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Moment Normalization of Handprinted Characters

Abstract: Handprinted characters can be made more uniform in appearance than the as-written version if an appropriate linear trans-
formation is performed on each input pattern. The transformation can be implemented electronically by programming a flying-spot
raster-scanner to scan at specified angles rather than only along specified axes. Alternatively, curve-follower normalization can be
achieved by transforming the coordinate waveforms in a linear combining network. Second-order moments of the pattern are con-
venient properties to use in specifying the transformation. By mapping the original pattern into one having a scalar moment matrix
all linear pattern variations can be removed. Comparison experiments with three sets of handprinted numerals showed that error
rates were reduced by integral factors if the patterns were normalized before scanning for recognitions

Introduction

An optical character recognition (OCR) device performs,
albeit in a constrained and rigidly mechanized fashion,
a function normally considered to be a human cognitive
activity. The OCR unit senses the spatial patterns of
black and white on a document containing printed sym-
bols, and identifies each pattern one by one as an A, a 7,
a comma, or some other member of the alphabet of
symbols that the machine is designed to read. The iden-
tification is recorded internally by means of a machine
code.

The initial observation of a pattern is done by an
optical scanner. This is a device for obtaining an electronic
representation of a spatial pattern—a TV camera is an
example, although other types of scanners are used more
commonly in character recognition. The electronic version
of the pattern may be a pair of waveforms describing the
contour of the character or, more typically, a raster
portraying the intensities of black and white within the
pattern field.

Scanning a character for recognition also requires
isolating it from the other objects in the field of view,
and rejecting noise to obtain a “‘clear” representation.
Thus, in addition to the basic optical scanning apparatus,
the scanner contains logical and control circuitry for
determining the portion of the document to be scanned
and for filtering the electronic image. If the subsequent
recognition processing is to be done digitally, the image
is digitized, typically into a binary format in which a 0
bit denotes white and a 1 bit denotes black.
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1t is this stored representation on which the recognition
process is based. Further stages of processing consist
only of comparing this image, or information obtained
from it, with what the system has been designed to expect
from the respective character types. Thus, scanning is
a critical operation. If the pattern provided by the scanner
differs sufficiently from the ideal pattern as built into the
recognizer unit, the symbol being examined will not be
classified correctly.

This paper concerns a scanning system especially
suitable for handprinted symbols. The system objective
is to obtain an electronic image that more closely matches
the machine ideal than did the original printed form.
To illustrate this notion we first discuss some common
ways of recognizing scanned images.

® Recognition logic

One of the standard procedures for character recognition
is to compare the states of elementary areas of the pattern
to be identified with the states of corresponding regions
of several stored prototype characters.’” This “template-
matching” concept includes linear weighting schemes
in which the elements, typically binary bits denoting
black and white areas of a scanned pattern, are weighted
in each pattern class according to their relative importance
in specifying that class.

Such “global” matching techniques are to be distin-
guished from systems that detect local features of a pattern,
e.g., corners, indentations and concave and convex curves,
and require the locations of these features to match those
of the prototype in only a very coarse way. Basing rec-
ognition on a global match implies that successive samples
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of characters in a given category possess a high degree
of spatial invariance; they should superimpose very well.
It has been found that such matching procedures are
useful for typewritten and machine-printed characters,
which exhibit uniformity within a given font and also
among selected fonts. On the other hand, because of the
range of styles in unconstrained hand printing, such
material has been recognized more reliably by the method
of local feature detection,

Figure 1 illustrates this dichotomy. Ten typewritten
4’s in each of three font styles were raster-scanned and
then superimposed. A large proportion of the cell posi-
tions were “stable,” i.e., they had the same state in the
majority of samples. Thus the outline of a 4 is well defined
in the quantized array shown in Fig. 1(a). The same
experiment repeated with 100 handprinted 4’s from 15
different writers resulted in the frequency distribution
shown in Fig. 1(b). Only a few bit positions were reliably
“black.” These were not distributed broadly enough to
allow the 4’s to be discriminated from other handprinted
numbers by template matching.

From evidence such as Fig. 1, and from previous
recognition experience, it is clear that large-area templates
cannot be designed to match hand printing produced
under field conditions by a number of writers. The fol-
lowing sections of this paper describe an attempt to
improve this situation by electronically scanning a printed
character in such a way as to produce a transformed
character that better matches the stored representation.3
This is done by calculating several global pattern moments
and transforming the character to place these moments
in a standard form. The new ‘‘normalized” characters
are shown to have properties of invariance that are
desirable in a recognition framework. Experiments are
reported that demonstrate the improvement in video
quality and indicate the recognition gains that are possible
with the aid of the normalization technique.

o Related work

A system for eliminating linear variations in a pattern
by transforming it so that the pattern moments are in a
canonical form has been described previously by Udagawa,
Toriwaki and Sugino.* That method differs from the one
to be described in that the moments are not normalized
to the area of the pattern. In addition, third- and fourth-
order moments were calculated in Ref. 4 to obtain a
rotationally invariant form. Only a few sample characters
could be tested due to equipment restrictions (for example,
no scanner was available).

Hu® and Alt® also used central moments for pattern
classification and observed the basic property that diag-
onalizing the second-order moment matrix eliminates
linear distortions. In these cases the moments were
computed primarily to serve as recognition parameters.
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Figure 1 Superimposed characters: (a) typewritten, (b) and
(c) handprinted. The shaded regions consist of points of
the pattern field that were black, with a frequency within
the threshold bounds. Solid black and white regions denote
higher and lower frequencies of black, respectively.

Bakis, Herbst and Nagy” implemented skew corrections
on handprinted characters by translating horizontal
rows of bits to make the xy moment vanish. Since in
their method character height is normalized while the
pattern is scanned, their system differs from that described
below mainly by the absence of width normalization.

Normalization technique

& Skewed scanning
We offer the following nonexhaustive list of character-
istics in which handprinted samples vary.

1) Size (height and width)

2) Slant (and rotation)

3) Line thickness

4) Style (such as open- and closed-top 4’s, looped and
nonlooped 2’s, etc.)

5) Ornamentation

6) Stroke proportions (relative widths of the various
strokes constituting the character)

7) Stroke regularity (smoothness and well-formedness of
lines and curves)

Variations in any of these characteristics degrade
template-matching performance. To some extent the
degree of variation is controllable by training, by using
standard writing instruments, and by supervision. Under
common field conditions, e.g., in making out sales checks
in a department store, the amount of control is limited,
as one can see by comparing hand printing produced by
salesclerks and by office personnel in a particular depart-
ment store (Fig. 2).

Except under the most rigid conditions, one cannot
expect writers to accurately reproduce handprinted
characters. In an effort to decrease the amount of varia-
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Figure 2 Sample handprinted characters. These numerals,
printed by careful clerks in an unhurried environment (top)
and by sales personnel (bottom) in the same department
store, were scanned and used for the experiments described
in the text.

Figure 3 Linear pattern transformation. The original pattern
(left) is scanned obliquely in the y’ direction and this scan
line is stepped in the x’ direction, the respective sample in-
crements being proportional to b and a. The resulting sam-
ple values, plotted orthogonally, are shown on the right.
Note that the parallelogram is transformed into a square.

tion, recognition systems incorporating normalization
stages have been constructed. With the aid of feedback
techniques, parameters such as the height and line thick-
ness of characters can be adjusted to preset standards.®"®
These operations have proved effective in enhancing the
quality of scanned patterns.

If the scanner uses an electronically controlled flying
spot, it is common practice to scan the input pattern
in a horizontal-vertical raster and to quantize and store
the result as a rectangular array of bits. However, by

choosing skewed scan directions and by adjusting the
sampling intervals at which the state of the pattern is
observed, a transformed pattern can be obtained (Fig. 3).
If the scans are linear and uniformly spaced, the trans-
formation is linear and can be expressed mathematically as

[u] A [x — xo} ’ )
v Yy — Yo

where x and y are the original (rectangular) scan coordi-
nates, x, and y, define an arbitrary origin, # and v are
the coordinates in the transformed system, and A is a
2 X 2 transformation matrix. As stored in a core memory,
for example, a pattern point that previously was located
at cell x, y in a rectangular scan is located at cell u, v
after rescanning.

Through adjustment of the scan parameters embodied
in matrix A, this skewed scanning procedure permits
regulation of the height, width, slant and rotation angle
of patterns. While these are not the only characteristics
that vary in hand printing (viz., the list at the beginning
of this section), they are important ones, especially when
the characters are identified by means of a global matching
procedure.

A linear mapping is not the only type of transformation
obtainable by scanning techniques. Indeed, completely
arbitrary transformations are achievable. Any pattern
can be changed into any other pattern as desired. Cur-
rently, however, reasonable criteria are known only for
specifying the linear mappings. Other transformations
corresponding to curvilinear coordinate systems or to
various projective systems may also be useful and are
being studied.

o Normalized form for patterns

In the previous section it was noted that properly skewed
scan directions compensate for size, slant and rotational
variations in patterns. The new scan coordinates, however,
depend on the differences of a pattern from the norm.
One can easily measure height and width, but slant and
rotation are more ambiguous quantities because the
character is not yet identified.

People, however, seem to recognize a character before
assessing its slant. One procedure that the machine might
follow, then, is to hypothesize the category of the input
(assume that it is an A, a B, a C, etc. in turn) and try to
measure its slant and rotation under these assumptions.
These measurements specify an appropriate transforma-
tion. Such a procedure has been tried, but it is much
more complex (a new transformation is required for
each hypothesis) and probably less reliable than the method
described here, which is based on the moments of the
pattern. We assume, in view of the application to printed
characters, that the pattern is binary, e.g., black on white.
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However, the properties of the method can be generalized
to arbitrary spatial patterns.

The pattern moments consist of the three quantities
m,, m, and m,,, often arranged in matrix form as follows:

M = [m, me, .

m,, m,
The elements m, and m, are the mean-square x and y
deviations about orthogonal x and y axes through the

centroid of the pattern. They are defined by the expres-
sions

m, = 8§’ [ X dS 2)
Jp

and

m, = S’ / ¥ ds, (3)
Jp

where S is the total area of the pattern P. The product
term m,, is defined by

m,, = §' / xy dS. (4)
Jp

Suppose that a pattern P is transformed by a linear
mapping procedure having matrix A into a new pattern
P*. The transformation can be expressed in terms of new
coordinates u and v that are linearly related to the original
coordinates. Upon substitution of Eq. (1) into Eqgs. (2)
through (4) it is found that the moment matrix M* of the
new pattern is related to the former moments by the
matrix expression

M* = AMA/, (5)

where the prime indicates the transposed matrix.

Unless the pattern is distributed along a line of zero
width, any desired moment matrix can be obtained by
linear transformation. That is, given M and M* one can
find a matrix A such that (5) holds.

One particular form of the transformed moment matrix
possesses especially desirable properties. This is the
scalar matrix

M*:V 0}, ©
0 k|

where k is an arbitrary constant, specified in advance.
The utility of this particular form of the moment matrix
is perhaps best illustrated with the aid of the following
theorem, which is proved in Appendix 1.

Theorem Let P* be a pattern obtained from a given
pattern P by a linear transformation of coordinates. Let
a new transformation operate on P to give pattern Q,
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Figure 4 Removal of linear variations by moment normal-
ization. For each input pattern the rescan procedure was
computed on the basis of the moments observed on the
first scanning pass.

whose moment matrix has the diagonal form (6). Let
another transformation be found to transform P* into a
Q* having the same scalar moment matrix as Q. Then
there exists a pure rotation of coordinates, a reflection,
or a combination of the two that carries Q into Q¥*.

Thus, if two patterns related by a linear transformation
are mapped into new patterns having diagonal moment
matrices, the transformed patterns are identical except
for rotation or reflection (see Fig. 4). Reflection of a
nonsymmetric character yields a backwards or an upside-
down character, distortions that are not likely to be
encountered in handprinted-character recognition. Reflec-
tion of a basically symmetric character, such as an A,
a 0 or an 8, yields an essentially indistinguishable form
after normalization. Hence, to resolve the ambiguity
concerning this distortion, it is sufficient to specify that
the normalizing transformation be nonreflective.

In practice it often happens that the rotational ambiguity
can be handled in a logical manner. The ambiguity is
present because values are assigned to only three moments,
whereas the transformation is specified by four parameters.
The extra degree of freedom can be disposed of by placing
one additional constraint on the transformation matrix.
Many such constraints can be invented; a particularly
appropriate one is described below.

The x direction for scanning a line of print is usually
taken as the direction of the line, and hand printing is
generally slanted in such a manner that in the x direction
only a scale variation is encountered. For example, even
in a slanted A the cross bar is more or less horizontal.
To transform a pattern to a normalized form without
rotational ambiguity requires an operator that diagonal-
izes the moment matrix without changing the x direction.
(Thus horizontal lines remain horizontal.) As shown in
Appendix 2, such a transformation is unique.
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Figure 5 Transformation of handprinted 1’s by moment
normalization showing the widening of narrow shapes.

Figure 6 Formation of the scanner deflection waveforms:
(a) system for combining waveforms, (b) transformation
of the fixed input waveforms to obtain normalizing deflec-
tion waveforms, and (c) the corresponding scan programs.

?tlll

Deflections
to scanner

o Geometric patterns

The only parallelogram having a moment matrix already
in the normalized form is a square. Similarly, all ellipses
are transformed into circles and all triangles become
equilateral in the moment normalization process. When
moment normalization is applied to discrete pattern
representations, quantization noise and line thickness
also affect the pattern obtained.

The widening of narrow shapes into quite different-
looking bodies might be expected to introduce a severe
recognition problem. Figure 5 illustrates several hand-
printed 1’s as they appeared before and after normalization.
For this case it has been found that the minimum eigen-
value of the moment matrix (i.e., the minimum moment
of the pattern about any axis) is a measure of width that
effectively separates the 1’s from the other patterns. Only
twelve misclassifications occurred when upper and lower
threshold bounds were applied to this eigenvalue in order
to sort 12,000 characters (including 3600 1’s) into “1°*
and “not 17 categories. However, this technique was
not needed to recognize 1’s in the experiments described
below because confusion involving the 1 class was not
a significant factor. Apparently the expanded 1’s (see
Fig. 5) were sufficiently different from the other character
types.

o Implementation

The pattern moments and the transformation parameters
can be computed either digitally or by a straightforward
analog implementation.

The coefficients of the transformation matrix serve
as weights in combining the usual sawtooth y-deflection
voltages with stepped x-deflection waveforms to obtain
new waveforms that cause a flying spot to travel along
oblique parallel paths as shown in Fig. 6. The projected
cost of this circuitry constitutes only a modest portion
of the overall system cost.

The most likely impediment to a practical analog design
is the need for pulsed integrators to compute the moments.
The speed of the system would be limited by these com-
ponents to bit rates of the order of 20 kHz, or about
fifty characters per second, if high accuracy (e.g., one
percent) is to be maintained in the moment computation.
By permitting larger errors (e.g., ten percent), or by
integrating digitally with high speed adders, rates of 200
kHz or more are practicable. This latter approach would
have the disadvantage of higher cost.

o Curve-follower normalization

The moment diagonalization procedure can also be
adapted to a scanner using a curve follower.’® In this
device the CRT beam is constrained by feedback tech-
niques to tracing a path along the contour of the input
pattern. The control information is provided by the x
and y contour coordinates. These x and y waveforms,
properly multiplied or squared and then integrated as
required by Egs. (2), (3) and (4), define the moments of
the contour. To implement the normalization procedure
these moments are computed on the first scan of an input
character. The transformation can be computed by either
analog or digital hardware. The transformation parameters
then serve as the weighting coefficients of a combining
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network that linearly transforms the x and y waveforms
obtained in a second scan of the pattern. In this system,
as opposed to the raster mode, the CRT beam follows
exactly the same path (namely the contour) in both
passes; however, the pattern “seen’” by the system cor-
responds to a normalized pattern—the transformed
coordinate waveforms—on the second pass. Sample
contours obtained by simulating this system are shown
in Fig. 7.

Experiments

Several experiments have been done with normalized
and unnormalized handprinted characters as data. The
objects of these experiments were to 1) observe whether
the characters were made visually more uniform by the
moment normalization technique, 2) exhibit some special
features of the normalization procedure, and 3) determine
whether recognition performance (particularly of cor-
relation-based recognition systems) could be improved
by normalizing the input. The primary data for these
experiments were three batches of scanned handprinted
numerals. A full description of these data is given in
Ref. 7. Two of the data sets, referred to as Backroom 1
and Backroom 2 respectively, were similar in nature
since the same writers (four office workers in a department
store) were represented in each sample. The third set,
the Frontroom sample, was of lower quality than the
others; the writers were busy salesclerks rather than
office personnel. This sample was obtained from forty
writers and therefore contained more style variations.

Normalization was not done through directional
control of the scanner in these experiments. Instead,
the normalization was effected by a simulation program
operating on orthogonally scanned versions of the char-
acters. Whereas a scanner would have sampled the orig-
inal pattern at coordinates along the computed skew-
direction lines, the simulation program, instead of sending
the computed sampling coordinates to a scanner, rounded
off these coordinates to obtain the indices of a cell in
the original video raster. The state of this cell was trans-
ferred to the appropriate cell in the normalized version
of the character.

Thus the normalization amounted to a rearrangement
of the bits of the initial raster. The effect of using this
procedure, rather than the true rescan with a controlled
flying spot, was to introduce a small amount of edge noise
into the normalized pattern. If the same pattern was
transformed five or six times successively (e.g., by rota-
ting it) by simulation, a deterioration in video quality
was noticeable. A single normalization of a given raster
was not especially noisy.

One noteworthy feature of normalizing in this manner
is that the scanner itself was eliminated from considera-
tion in the comparison experiments. Each recognition
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Figure 7 Sample contours: (a) input (derived from hand-
printed A’s) and (b) normalized.

Figure 8 Superimposed patterns (shadings as in Fig. 1).

Thresholds
10% and 909

Normalized

Unnormalized

program was run twice with the same binary patterns
as inputs; in one experiment, however, the normalization
routine was inserted as an intermediate stage. Thus varia-
tions in performance were a consequence of normalizing
the pattern and could not be ascribed to alterations in
scanner characteristics.

o Stability of the pattern

In Fig. 8 are shown the results of superimposing nor-
malized and unnormalized pattern arrays. In general
the normalized raster contains a greater proportion of
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Table 1 Recognition experiments.

Number of errors

Recognition Unnormalized Normalized
procedure Design data Test data data data
Templates 1000 Backroom 1 5000 Backroom 1 3972, 669> 63
Clustering 1000 Backroom 1 1000 Backroom 1 97¢ 5¢
Autocorrelation 1000 Backroom 1 3500 Backroom 1 39 16
Weighted cross- 0’s, 5’s and 6’s 0’s, 5’s and 6’s
correlation from Backroom 1 from Backroom 1 36 9
Zoned n-tuples 1 7900 Backroom 1 7900 Backroom 1 53 17
" "2 10,000 Backroom 1 10,000 Backroom 2 100 52
" "3 10,000 Backroom 1 10,000 Frontroom 580 307
" "4 10,000 Frontroom 10,000 Frontroom 270 141

= Patterns registered at the centroid.

b Patterns registered with left-hand and lower boundaries at the margins of the field.

¢ Samples falling in a cluster in which a different identity predominates.

cells that are black with high frequency, implying greater
stability than the raw patterns.

o Correlation with templates
An elementary method of designing templates is to
superimpose a number of samples of the same identity
and to quantize the pattern field into black, white and
grey regions by applying upper and lower threshold
bounds to the frequency count at each bit position.”
The degree of agreement between a black-white input
pattern and one of the ternary masks is measured by the
Hamming distance (i.e., the number of mismatches)
between the black and white regions of the mask and the
corresponding bits of the pattern, with a constant added
to account for the grey regions of the mask. A recognition
scheme employing this principle was tried on several
thousand normalized and unnormalized Backroom char-
acters. The results, tabulated in Table 1, indicate improve-
ment by a factor of six when normalized data are used.
This distance to a ternary mask is also a basic calculation
in a clustering program'' previously employed in several
problem areas in pattern processing. The objective of
this program is to arrange a given collection of input
patterns into groups according to similarity. The program
forms tentative groups, calculates a ternary mask for
each group, and uses similarity to the masks to form new
groupings. This procedure is reiterated until it converges.
The first 1000 normalized and unnormalized Backroom
1 patterns were respectively clustered into fifteen groups
by this algorithm. With normalized inputs convergence
was reached in four iterations; with the original patterns,

twelve loops were required. As shown in Table 1 the simi-
larity groups for normalized patterns contained primarily
characters of a single identity. Only five samples were
misclustered or fell among samples of different identity.
The raw data, on the other hand, clustered poorly by
this criterion.

s Autocorrelation

McLaughlin and Raviv'® have recently described a scheme
for implementing recognition that uses a high-order
autocorrelation of the input. They show that in the decision
function of interest the autocorrelation called for can
be replaced by a function of the cross-correlation of the
input with a template.

Decision experiments employing this technique were
originally conducted with Backroom inputs. Some months
later the same experiments were repeated with the nor-
malized Backroom data. The error count was reduced
from 39 to 16 by normalizing the patterns before cor-
relating the data.

In addition, an illustration of the effect of normaliza-
tion was given by this program.'’ The design program of
McLaughlin and Raviv begins by finding ten patterns
of greatest mutual variation among the first 100 samples
of each category. In Figs. 9 and 10 are shown the selected
samples for unnormalized and normalized inputs, re-
spectively. The same 1000 samples were involved in each
case although the patterns actually selected were different
in the two trials. It is apparent from inspection of these
two figures that much of the pattern variation within
each category is removed by normalizing.
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o Weighted cross-correlation

Chow'® has experimented with a recognition system
that correlates a pattern and a stored template in each
of a number of shift positions and weights the correlations
to form a score for the template. In one of the early test
runs with this system all the 0’s, 5’s and 6’s were selected
from the first 1000 Backroom 1 numerals and used to
design templates. (Storage limitations restricted the ex-
periment to three classes.) These templates were then
tested on the first 1000 samples from Backroom 2. When
unnormalized characters were read, 36 errors were made;
this number dropped to 9 errors when the design and test
samples were normalized.

o N-tuple recognition

A detailed experimental investigation of hand printing
recognition is described by Bakis, Herbst and Nagy.” The
measurements used were local feature detectors—in
effect, small templates—which were required to match
a region of the pattern exactly in order to receive the
value 1; otherwise the measurement value was 0. Each
feature template was tried for all shift positions in a
specified zone of the pattern field. In addition, several
topological measurements, e.g., functions that counted
the lines intersected when the pattern field was sliced
in a specified manner, were added to the pool of measure-
ments. Various subsets of this pool were tried in rec-
ognition experiments with the Backroom and Frontroom
data. A Bayes decision procedure was used. Several of
these experiments were repeated on the normalized patterns
with results as given in Table 1.

In the first of these runs the 100 #-tuple measurements
were identical for both the normalized and raw video
samples. These measurements, called zoned n-tuples,
consisted of six to eight input AND gates designed to
detect lines, line ends and sharp bends at various orienta-
tions in the character. They can be considered “‘general
purpose’” measurements since they were not generated
for optimum performance on a particular batch of data.

In n-tuple runs 2 through 4 of Table 1 the performance
of these zoned n-tuples operating on normalized inputs
is compared with that of a different set of 100 n-tuples
corresponding to the unnormalized characters. The
latter, which had yielded the best previous n-tuple per-
formance on hand printing, had been selected from a large
pool of such measurements (including the zoned n-tuples)
on the basis of ability to classify the Backroom 1 samples.
They yielded a fifty percent better error rate than the
zoned n-tuple measurements when both were run on the
same characters (see Ref. 5, p. 21). Since a rough idea
of relative performance was available, it was decided to
conduct the comparison on the basis of the two different
measurement sets rather than to repeat the lengthy
measurement selection procedure with normalized data.
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Figure 9 The 100 “most dissimilar” characters before nor-
malization.

Figure 10 The 100 “most dissimilar” characters after nor-
malization.
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Presumably reselection would result in somewhat lower
error figures in the right-hand error column of Table 1.

Conclusions

The experimental evidence gathered to date indicates
that the moment normalization procedure is a valuable
device for improving the recognition of handprinted
characters.

The technique was originally developed with global
template matching in mind, yet it has significantly im-
proved feature detection systems as well.

Although because of different data collection procedures
an exact comparison of results is not feasible, some of
the recognition rates achieved with the Backroom and
Frontroom normalized patterns are competitive with
those attained by curve-follower techniques (see Ref. 6)
on the same data. The best-performing methods (speci-
fically the n-tuples) have previously been restricted in
practice to the recognition of machine printing. Presum-
ably, this implies that a recognition system can be built
which applies the same hardware to the identification
of both hand printing and machine printing. Previously,
two distinct modes of operation have been implemented—
curve-follower processing for handprinted symbols and
raster-scan techniques for the machine-printed matter.

The fact that narrow characters are distorted in ap-
pearance by the normalizer does not appear to be a
detriment. Indeed the normalizer provides size information
which can be helpful in recognizing such patterns. It
is interesting to note, however, that most of the recogni-
tion procedures tried had no difficulty in recognizing
swollen 1’s, even without width measurements from the
normalizer.

The normalization approach is currently being applied
to the problem of computer input of line drawings. In
the process of encoding graphic information such as
that contained in maps and engineering drawings, symbolic
data of many different proportions and orientations are
encountered. So far the recognition of these characters
has proved a stumbling block to machine encoding of
graphic material. After normalizing, however, these
characters present a uniform appearance to the categorizer.
Orientation information in this case is derived from
observing the direction along which a sequence of char-
acters occurs.

In this report only the recognition of numerals has
been studied experimentally. To date, experimentation
with alphabetic characters has been fragmentary, due to
a lack of suitable data and the greater expense of operating
with 26 classes instead of 10. However, the moment
normalization technique would appear to be extensible
to alphabetic input. Suppose, as is theoretically possible,
that as a result of the normalization procedure two dif-
ferent classes become more similar, that is, more likely

to be confused. This occurrence implies that scale, skew
or location (the only parameters varied by the normaliza-
tion routine) must be important recognition features
for distinguishing between the two classes. Since these
parameters are calculated, and are available in the machine,
they are readily inserted into the decision process. In
practice it would seem that appropriate use of the infor-
mation given by the normalization step ought to guarantee
against any degradation of performance.

In summary, the moment normalization procedure is
conveniently implemented at the cost of two scans per
character; it has been found to reduce by integral factors
the error rates in recognizing hand printing; and quite
possibly it enlarges the realm of recognition problems
that can be handled by a single machine.
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Appendix 1: Proof of theorem

Let the moment matrices for P and P* be M and M*,
respectively. Denote by A the transformation from P to
P*, Let nonsingular matrix T diagonalize P, and matrix
W diagonalize P*, to give the moment matrix kI in either
case (k is a scalar, I is the identity matrix). Then the rela-
tions among the moment matrices are

TMT’ = kI = WM*W’
and
AMA’ = M*.

From the first relation we have
M = KT '(T7Y).
Also,
WM*W' = WAMA" )W’
WALLT (T YIWAY
ECWAT “)(WAT™Y).

And thus
(WAT HY(WAT™ 'Y = L

Therefore, WAT ' is a combined reflection and rotation
denoted by some matrix D, and we see that

WA = DT,

IBM J. RES. DEVELOP.




so that the normalized patterns can differ only by the
rotation-reflection associated with D.

Appendix 2
We want to transform a video pattern represented by

f(x, y) into a pattern g(x’, ') by using the coordinate
transformation

x = aux’ + ay’,
— ’
Y = Q).

The pattern f(x, y) is assumed to vanish outside a finite
region, and a;;, and as, are required to be positive numbers
(to prevent inversion of coordinates). We also require
that the parameters a;, a;, and a,, be such that the moment
matrix of g(x’, y’) has the canonical form

MF = [k 0}_
0 k
Using the relation

M = AM*A/,

where

A — [an 012]
0 a,
we find the new moment matrix to be

M=

k(au2 + 0122) kamazz] .

2
kaysa,, kas,

Thus we obtain three equations in a,;, a5 and a,,:

k(au2 -+ 0122)

=m,
2
kagz =m,
and
ka12a22 = Myy.

The unique simultaneous solution of these equations,
subject to the conditions imposed, is

SEPTEMBER 1970

2 1/2
) = [(’nzmy — Mgy )/knlz/] ’

dze = (mu/k)1/2
and

2 1/2
Ay = (mxv /kml-) / .
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