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Performance Equivalence of Suboptimally

Controlled Nonlinear Systems

Abstract: A procedure is described that shows how a technique used to develop performance bounds for a large class of nonlinear
dynamic systems with state-dependent control policies can be extended to determine whether a nonlinear system can be controlled
so that it is at least *“performance equivalent™ to an associated optimally controlled linear system. A procedure for generating one or
more control policies to attain this equivalence is also discussed. An example illustrates the fact that more than one contro! policy

may satisfy the equivalence criterion.

Introduction: performance bounds

In order to circumvent many of the practical difficulties
associated with the determination of optimal control
policies for certain classes of nonlinear dynamic systems,
many near-optimal control techniques have been suggested
in the control literature (e.g., Refs. 1, 2 and 3). When
considering any one of these techniques, one should,
ideally, know a priori whether the system is stable under
the control policy in question, and whether the resulting
system performance can be bounded with meaningful and
informative bounds or can be compared with the per-
formance of another system.

There has been a continuing number of technical
investigations that have addressed the general area of
performance bounds for linear and nonlinear systems.
Rekasius® investigated performance bounds associated
with the suboptimal design of intentionally nonlinear
controllers. Durbeck' developed upper and lower per-
formance bounds to evaluate an approximation technique
for suboptimal control of nonlinear systems. Rissanen®
investigated the influence of system parameter changes on
system performance, and Rissanen and Durbeck® general-
ized certain of their earlier work and derived bounds for
systems associated with the so-called Lurie problem.

McClamrock and Aggarwal® investigated the existence
of upper bounds on the performance index of nonlinear
systems, and McClamrock® has studied suboptimality and
sensitivity in the control and filtering of linear processes.

The purpose of this paper is to show how some of the
techniques developed in Refs. 1, 2, 4 and 5 can be extended
to determine whether a particular nonlinear system can be
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controlled so that its resulting performance is at least as
good as an associated optimally controlled linear system.

The class of nonlinear time-invariant systems considered
here may be described by*

x = f(x, u) (1a)

x(0) = xo; (0, 0) = 0. (1b)

Equations (1) denote the relationship between the state
vector x(f) and the control vector u(f). The system is
assumed to have an associated performance index (to be
minimized)

J = fw L(x, u) dt. 2)

It is further assumed that the class of control policies
u to be studied may be described in terms of the state
vector x(7) [i.e., u(x); u(0) = 0]. Therefore, the control
policy is said to be a ““‘state-dependent” or feedback control.
It is also implied throughout that the scalar function
L(x, u) and the vector function f(x, u) are of class C¥,
and that L(x, u) is positive definite.

In the following discussion, system performance bounds
associated with arbitrary control policies u*(x) are
investigated; i.e., bounds on the resulting value of (J) are
developed for all initial values of the state vector x, in a

region R defined in Euclidean space.

The author is located at the IBM Research Laboratory, San Jose, California
95114.
* All vectors are assumed to be of finite dimension.
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Define the cost functional (not assumed to be optimal)
associated with the system (1) and an arbitrary control
policy u*(x) as

J¥(x,) = fw Lix, u*(x)] dr. 3)

Without direct evaluation of (3) subject to (1) over a
region R, the functional J*(x,) is usually very difficult or
impossible to obtain except for very special systems.
Assume that by any feasible technique (e.g., see Ref. 1),
an approximation V*(x,) to the cost surface J*(x,) of
class C*® has been formulated. (In the next section, another
means of selecting V*(x,) is suggested). In the discussion
that follows, V'*(x,) may be considered as any arbitrarily
chosen positive definite function of x. The choice is limited
practically, however, by demands on such functions as
described in the following.

Define H*(x) such that

H*(x) = (3V*/6%)" flx, w*(x)] + Llx, u*@)], C)

where T indicates the transposed matrix and H*(x) is
analogous to the Hamiltonian based on the minimal cost
functional V°(x,) associated with the optimal control
policy.

Consider a closed region Ry, in the space R™ defined by
[Ix]| < Mand 0 < M < =, and define an arbitrary region
R, © Ry such that the function { H*(x) — L[x, u*(x)]} is
zero for x = u* = 0 and negative elsewhere in R, . Further,
let Ry © R, be the closed region defined by V*(x) < A,
A > 0. Then, if nonvacuous, R, is a region of asymptotic
stability for system (1) subject to control policy u*(x).

To determine if an arbitrary region R,. & Ry, possesses
the properties required of R,, it is only necessary to find

max {H*(x) — L[x, v*(x)]}, )
XER '

and ascertain whether a unique maximum occurs at x = 0
with value 0. The search over R, may be done utilizing
nonlinear programming techniques.

The above discussion furnishes sufficient background to
develop several bounds associated with the system per-
formance parameter J using the arbitrary control policy
u*(x).

Lemma 1: 1If with u(r) = u*[x(1)], £ > 0, the inequality
—p'Llx, uw*@)] < H*(x) < pL[x, u*(x)] (6)

is valid forall x & Ry, p’ > 0,1 > p > 0, then the resulting
system performance indicator J*(x,) may be bounded by

V¥(xo)/(1 + p') < J*(x0) < V*(x0)/(1 — p) )
for all x, &€ R,.

The proof of this lemma was first given by the author in
Ref. 1 and generalized in Refs. 4 and 5. Note that the
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“tightness” of the bounds expressed in (7) depends on the
relative magnitudes of H*(x) and L[x, u*(x)]. Several
examples of such “performance-bounded” regions Ry(p, p’)
are given in Ref. 1 for a specific system.

The limiting case of this lemma is of much interest.
Assume that our control policy is given by

u*x) D H*) =0 ®

for all x & R,. If this is possible for u*(x) real, the per-
formance of the system can be given a priori as

J*(Xo) = V*(Xo). ®

This result follows directly from (7) where p, p’ — 0. Thus,
for this particular control policy, which yields a control
law that may not be unique, the performance of the system
is identically equal to the proposed cost function V*(x).
A necessary, but not sufficient, condition that there exists
a realizable u*(x) = H*(x) = 0 for all x & R, is that
V#(x) > V°(x) for all x € R,, where V°(x) is the minimal
cost functional associated with the optimal control policy.
Clearly, however, a control policy given by

wHx) D H*x) <0,  x & R (10a)

is superior to the control policy

uw'(x) o H*(x) = 0; x& R, (10b)

since with control policy (10a),

J¥(x0) = {V*(Xo) + fw H*[x(1)] dt} < Vo). (1)

One further comment should be made concerning con-
trol policy (10b). A control law satisfying this nonoptimal
policy may not be unique, i.e., there may be two or more
control laws and, hence, trajectories from the same point
Xy &€ R, which will yield identical performance. For
example, one trajectory may rapidly converge to the
desired operating point while expending a great amount
of control energy (cost), and another may converge slowly
while using only a small amount of control energy. The
simple example described below gives several illustrations
of these two types of trajectories.

Performance equivalent systems

This section deals with the problem of defining a control
policy associated with a nonlinear system such that the
resulting controlled system is “‘performance equivalent”
to a particular optimally controlled associated linear
system. The exact meaning of the term ‘performance
equivalent” will be made clear in the following.

The nonlinear system with state vector of dimension n
described by (1) will again be considered. However, now
the system performance index is restricted to the class of
a separable quadratic criterion, i.e.,
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where Q;, Q, are assumed to be positive definite. In
addition, an associated linear system (also with state
dimension n) is defined by

¥ = Ax 4 Bu 13)

Lix®|la, + [[u®)]la.] de, (12)

with performance criterion (12). The linear system (13) is
assumed to be controllable.
Define ¥V'*%(x,) such that

Vi(x) = m(ig { f Hix®lle, + [lu®la.] dt}, (14)

subject to the linear system relation (13). It is well known
that

V4(Xo) = |1%]8, s)
where @ is the positive definite solution to the matrix
equation

Q:+ ®TA 4 A"® — ©"BQ;'B'® = 0. 16)

Lemma 2: If there exists a region R, in the space R™

defined by |lx|]|d < \, x &€ R, such that for realizable
u(x),

min lixlle. + [lulla, + @ V¥/0x) (x, w)] < 0,
(17a)

and

max Hxll&, + |ulls. + @ VE/ox) (x, u)] > 0
(17b)

for all x & R, then:

(1) There exists at least one realizable control policy u*(x)
such that the system performance described by (12) for the
nonlinear system (1) resulting from u*(x) is equal to ||x,||§
for all initial states x, & R,.

2) A control policy to achieve this performance equiv-
alence is given by

u*(x) D [|Ixlle. + lu*|le. + @ V*%/9x)"f(x, u*)] = 0
(18)

for all x & R,. Note that there may be more than one
control algorithm satisfying (18), as illustrated in the exam-
ple below, and that the control law will typically be
nonlinear.

Proof: Since f(x, u) is assumed to be of class C'* the
bracketed expression in (17) is a continuous function of u
for all x & R,. Thus if conditions (17) are met, there will
always exist a u(x) for all x & R, so that (18) is satisfied.
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Since L(x, u) = ||x||3. + [lull3, is positive definite,
with control policy (18),

V= (0V*%/9x)" f(x, u*(x)]

is clearly negative definite in R, and, therefore, the system
is asymptotically stable in R,. In addition, by (18), V% =
— L[x, u*(x)] and therefore,

J3(x0) = V¥(x0) ; X & Ry, a19)

where J%,(x,) is the nonlinear system performance
using control policy (18) and V*%(x,) is the optimal linear
system performance.

It is of interest to note that the optimal cost functional
V*(x,) for the linear system may also serve as the approxi-
mation V*(x,) to the cost function J*(x,) for the nonlinear
system (1) subject to the arbitrary control policy u*(x).
Thus, as described above, if the inequality (6) can be
established for V*(x,) = V*%(x), p' = 0and 1 > p > 0,
the performance J*(x,) may also be bounded by (7). This
alternative way of approximating J*(x,) is of importance
because of the general difficulty in obtaining a suitable
approximation (see Refs. 1, 4 and 7).

A simple example is presented to illustrate the ideas
expressed in this section. Let the nonlinear system be
represented by

I

X1 tanh (x,)

Xy = X1+ % + u, (20)

which exhibit saturation. Let the associated linear system
be represented by

k = B(Ax + bu), (21)
where 3 is a positive scalar and
A= (‘1) 1) , b" = (0, 1). (22)

For 8 = 1.0, the associated linear system approximates
the nonlinear system very well for |x,| < 0.8. For larger
values of |x,| the nonlinear system is near saturation; for
[xs| > 2.0, x; becomes essentially invariant, with a value
close to 3=1.0. For 8 < 1.0, the response of the linear
system becomes more sluggish, and tends to roughly
approximate the nonlinear system for large values of |x,)| .

It is assumed here that the performance criterion
common to both systems ist

J = f <xf 4 u2> ar. 23)

1 It should be noted that the performance criterion used for this example
does not satisfy one of the conditions associated with (12); here Qi is not
positive definite. ¥ g(xo) is still given by (15) but © can not be obtained by
direct solution of the matrix equation (16). Instead, ® may be determined
simply from the simultancous algebraic expressions arising from the opti-
mality conditions for the Hamiltonian functional associated with the system
(21). These algebraic expressions would be given by (16) if Q1 were positive
definite.
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Figure 1 Comparison trajectories with 8 = 0.8. The two
trajectories starting from each of the two sets of initial
conditions shown yield identical performances, respectively.
This result will hold for all initial conditions for which
the trajectories are contained within the unshaded region.

Then it may be easily shown that @ is given by
© = {0.;}
1(=14+ V6 +4v2
1+ 12,

1+ V2 .
1+ V34242
(24)

]

The control policy u(f) is selected so that
H*(x, u) = x? + u* + (Bux; 1 012x5) tanh (x2)
+ (Bigx1 + Baax2)xs + X2 + u) = 0. (25)

For 8 = 0.8, Fig. 1 shows a region (unshaded) where u(?)
may be selected such that (25) is satisfied. Two sets of
trajectories with initial conditions (x;, x;) = (—1.218,
2.760) and (1.600, 1.600) respectively, are also shown. At
each point in the unshaded region there are two control
laws that satisfy the policy given by (25) and, hence, two
trajectories for each initial condition. Figure 2 is similar,
except that policy (25) may be attained over the entire
region shown (8 = 0.4). In each case the trajectories
identified with the subscript “a” converged more quickly to
the origin while initially expending more control energy
than those identified with the subscript *“b”, which con-
verged more slowly. With digital simulation techniques, the
performance factor associated with each trajectory pair
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Figure 2 Comparison trajectories with 8 = 0.4. Here there
is no shaded region and performance equivalence can be
attained for all trajectories contained within the area shown.

“a, b starting at x, was found to differ by no more than
0.19, from V*(x,), i.e., the optimal performance associated
with the linear system (21) to (23); the difference must be
attributed to numerical integration errors.

Summary

A method has been developed to determine whether a
nonlinear system can be controlled so that it is at least
performance equivalent to a comparable optimally con-
trolled linear system of the same order. The optimal
performance of the linear system then serves as a simple
upper bound on the attainable performance of the non-
linear system. It is also shown that the control policy to
attain this equivalence may not be unique.

The minimum cost functional for the linear system may
also serve as a suitable approximation to the cost func-
tional for the nonlinear system,; in this case more informa-
tive upper and lower bounds on the nonlinear system
performance may be established using Lemma 1.

The difficulty of finding suitable approximations to the
cost functional for nonlinear systems increases quickly with
increasing system order. The concept of using the per-
formance of a comparative linear system of the same order
aids substantially in this regard. The general problem of
selecting a comparative linear system which will yield useful
bounds has not been specifically addressed here; more
work concerning this problem is needed.
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