performance  criterion 
common to both  systems  is7 

J = lm (x; + 14') d t .  

does not satisfy one of the conditions associated  with (12); here QI is not 
t It  should  be  noted  that  the  performance  criterion  used  for  this  example 

dmct solution of the  matrix  equation (16). Instead, E) may  be  determined 
positive  defioite.  VC(XO) is still  given  by (15) but 8 can not  be  obtained  by 

simply from the  simultaneous  algebraic  expressions  arising  from  the opti- 
mality conditions for the  Hamiltonian  functional  associated  with  the  system 
(21). These  algebraic  expressions  would  be  given  by (16) if QI were  positive 
definite. 
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Figure 1 Comparison trajectories with @ = 0.8. The two 
trajectories starting from each of the two  sets of initial 
conditions  shown  yield  identical  performances,  respectively. 
This result will  hold for all initial  conditions for which 
the  trajectories are contained  within the unshaded  region. 

Then it may  be easily shown that 0 is given by 

o = { e,i] 
1 +  4 2  

1 + d3 + 2 4 :  

( 2  

The control policy u(t) is selected so that 

H*(x ,  U) = X: + up + (ellxl + el2X2) tanh (X,) 

4) 

+ (elzxl + e22x2)(xl + x2 + U) = 0. (25) 

For p = 0.8, Fig. 1 shows a region (unshaded) where u(t) 
may be selected such that (25) is satisfied. Two sets of 
trajectories with initial  conditions (xl, xp) = (-1.218, 
2.760) and (1.600, 1.600) respectively, are also shown. At 
each point  in  the unshaded region there are two  control 
laws that satisfy the policy given by (25) and, hence, two 
trajectories for each  initial  condition.  Figure 2 is similar, 
except that policy (25) may be  attained over the entire 
region shown (j3 = 0.4). In each case the trajectories 
identified with the subscript “a” converged more quickly to 
the origin while initially expending more  control energy 
than those identified with the subscript “b”, which con- 
verged more slowly. With digital simulation techniques, the 
performance factor associated with each trajectory  pair 

J 
- 

1 2 3 

Figure 2 Comparison trajectories with @ = 0.4. Here there 
is no shaded  region  and  performance  equivalence  can be 
attained for all trajectories contained  within the area shown. 

“a, b”  starting at x. was found  to differ by no more than 
0.1% from V$(xo), i.e., the optimal performance associated 
with the linear system (21) to (23); the difference must be 
attributed  to numerical integration  errors. 

Summary 
A method has been developed to determine whether a 
nonlinear system can be controlled so that  it is at least 
performance equivalent to a comparable optimally con- 
trolled linear system of the same order.  The optimal 
performance of the linear system then serves as a simple 
upper bound  on  the  attainable performance of the non- 
linear system. It is also  shown that  the control policy to 
attain this equivalence may not be unique. 

The minimum cost functional for  the linear system may 
also serve as a suitable  approximation to the cost  func- 
tional for  the nonlinear system; in this case more informa- 
tive upper and lower bounds  on  the nonlinear system 
performance may be established using Lemma 1 .  

The difficulty of finding suitable  approximations to  the 
cost  functional for nonlinear systems increases quickly with 
increasing system order.  The concept of using the per- 
formance of a comparative  linear system of the same order 
aids  substantially in this  regard. The general  problem of 
selecting a comparative  linear system which will yield useful 
bounds has  not been specifically addressed here; more 
work concerning this  problem is needed. 561 
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