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Moment  Normalization of Handprinted  Characters 

Abstract: Handprinted  characters  can be  made  more  uniform  in appearance than the  as-written  version  if an appropriate linear  trans- 
formation is  performed  on  each input pattern.  The  transformation  can be  implemented  electronically by programming a flying-spot 
raster-scanner to scan at specified  angles rather than only  along  specified  axes.  Alternatively,  curve-follower  normalization  can be 
achieved  by transforming the coordinate waveforms in a linear  combining  network.  Second-order  moments  of the pattern are con- 
venient properties to use in specifying the transformation. By mapping the original  pattern into one having a scalar  moment  matrix 
all  linear  pattern  variations  can be removed.  Comparison  experiments  with  three  sets of handprinted  numerals showed that error 
rates were  reduced  by  integral factors if the patterns were  normalized  before  scanning for recognition. 

Introduction 
An optical  character recognition (OCR) device performs, 
albeit in a constrained and rigidly mechanized fashion, 
a function  normally considered to be a human cognitive 
activity. The OCR unit senses the spatial  patterns of 
black and white on a document  containing  printed sym- 
bols, and identifies each pattern  one by one  as  an A, a 7, 
a comma, or some other member of the  alphabet of 
symbols that  the machine is designed to read. The iden- 
tification is recorded  internally by means of a machine 
code. 

The initial  observation of a pattern is done by an 
optical scanner. This is a device for obtaining an electronic 
representation of a spatial pattern-a TV camera is an 
example, although other types of scanners are used more 
commonly in character recognition. The electronic version 
of the  pattern may be a pair of waveforms describing the 
contour of the character or,  more typically, a raster 
portraying the intensities of black and white within the 
pattern field. 

Scanning a character for recognition also requires 
isolating it from  the  other objects in  the field  of  view, 
and rejecting noise to  obtain a “clear” representation. 
Thus, in  addition to the basic optical  scanning apparatus, 
the scanner  contains logical and  control circuitry for 
determining the  portion of the document to be scanned 
and  for filtering the electronic image. If the subsequent 
recognition processing is to be done digitally, the image 
is digitized, typically into a binary format in which a 0 
bit denotes white and a 1 bit  denotes black. 
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It is this  stored  representation on which the recognition 
process is based. Further stages of processing consist 
only of comparing  this image, or information  obtained 
from  it, with what the system has been designed to expect 
from  the respective character types. Thus,  scanning is 
a critical operation.  If the  pattern provided by the scanner 
differs sufficiently from  the ideal pattern  as built into  the 
recognizer unit, the symbol being examined will not be 
classified correctly. 

This paper  concerns a scanning system especially 
suitable for handprinted symbols. The system objective 
is to  obtain  an electronic image that  more closely matches 
the machine ideal than did the original  printed form. 
To illustrate  this notion we first discuss some  common 
ways  of recognizing scanned images. 

Recognition logic 
One of the  standard procedures for character recognition 
is to compare the states of elementary areas of the  pattern 
to be identified with the states of corresponding regions 
of several stored prototype  This “template- 
matching” concept includes linear weighting schemes 
in which the elements, typically binary  bits  denoting 
black and white areas of a scanned  pattern, are weighted 
in each pattern class according to their relative importance 
in specifying that class. 

Such “global” matching techniques are to be distin- 
guished from systems that detect local  features of a pattern, 
e.g., corners,  indentations and concave and convex curves, 
and require the locations of these features to match  those 
of the prototype in only a very coarse way. Basing rec- 
ognition on a global match implies that successive samples 
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of characters in a given category possess a high degree 
of spatial invariance; they should superimpose very  well. 
It  has been found  that such matching  procedures are 
useful for typewritten and machine-printed characters, 
which exhibit uniformity within a given font  and also 
among selected fonts. On  the  other  hand, because of the 
range of styles in unconstrained hand printing, such 
material has been recognized more reliably by the method 
of local  feature detection. 

Figure 1 illustrates  this  dichotomy. Ten typewritten 
4’s in each of three font styles were raster-scanned and 
then superimposed. A large proportion of the cell posi- 
tions were “stable,” i.e., they had  the  same  state  in  the 
majority of samples. Thus  the outline of a 4 is well defined 
in the quantized array shown in Fig. l(a). The same 
experiment repeated with 100 handprinted 4‘s from 15 
different writers resulted in  the frequency distribution 
shown in Fig. l(b). Only a few bit  positions were reliably 
“black.” These were not distributed  broadly  enough to 
allow the 4’s to be discriminated from  other  handprinted 
numbers by template matching. 

From evidence such as Fig. 1, and  from previous 
recognition experience, it is clear that large-area templates 
cannot be designed to match hand printing  produced 
under field conditions by a number of writers. The fol- 
lowing sections of this  paper describe an  attempt to 
improve  this  situation by electronically scanning a printed 
character in such a way as to produce a transformed 
character that better matches the stored repre~entation.~ 
This is done by calculating several global pattern moments 
and transforming the character to place these  moments 
in a standard  form.  The new “normalized”  characters 
are shown to have  properties of invariance that  are 
desirable in a recognition  framework. Experiments are 
reported that demonstrate the improvement in video 
quality  and indicate the recognition gains that  are possible 
with the aid of the normalization technique. 

9 Related work 
A system for eliminating  linear  variations in a pattern 
by transforming it so that  the  pattern moments are  in a 
canonical form  has been described previously by Udagawa, 
Toriwaki and S ~ g i n o . ~  That method differs from  the  one 
to be described in  that  the moments are  not normalized 
to the  area of the  pattern.  In  addition,  thud-  and  fourth- 
order moments were calculated in Ref. 4 to  obtain a 
rotationally  invariant form. Only a few sample  characters 
could  be tested due  to equipment restrictions (for example, 
no scanner was available). 

Hu5 and Alt6  also used central  moments for  pattern 
classification and observed the basic property that diag- 
onalizing the second-order  moment  matrix eliminates 
linear distortions. In these cases the moments were 
computed primarily to serve as recognition parameters. 
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Figure 1 Superimposed characters: (a) typewritten, (b) and 
(c) handprinted. The shaded  regions  consist of points of 
the pattern field that were  black,  with a frequency  within 
the threshold  bounds.  Solid  black and white  regions  denote 
higher  and  lower  frequencies of black,  respectively. 

Bakis, Herbst and Nagy’ implemented skew corrections 
on handprinted  characters by translating  horizontal 
rows of bits to make  the xy moment vanish. Since in 
their method  character  height is normalized while the 
pattern is scanned, their system differs from  that described 
below mainly by the absence of width normalization. 

Normalization technique 

Skewed scanning 
We offer the following nonexhaustive list of character- 
istics in which handprinted samples vary. 

1) Size (height and width) 
2) Slant  (and rotation) 
3) Line thickness 
4) Style (such as open- and closed-top 4’s, looped and 
nonlooped 2’s, etc.) 
5) Ornamentation 
6 )  Stroke  proportions (relative widths of the various 
strokes  constituting the character) 
7) Stroke regularity (smoothness and well-formedness of 
lines and curves) 

Variations in any of these characteristics degrade 
template-matching performance. To some extent the 
degree of variation is controllable by training, by using 
standard writing instruments, and by supervision. Under 
common field conditions, e.g., in making out sales checks 
in a department  store, the  amount of control is limited, 
as  one can see by comparing hand printing  produced by 
salesclerks and by office personnel in a particular depart- 
ment store (Fig. 2). 

Except under the most rigid conditions, one cannot 
expect writers to accurately reproduce  handprinted 
characters. In  an effort to decrease the  amount of varia- 
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Figure 2 Sample  handprinted characters. These  numerals. 
printed by careful clerks  in  an unhurried environment (top) 
and by sales  personnel (bottom) in the same  department 
store, were  scanned and used for the experiments  described 
in the text. 

Figure 3 Linear pattern transformation. The  original pattern 
(left) is scanned  obliquely  in  the y' direction  and  this scan 
line is  stepped in the x' direction, the respective  sample in- 
crements  being proportional to b and a. The resulting sam- 
ple values,  plotted  orthogonally, are shown  on  the  right. 
Note that the parallelogram is transformed into a square. 

tion, recognition systems incorporating  normalization 
stages have been constructed.  With the  aid of feedback 
techniques, parameters such as  the height and line thick- 
ness of characters  can be adjusted to preset standard~."~ 
These  operations  have  proved effective in enhancing the 
quality of scanned  patterns. 

If the scanner uses an electronically controlled flying 
spot, it is common  practice to scan the  input  pattern 
in a horizontal-vertical  raster and  to quantize and  store 
the result as a rectangular array of bits. However, by 

choosing skewed scan directions and by adjusting  the 
sampling  intervals at which the  state of the  pattern is 
observed, a transformed pattern  can  be obtained (Fig. 3). 
If the scans are linear and uniformly spaced, the trans- 
formation  is linear and can be expressed mathematically as 

[:I = A 1. - y l l  ' 

x - xg 

where x and y are  the original  (rectangular)  scan  coordi- 
nates, x, and yo define an  arbitrary origin, u and u are 
the coordinates in  the transformed system, and A is a 
2 X 2 transformation matrix. As stored in a core memory, 
for example, a pattern  point  that previously was located 
at cell x, y in a  rectangular  scan is located at cell u,  u 
after rescanning. 

Through  adjustment of the scan  parameters embodied 
in  matrix A, this skewed scanning procedure  permits 
regulation of the height, width, slant and  rotation angle 
of patterns. While these are  not  the only characteristics 
that vary in  hand printing (viz., the list at  the beginning 
of this section), they are  important ones, especially when 
the  characters are identified by means of a global matching 
procedure. 

A linear  mapping is not  the only  type of transformation 
obtainable by scanning techniques. Indeed, completely 
arbitrary transformations are achievable. Any pattern 
can be changed into any other  pattern as desired. Cur- 
rently, however, reasonable  criteria are known only for 
specifying the linear mappings. Other transformations 
corresponding to curvilinear coordinate systems or  to 
various projective systems may also be useful and  are 
being studied. 

Normalized form for patterns 
In  the previous section it was noted that properly skewed 
scan  directions  compensate for size, slant and  rotational 
variations in patterns. The new scan  coordinates, however, 
depend on  the differences of a pattern  from  the  norm. 
One can easily measure height and width, but slant and 
rotation  are  more ambiguous  quantities because the 
character is not yet identified. 

People, however, seem to recognize a character before 
assessing its slant. One procedure that  the machine might 
follow, then, is to hypothesize the category of the  input 
(assume that  it is an A, a B, a C, etc. in  turn)  and  try  to 
measure its slant and  rotation under these assumptions. 
These  measurements specify an  appropriate transforma- 
tion.  Such a procedure has been tried,  but it is much 
more complex (a new transformation is required for 
each hypothesis) and probably less reliable than  the method 
described here, which is based on  the moments of the 
pattern. We assume, in view  of the application to printed 
characters, that  the  pattern is binary, e.g., black on white. 
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However, the  properties of the method can be generalized 
to  arbitrary spatial  patterns. 

The  pattern moments consist of the  three quantities 
m,, m, and m,,, often  arranged  in matrix form as follows: 

= I::. ::::.I- 
The elements m, and mu are  the mean-square x and y 
deviations about  orthogonal x and y axes through  the 
centroid of the  pattern. They are defined  by the expres- 
sions 

where S is the  total area of the pattern P. The product 
term m,, is defined by 

Suppose that a pattern P is transformed by a linear 
mapping procedure  having  matrix A into a new pattern 
P*. The transformation  can  be expressed in terms of new 
coordinates u and u that  are linearly related to the original 
coordinates. Upon substitution of Eq. (1) into Eqs. (2) 
through (4) it is found  that  the moment matrix M* of the 
new pattern  is related to  the former moments by the 
matrix expression 

M* = AMA’, ( 5 )  

where the grime  indicates  the  transposed  matrix. 
Unless the  pattern is distributed  along a line of zero 

width,  any desired moment  matrix  can  be  obtained by 
linear transformation. That is, given M and M* one can 
find a matrix A such that ( 5 )  holds. 

One  particular form of the transformed  moment matrix 
possesses especially desirable properties. This is the 
scalar matrix 

M* = [: ,“I , 
where k is an  arbitrary constant, specified in advance. 
The utility of this  particular form of the moment matrix 
is perhaps best illustrated with the  aid of the following 
theorem, which is proved  in Appendix 1. 

Theorem Let P* be a pattern obtained from a given 
pattern P by a linear  transformation of coordinates. Let 
a new transformation  operate on P to give pattern Q, 

First  scan Bit array Rcscan  Final array 

Figure 4 Removal of linear variations by moment normal- 
ization. For each  input pattern the  rescan procedure was 
computed on the basis of the moments  observed  on the 
first  scanning  pass. 

whose moment matrix has  the diagonal form (6). Let 
another  transformation be found to transform P* into a 
Q* having the same scalar moment  matrix as Q. Then 
there exists a pure  rotation of coordinates, a reflection, 
or a combination of the two that carries Q into Q*. 

Thus, if two  patterns  related by a linear  transformation 
are mapped into new patterns having diagonal moment 
matrices, the transformed  patterns are identical except 
for  rotation  or reflection (see Fig. 4). Reflection of a 
nonsymmetric character yields a backwards or  an upside- 
down character,  distortions that  are not likely to be 
encountered in handprinted-character recognition. Reflec- 
tion of a basically symmetric character, such as an A, 
a 0 or  an 8, yields an essentially indistinguishable form 
after normalization. Hence, to resolve the ambiguity 
concerning this distortion, it is sufficient to specify that 
the normalizing transformation be nonreflective. 

In practice it often  happens that  the  rotational ambiguity 
can be handled in a logical manner. The ambiguity is 
present because values are assigned to only three moments, 
whereas the  transformation is specified by four parameters. 
The extra degree of freedom  can be disposed of by placing 
one  additional constraint on the  transformation matrix. 
Many such constraints  can  be invented; a particularly 
appropriate  one is described below. 

The x direction for scanning a line of print is usually 
taken as  the direction of the line, and  hand printing is 
generally slanted in such a manner that  in  the x direction 
only a scale variation is encountered. For example, even 
in a slanted A the cross bar  is  more or less horizontal. 
To transform a pattern to a normalized form without 
rotational ambiguity requires an  operator  that diagonal- 
izes the moment  matrix  without changing the x direction. 
(Thus horizontal lines remain horizontal.) As shown in 
Appendix 2, such a transformation is unique. 551 
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Figure 5 Transformation of handprinted 1’s by  moment 
normalization  showing  the  widening of narrow shapes. 

Figure 6 Formation of the scanner  deflection  waveforms: 
(a) system for combining  waveforms, (b) transformation 
of the fixed input  waveforms  to  obtain  normalizing  deflec- 
tion waveforms,  and (c) the corresponding  scan  programs. 
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Geometric patterns 
The only parallelogram having a moment matrix already 
in the normalized form is a square. Similarly, all ellipses 
are transformed into circles and all triangles become 
equilateral in  the moment normalization process. When 
moment normalization is applied to discrete pattern 
representations, quantization noise and line thickness 
also affect the  pattern obtained. 

The widening of narrow  shapes into quite different- 
looking bodies might be expected to introduce a severe 
recognition problem. Figure 5 illustrates several hand- 
printed 1’s as they appeared before and after  normalization. 
For this case it  has been found  that  the minimum eigen- 
value of the moment  matrix (i.e., the minimum moment 
of the  pattern  about any axis) is a measure of width that 
effectively separates the 1’s from  the  other patterns. Only 
twelve misclassifications occurred when upper and lower 
threshold  bounds were applied to  this eigenvalue in  order 
to  sort 12,000 characters (including 3600 1’s) into “1” 
and  “not 1” categories. However, this technique was 
not needed to recognize 1’s in  the experiments described 
below because confusion involving the 1 class was not 
a significant factor.  Apparently the expanded 1’s (see 
Fig. 5) were sufficiently different from  the  other  character 
types. 

Implementation 
The  pattern moments and  the transformation  parameters 
can be computed  either digitally or by a straightforward 
analog  implementation. 

The coefficients of the transformation matrix serve 
as weights in combining the usual sawtooth y-deflection 
voltages with stepped x-deflection waveforms to obtain 
new waveforms that cause a flying spot to travel  along 
oblique  parallel paths  as shown in Fig. 6. The projected 
cost of this circuitry constitutes  only a modest portion 
of the overall system cost. 

The most likely impediment to a practical analog design 
is the need for pulsed integrators to compute the moments. 
The speed of the system would be limited by these com- 
ponents to bit rates of the  order of 20 kHz,  or  about 
fifty characters  per second, if high accuracy (e.g., one 
percent) is to be maintained in  the moment  computation. 
By permitting  larger errors (e.g., ten percent), or by 
integrating digitally with high speed adders,  rates of 200 
kHz  or  more  are practicable. This  latter  approach would 
have the disadvantage of higher cost. 

0 Curve-follower  normalization 
The moment  diagonalization  procedure  can  also  be 
adapted  to a scanner using a curve follower.“ In this 
device the  CRT beam is constrained by feedback tech- 
niques to tracing a path along the  contour of the  input 
pattern. The  control information is provided by the x 
and y contour coordinates.  These x and y waveforms, 
properly multiplied or squared and  then integrated as 
required by Eqs. (2), (3) and (4), define the moments of 
the contour. To implement the normalization  procedure 
these  moments are computed on  the first scan of an  input 
character. The transformation can be  computed by either 
analog or digital hardware. The transformation  parameters 
then serve as  the weighting coefficients of a combining 

IBM , J. RES. WEVELOP. 



network that linearly transforms  the x and y waveforms 
obtained in a second scan of the pattern. In this system, 
as opposed to  the raster mode, the CRT beam follows 
exactly the same path (namely the contour) in both 
passes; however, the pattern “seen” by the system cor- 
responds to a normalized pattern-the transformed 
coordinate waveforms-on the second pass. Sample 
contours  obtained by simulating this system are shown 
in Fig. 7. 

Experiments 
Several experiments have been done with normalized 
and unnormalized handprinted  characters as  data.  The 
objects of these experiments were to 1) observe whether 
the characters were made visually more  uniform by the 
moment normalization technique, 2 )  exhibit some special 
features of the normalization procedure, and 3) determine 
whether recognition performance (particularly of cor- 
relation-based recognition systems) could be improved 
by normalizing the input. The primary data for these 
experiments were three batches of scanned handprinted 
numerals. A full description of these data is given in 
Ref. 7. Two of the  data sets, referred to  as Backroom 1 
and Backroom 2 respectively,  were similar in nature 
since the same writers (four office workers in a  department 
store) were represented in each sample. The  third set, 
the  Frontroom sample, was of lower quality than  the 
others; the writers were busy salesclerks rather than 
office personnel. This sample was obtained from forty 
writers and therefore contained more style variations. 

Normalization was not done  through directional 
control of the scanner in these experiments. Instead, 
the normalization was  effected  by a simulation program 
operating on orthogonally scanned versions of the  char- 
acters. Whereas a scanner would have sampled the orig- 
inal pattern at coordinates  along  the computed skew- 
direction lines, the simulation program,  instead of sending 
the computed sampling coordinates to a scanner, rounded 
off these coordinates to obtain the indices of a cell in 
the original video raster. The  state of this cell was trans- 
ferred to the  appropriate cell in  the normalized version 
of the character. 

Thus the normalization amounted to a rearrangement 
of the bits of the initial raster. The effect  of using this 
procedure, rather than the true rescan with a controlled 
flying spot, was to introduce a small amount of edge noise 
into  the normalized pattern. If the same pattern was 
transformed five or six times successively (e.g., by rota- 
ting it) by simulation, a deterioration in video quality 
was noticeable. A single normalization of a given raster 
was not especially noisy. 

One noteworthy feature of normalizing in this  manner 
is that  the scanner itself  was eliminated from considera- 
tion in  the comparison experiments. Each recognition 

SEPTEMBER 1970 

A 
A 

Figure 7 Sample contours: (a )  input  (derived from hand- 
printed A’s) and (b)  normalized. 

Figure 8 Superimposed patterns (shadings as in Fig. 1 ). 

Thresholds 

IJnnormalized Nommalizcd 

program was run twice with the same binary patterns 
as inputs; in  one experiment, however, the normalization 
routine was inserted as  an intermediate stage. Thus varia- 
tions in performance were a consequence of normalizing 
the  pattern and could not be ascribed to alterations in 
scanner characteristics. 

Stability of the  pattern 
In Fig. 8 are shown the results of superimposing nor- 
malized and unnormalized pattern  arrays. In general 
the normalized raster contains a greater proportion  of 
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Table 1 Recognition  experiments. 

Number of errors 

Recognition 
procedure Design data  Test  data 

Templates lo00 Backroom 1 5000  Backroom 1 

Clustering lo00 Backroom 1 lo00 Backroom 1 

Autocorrelation lo00  Backroom 1 3500 Backroom 1 

Weighted  cross- Us, 5's and 6's Us, 5's and 6's 
correlation  from  Backroom 1 from  Backroom 1 

Zoned  n-tuples 1 7900 Backroom 1 7900 Backroom 1 

" 2 10,000  Backroom 1 10,000  Backroom 2 

" 3 10,000  Backroom 1 10,000 Frontroom 
" 4 10,OOO Frontroom 1O,o00 Frontroom 

Unnormalized Normalized 
data data 

3978, 669b 

970 

39 

36 

53 

100 

580 

270 

63 

50 

16 

9 

17 

52 

307 

141 

Patterm registered at the centroid. 
b Patterns registered with left-hand and lower boundaries at the margins of the field 
0 Samples falling in a cluster in which a different identity predominates. 

cells that  are black with high frequency, implying greater 
stability than  the  raw patterns. 

8 Correlation  with  templates 
An elementary method of designing templates is to 
superimpose a number of samples of the same identity 
and to quantize the  pattern field into black, white and 
grey regions by applying  upper and lower threshold 
bounds to the frequency count at each bit position.' 
The degree of agreement between a black-white input 
pattern and  one of the ternary masks is measured by the 
Hamming distance (i.e., the number of mismatches) 
between the black and white regions of the mask and  the 
corresponding bits of the  pattern, with a constant  added 
to account for the grey regions of the mask. A recognition 
scheme employing this principle was tried on several 
thousand normalized and unnormalized Backroom char- 
acters. The results, tabulated in  Table 1, indicate  improve- 
ment by a factor of six when normalized data  are used. 

This distance to a ternary mask is also a basic calculation 
in a clustering program'' previously employed in several 
problem areas in pattern processing. The objective of 
this  program is to arrange a given collection of input 
patterns into groups  according to similarity. The program 
forms  tentative  groups, calculates a ternary mask for 
each group,  and uses similarity to the masks to form new 
groupings. This  procedure is reiterated  until it converges. 

The first 1000 normalized and unnormalized Backroom 
1 patterns were respectively clustered into fifteen groups 
by this  algorithm.  With normalized inputs convergence 
was reached in  four iterations; with the original  patterns, 

twelve loops were required. As shown in Table 1 the simi- 
larity  groups for normalized patterns contained primarily 
characters of a single identity. Only five samples were 
misclustered or fell among samples of different identity. 
The raw data,  on  the  other  hand, clustered poorly by 
this criterion. 

Autocorrelation 
McLaughlin and Ravivl' have recently described a scheme 
for implementing recognition that uses a high-order 
autocorrelation of the  input. They  show that  in  the decision 
function of interest the autocorrelation called for can 
be replaced by a function of the cross-correlation of the 
input with a template. 

Decision experiments employing this technique were 
originally conducted with Backroom  inputs.  Some  months 
later the same experiments were repeated with the  nor- 
malized Backroom data.  The  error count was reduced 
from 39 to 16 by normalizing the patterns before cor- 
relating the  data. 

In addition, an illustration of the effect of normaliza- 
tion was given by this  program." The design program of 
McLaughlin and Raviv begins by finding ten patterns 
of greatest mutual  variation among  the first 100 samples 
of each category. In Figs. 9 and 10 are shown the selected 
samples for unnormalized and normalized inputs, re- 
spectively. The same 1000 samples were involved in each 
case although the patterns actually selected were different 
in the two trials. It is apparent  from inspection of these 
two figures that much of the  pattern variation within 
each category is removed by normalizing. 
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Weighted cross-correlation 
Chow13 has experimented with a recognition system 
that correlates a pattern  and a stored  template  in each 
of a number of shift positions and weights the correlations 
to  form a score for  the template. In  one of the early test 
runs with this system all the O’s, 5’s and 6‘s were selected 
from  the first 1000 Backroom 1 numerals and used to 
design templates. (Storage limitations restricted the ex- 
periment to three classes.) These  templates were then 
tested on  the first 1000 samples from Backroom 2.  When 
unnormalized characters were read, 36 errors were made; 
this number dropped  to 9 errors when the design and test 
samples were normalized. 

N-tuple recognition 
A detailed experimental investigation of hand printing 
recognition is described by Bakis, Herbst and Nagy.? The 
measurements used were local  feature detectors-in 
effect, small templates-which were required to match 
a region of the  pattern exactly in  order  to receive the 
value 1; otherwise the measurement value was 0. Each 
feature  template was tried for all shift positions in a 
specified zone of the  pattern field. In addition, several 
topological measurements, e.g., functions that counted 
the lines intersected when the  pattern field was sliced 
in a specified manner, were added  to  the pool of measure- 
ments. Various subsets of this  pool were tried in rec- 
ognition experiments with the Backroom and  Frontroom 
data. A Bayes decision procedure was used. Several of 
these experiments were repeated on  the normalized patterns 
with results as given in Table 1. 

In  the first of these runs the 100 n-tuple measurements 
were identical for  both  the normalized and raw video 
samples. These measurements, called zoned n-tuples, 
consisted of six to eight input AND gates designed to 
detect lines, line ends and  sharp bends at various  orienta- 
tions in  the character. They can be considered “general 
purpose” measurements since they were not generated 
for optimum  performance on a particular batch of data. 

In n-tuple runs 2 through 4 of Table 1 the performance 
of these zoned n-tuples operating on normalized inputs 
is compared with that of a different set of 100 n-tuples 
corresponding to  the unnormalized characters. The 
latter, which had yielded the best previous n-tuple per- 
formance on  hand printing, had been selected from a large 
pool of such measurements (including the zoned n-tuples) 
on the basis of ability to classify the Backroom 1 samples. 
They yielded a fifty percent better error  rate  than  the 
zoned n-tuple measurements when both were run  on  the 
same characters (see Ref. 5 ,  p. 21). Since a rough  idea 
of relative performance was available, it was decided to 
conduct the comparison on  the basis of the two different 
measurement sets rather  than to repeat the lengthy 
measurement selection procedure with normalized data. 55s 
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Presumably  reselection  would  result in somewhat  lower 
error figures in the right-hand error column of Table 1. 

Conclusions 
The experimental  evidence  gathered to date indicates 
that  the moment  normalization  procedure is a valuable 
device for improving the recognition of handprinted 
characters. 

The technique was originally  developed  with  global 
template  matching in mind, yet it has significantly im- 
proved feature detection  systems as well. 

Although  because of different data collection  procedures 
an exact  comparison of results is not feasible,  some of 
the recognition rates achieved  with the Backroom and 
Frontroom normalized patterns are competitive with 
those attained by  curve-follower  techniques  (see  Ref. 6) 
on the same data. The best-performing  methods (speci- 
fically the n-tuples)  have  previously been restricted in 
practice to the recognition of machine  printing.  Presum- 
ably, this implies that a recognition  system  can  be  built 
which applies the same hardware to the identification 
of both hand printing and machine  printing.  Previously, 
two  distinct  modes of operation have  been  implemented- 
curve-follower  processing for handprinted symbols and 
raster-scan  techniques for the machine-printed matter. 

The fact that narrow characters are distorted in ap- 
pearance by the normalizer  does not appear to be a 
detriment.  Indeed the normalizer  provides  size information 
which can be  helpful in recognizing  such patterns. It 
is interesting to note,  however, that most of the recogni- 
tion procedures tried had no difficulty in recognizing 
swollen l's, even without  width  measurements from the 
normalizer. 

The normalization approach is currently  being  applied 
to  the problem of computer input of line  drawings. In 
the process of encoding graphic information such as 
that contained in maps and engineering  drawings,  symbolic 
data of  many  different proportions and orientations are 
encountered. So far the recognition of these characters 
has proved a stumbling  block to machine  encoding of 
graphic material.  After  normalizing,  however,  these 
characters present a uniform appearance to the categorizer. 
Orientation information in this case is derived from 
observing the direction  along which a sequence of char- 
acters occurs. 

In this report only the recognition of numerals has 
been studied  experimentally. To date, experimentation 
with alphabetic characters has been fragmentary, due to 
a lack of suitable data and the greater  expense of operating 
with 26 classes  instead of 10. However, the moment 
normalization  technique  would appear to be  extensible 
to alphabetic input. Suppose, as is theoretically  possible, 
that as a result of the normalization procedure two  dif- 
ferent  classes  become  more  similar, that is,  more  likely 

to be confused.  This  occurrence  implies that scale,  skew 
or location (the only  parameters  varied by the normaliza- 
tion routine) must  be important recognition  features 
for distinguishing between the two classes.  Since  these 
parameters are calculated, and are available in  the machine, 
they are readily  inserted into the decision  process. In 
practice it would  seem that appropriate use of the infor- 
mation given  by the normalization step ought to guarantee 
against  any degradation of performance. 

In summary, the moment  normalization  procedure  is 
conveniently  implemented at the cost of  two scans  per 
character; it has been found to reduce by integral factors 
the error rates in recognizing hand printing; and quite 
possibly it enlarges the realm of recognition  problems 
that can  be  handled by a single  machine. 
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Appendix 1: Proof  of theorem 
Let the moment  matrices for P and P* be M and M*, 
respectively.  Denote by A the transformation from P to 
P*.  Let  nonsingular  matrix T diagonalize  P, and matrix 
W diagonalize  P*, to give the moment  matrix kI in either 
case (k  is a scalar, I is the identity  matrix).  Then the rela- 
tions among the moment  matrices are 

TMT' = kI = WM*W' 

and 

AMA' = M*. 

From the first  relation we have 

M = kT-'(T-')'. 

Also, 

WM*W' = W(AMA')W' 

= WA[kT"(T")'](WA)' 

= L(wAT-~)(wAT-')'. 

And thus 

(WAT-')(WAT")' = I. 

Therefore, WAT" is a combined  reflection and rotation 
denoted by some  matrix D, and we  see that 

WA = DT, 
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so that  the  normalized  patterns  can differ only by  the 
rotation-reflection  associated  with D. 

Appendix 2 
We  want to transform a video  pattern  represented by 
f (x ,  y )  into a pattern g(x‘, y’) by  using the coordinate 
transformation 

x = a d ’  + alzy‘, 
Y = amy‘. 

The pattern f (x ,  y )  is assumed to vanish  outside a finite 
region, and a,, and aZ2 are  required to be  positive  numbers 
(to prevent inversion of  coordinates).  We also require 
that the parameters a,,, a12 and azz be such  that  the  moment 
matrix  of g(x’, y’) has  the  canonical  form 

M* = [: :]e 

Using  the  relation 

M = AM*A’, 

where 

A = Ill], 
we find  the  new  moment  matrix  to  be 

M = r(u;;l;2Jl:’ ka12a22 . 
kam2 1 

Thus we obtain three equations  in all, a12 and uZ2: 

k h 2  + a12’> = m, 
kazz2 = mu 

and 

kalzazz - mzv. 

The  unique  simultaneous  solution  of  these  equations, 
subject to the  conditions  imposed, is 

- 

all = [(m,mv - r r ~ ~ ~ ~ ) / k t n , ] “ ~ ,  
aS2 = (mv/k)”2 

and 

a12 = (mzu2/kmL)1’2. 
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