
A. E. Ferdinand 

A Statistical  Mechanical  Approach 
to  Systems  Analysis 

Abstract: The  maximum entropy  principle is  used as the criterion for calculating the equilibrium state probabilities of a queuing or 
network  system in which  service rates are exponentially  distributed. A configuration-independent  partition  function  is  given as the 
solution to this  network  problem;  from  this  function the important properties of the system  may  be  derived.  Simple and well  known 
examples are used to illustrate  the  method. A phenomenon  similar to the phase transition of statistical mechanics  is  observed  in a 
queuing  model. 

Introduction 
The computer systems analyst and  the traffic engineer 
are often faced with the analysis of complex systems 
that  are difficult to characterize uniquely and can best 
be described by statistical  methods. The physicist also 
deals with complex systems, which for  the most part 
comprise many particles, in  various  states, that may or 
may not interact;  statistical techniques have led to very 
satisfactory results in his case. In this  paper the methods 
of statistical mechanics, usually applied by the physicist, 
are shown to be useful in the solution of queuing  and 
network problems. 

The basic mathematical expression in statistical me- 
chanics is  the  partition function, which provides a link 
between the mechanical properties of a system and  its 
thermodynamic  properties. The  partition function tells 
how, in the equilibrium  distribution, the system is  parti- 
tioned or divided among different energy levels. The 
important measurable properties of the statistical mechan- 
ical system are expressed in terms of derivatives of the 
logarithm of the partition  function. 

A function similar to  the  partition function of statistical 
mechanics can be developed for queuing and network 
systems, and  important averages can be obtained from 
this  function and  its logarithmic derivatives. The statis- 
tical mechanical model of a queuing or network system 
is based on  the single postulate that  the equilibrium 
probabilities of the states of a network or queuing sys- 
tem maximize the entropy  functional of that system. A 
high value of the entropy  functional is a measure of a 
low degree of information. Thus  one may say that  the 
maximum entropy principle further postulates that  an 
equilibrium  distribution  corresponds to a condition of 
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maximum ignorance for a given average number of ele- 
ments enqueued or distributed in  the system. 

The maximum entropy principle leads to a function 
that is similar in structure to  the  partition function of 
statistical mechanics and,  for this  reason, will also be 
called a partition function. In fact, partition functions 
are actually just multivariate generating functions.' 

The general  solution, for systems whose service rates 
are exponentially distributed, is configuration independent; 
that is, the solution is independent of the number of 
components (servers, terminals, channels, tasks, etc.) 
comprised by the system, and also independent of the 
spatial  relationship of these components with one  another. 
Futhermore, it provides the capability of addressing prob- 
lems that  are  not easily solved by queuing  theory tech- 
niques. For example, bidirectional queues, i.e., queues in 
which the elements can go in  one of two  directions  after 
service, are readily addressed by the statistical mechanical 
approach. In  the next section, the consequences of the 
maximum entropy principle are derived. 

A similar approach has been taken by Benei,' in 
which he demonstrates  some of the underlying similarities 
between statistical mechanical systems and connecting net- 
works. 

The  maximum  entropy principle 
In  the  approach usually taken  in queuing and network 
problems, equilibrium in a system is assumed to correspond 
to some particular distribution of elements throughout  the 
range of permissible states. This distribution is  taken to be 
that which is most likely to occur for a very large number 
of elements, under  assumptions with regard to state 
dependencies that lead to a Markov process as a model 
of the system. Based on those assumptions, an equation 
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is derived according to  an invariance ~r inc ip le ,~  from 
which the  state probabilities  can be calculated. 

In  the  approach to be described here, as  in  that of 
statistical mechanics, equilibrium is assumed to correspond 
not  to some  particular  distribution, but to a condition 
of maximum  entropy. The well known expression for 
entropy  in terms of the probability vector is maximized 
to obtain an equilibrium  distribution, and  the equilibrium 
state probabilities  can then be calculated according to 
a variational principle. The distribution is  thus uniquely 
determined. The operative  requirement is to defend the 
assumption that maximum entropy occurs at equilibrium 
in queuing systems and networks, and to establish the 
meaning of “entropy” and “energy” in  the queuing/net- 
work  context. It is shown that  the probability  vector 
obtained through  the maximum  entropy principle is  the 
same as  that obtained from a reversible Markov process 
in the same system. 

The following lemma will first be proved: 

Lemma: 
Let S be a set of permissible states in a system, and 
rk(X)(k = 1,2,  . . . , n) with x E S be a set of non-negative 
functions defined on S. Then  the maximum of 

H ( q )  = - C qz In qz, (1) 

subject to  the conditions 

92 2 0, (2) 

Z E S  

Cqz= 1 (3) 
Z t S  

and 

rk(x)q,  = mk (k  = I ,  2 ,  . . . , n )  (4) 
Z t S  

where the mk are given positive numbers, is 

n 

H,,, = In z ( w l ,  wp, . . .  , wn> - C mk In wk, ( 5 )  
k = l  

with 

Here wk is  the unique positive solution of 

wk - [In Z ( w l ,  wz, . .  . , w,)] = mk > 0. (7) 

This maximum, Eq. (3, is achieved by choosing 

d 
dWk 

where a, bl, b,, . . . , b, are values of the Lagrange multi- 
pliers determined by 

In this  Lemma one may consider q = [q9] as a proba- 
bility vector, in which case H(q) is  the  entropy of the 
system. The variable yk in Z ( y l ,  y,, . . . , yn) is related to 
a service rate  in a system via the relation 

where uk is  the mean of the service rate (assumed to 
be exponentially distributed). 

Pro0 f: 
With the Lagrange multipliers a, bl,  b,, * .  . , b,, define 

Differentiating with respect to qz and setting the resulting 
derivatives to zero gives the  equation 

The Lagrange multipliers are determined by the  conditions 

c 4, = 1; 
ZES 

Condition (14) gives 

e-‘a+l’ fI exp [ -bkrk(x)l  = 1, 
Z E S  k = l  

whereas condition (15) gives 

By now defining 

W k = e  , 

it is easily seen that wk is a  solution of 

-bk 
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But  since 

there is  only  one solution of Eq. (20), and that solution 
wk is  positive. Furthermore, since 

1 
91 

- - ” if x = y ,  

the matrix of second  derivatives of H(q) is negative  de- 
finite and therefore  maximized. 

In this Lemma,  let 

rk(4 = rk (k = 1, 2, * a *  , n) (23) 

be the number  of  elements  enqueued in  or distributed 
throughout the different parts of a queuing or network 
system in state x .  

The following  theorem about that system  may  now  be 
stated: 

Theorem : 

Let m,, m2, . . . , m, > 0; furthermore, let 
n 

Z(Y1, Y z ,  . .. f Yn) = c II Y 2  (24) 
zES k - 1  

and yk be the unique  (positive) root of 

(k = 1 ,  2 ,  0 . -  , n). (25) 

Then the maximum of 

subject to the conditions that q is a probability  vector  over 
S (so that H(q) is the entropy functional) and 

is 

and is obtained by the vector q with  components 

principle. The function Z ( y l ,  y2, . . . , y,) is  called the 
partition function of the queuing or network  system, and 
a reader familiar with statistical mechanics  will  immedi- 
ately  recognize its similarity to  that of statistical mechanics. 
The quantity mk uniquely  determines Y k  and vice  versa. 
The constraint introduced through the mk in the derivation 
of the probability  vector is analogous to the energy  con- 
straint used in statistical mechanics to derive the partition 
function of a statistical mechanical  system.  This  energy 
constraint implies a dependence on a new variable, the 
temperature, which is of fundamental importance in de- 
scribing a statistical mechanical  system. The constraint 
imposed through the mk in queuing or network  problems 
similarly  gives  rise to parameters, analogous to tempera- 
ture in statistical mechanics, that can be  correspondingly 
used to describe the queuing or network  system. If a 
basic  identification  is to be  made  between a queuing or 
network  model and a statistical mechanical  system, it 
will be through the variables yk and temperature as 

In yk OC l/(kBT) (30) 

where kB is the Boltzman constant and T is the tempera- 
ture. 

The analogy  does not imply  any  physical  equivalence 
between temperature (in  thermodynamics) and the rate or 
availability of service  (in a queuing  system or network). 
Instead it implies that a change in the service rate variable 
for one element in a network has an effect on the relation- 
ship  among  elements that is mathematically  analogous to 
that of a change in the temperature (or  energy)  variable 
for a particle in a statistical mechanical  system.  Since the 
temperature variable k,T has the dimensions of energy 
in statistical mechanics, it seems appropriate to designate 
In vk as “energy” in queuing or network  theory. It is, 
however,  only for convenience in nomenclature and the 
analogy  is  only  mathematical. 

A reversible  Markov  process 
In this section we follow the method of  Bene;’ and de- 
scribe an ergodic  reversible Markov process 0, which 
takes values in the set S of states and has  the property 
that the distribution over S is precisely the canonical  dis- 
tribution derived through the maximum entropy principle. 

Let x E S be a state of the system and, furthermore, let 
the elements in the state x be of n types  with rk elements 
of type k ,  so that rk is the total number of elements 
in the state x. 

Let A, and B, be the sets of states adjacent to x, i.e., 
accessible from x by adding an element to those already 
in state x and removing an element from those in state 
x ,  respectively. The states A, accessible by adding an 541 
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element are said to lie “above” x;  the states B ,  accessible 
by removing an element are said to lie “below” x. The 
sets A ,  and B, are  further subdivided into n subsets as 
follows: 

A h z  is the set of states immediately above x and ac- 
cessible from x by adding an element of kth type to those 
of that type in state x.  

BkZ is  the set of states immediately below x and acces- 
sible from x by removing an element of the  kth type from 
those  in state x. With these definitions, one may write 

Let 1x1 denote the number of elements in the set X .  A 
process is defined as follows: 

If 0, = x ,  then 0, is moving to each y E Abz at a rate 
u k  > 0, to each y E Bkz at a rate u k  = 1 and  to any other 
state  at a rate zero. The transition rate matrix M is, for 
this process, given  by 

m,u = - [lBkzI + U k  lAk,l] for Y = X ,  
k = l  

= I for y E Bkz and all k ,  

= vt for y E Akz and all k ,  and 

= 0 for y A ,  u B,; y # x .  (33)  

In probabilistic terms, the transition rate matrix M 
can be interpreted as meaning that if Ot = x, then as 
h ”+ 0, (h  being a small increment  in time), there are con- 
ditional  probabilities 

ukh + o(h) that e l + h  = y E for all  k; 

h i- o(h )  that = y E Bkz for all k; 

1 - [ l B k , l  f u k  1Ak,\l + O ( h )  that & + n  X ;  
k - l  

and 

o(h) that = y E A ,  U B,; y # x .  

The uk may  be considered as  the mean of a holding or 
service rate  that  has a negative exponential  distribution. 

The statistical equilibrium  equation of the process 0, 
can be put in the vector form 

Mq = 0. (34) 

Alternatively, it may be written as 

[ 2 k - 1  (lBkz1 + u k  1 A k z ( ) ] q z  

A. E. FERDINAND 

This  equation is satisfied by choosing 

so that a normalized solution of the statistical equilibrium 
equation is 

The canonical  distribution of probability over S ,  which 
is the unique solution  obtained through  the maximum 
entropy principle, is also a solution of the statistical 
equilibrium  equation. Furthermore,  the components of 
the probability  vector q satisfy the condition of reversi- 
bility, namely 

qzmZy = qumuz; x, Y E s, (38) 

which is analogous to  the principle of detailed balance 
in statistical mechanics. 

An alternative representation of the partition 
function 
In  its present form  the  partition function, Z(ul, u,, . . . , u,), 
expressed as a summation over all permissible states, may 
become quite  unmanageable when dealing with a complex 
system in which there  are a vast number of states. To 
facilitate computation it is prudent to perform a partial 
summation and express the  partition function  in the more 
convenient form 

where 

exp [- E ( r l ,   r l ,  . . . , r , ) ]  = (40) 

and g(rl,  r,,  . . . , r,) is a combinatorial  term that rep- 
resents the  total number of states in S that  are charac- 
terized by the vector (r l ,   r , ,  . ’ . , r7l). 

The probability p(rl,  r,,  . . . , r,) of being in a state 
characterized by the vector (r l ,   r , ,  . . . , r,) is  given by 

k = l  

The mean value ( r k )  of variable rk is again 
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The representation of the partition function in the form 
(39) leads to some  most  interesting  possibilities, which to 
the author’s knowledge  have not been attempted in queuing 
or network  theory.  Observe that the term exp [-E(rl, 
r,, . . . , r,,)], which is henceforth  referred to as the energy 
term, is an easy one to derive even for a very  complex 
network. As a consequence,  calculation of the partition 
function (and of equilibrium  probabilities)  always  reduces 
to a combinatorial problem in which the main task is the 
derivation of the combinatorial term g(rl, r2, 1 + , r,,). 
However,  this  may not always  be a simple  problem. The 
combinatorial term will mirror the combinatorial prop- 
erties of the network, the queuing  disciplines, the type 
of queue  (ordered, random, etc.),  any constraints, and 
any  limits on the queue  size,  etc.  One  can  easily  see that 
consideration of  such constraints may result in very diffi- 
cult, but not insoluble, combinatorial problems. 

In cases  where  constraints, routing and queuing dis- 
ciplines  make it difficult to derive the combinatorial coef- 
ficient in closed form, one may still be able to derive the 
explicit  numerical  value of the combinatorial term corre- 
sponding to a given  energy  by  means  of numerical  tech- 
niques on a computer. In so doing,  one  can  develop an 
exact  series  expansion for the partition function and con- 
sequently obtain, again in the form of an exact  series 
expansion,  all the desired  properties of the system  under 
consideration. 

Simple  applications of the general solution 
In this section,  simple  examples are given to demonstrate 
the use of the generalized partition function. In the 
ensuing  discussion a service rate u should  be interpreted 
as meaning that the service rate is exponentially dis- 
tributed and has a mean  value u. 

Earlier in this paper, it has been stated that if a basic 
identification is to be  made  between a statistical mechanical 
system and a queuing  system, it will  be through the ser- 
vice rate u and the temperature T, via the relation 

In u I / ( k J ) ,  

The energy term in the partition function may  easily 
be derived by first taking the system in some initial or 
ground state, and then considering  deviations from that 
ground state. The choice of the ground state is an arbi- 
trary one. Elements  leaving the ground state (creating 
“vacancies”)  result in decrements in energy.  Elements in 
an “excited” state (away from the ground state) give 
rise to increments in energy. This implies that it is pos- 
sible to have an “excited” state in which there is no 
change in energy, but in which the presence of a new  set 
of vacancies is enough to make the new state different 
from the ground state. Defined in this way, E(rl, r,, . . . , r,,) 
is the energy of those states that  are characterized by the 
vector (rl,  rz, . . . , rJ .  

A simple switching network 
Consider a switching  network  comprising three switches, 
in which  each  switch can be  either  opened or closed. 
Suppose that the mean  time  during  which  any  switch 
is open  is the same as the mean  time  during  which  any 
switch is closed.  This  is, of course, tantamount to saying 
that there is no change in energy  due to opening  or 
closing a switch,  because the energy of the open state 
is equal to that of the closed state. (The  energy  of  work 
done in the switching  process is not associated  with the 
energy  of states we are discussing  here.)  Describe  each 
switch by a binary  variable dk(k = 1, 2, 3), where 

dk = 1 if the kth switch is open; 
= o  if the kth switch is closed. (43) 

It is known that for such a system, the mean  value  of 
dk is 4, and the probability of any state is equal to *, i.e. 

(dk) = a (k  = 1, 2, 3);  (44) 

P(db dz, 4 )  = i for all dl, d,, d3 . (45) 

These  results will be  proved  directly by  use  of our general 
result.  Since there is no change of energy  due to the 
opening or closing of a switch, the energy of the  system 
is given  by 

E ( 4 ,  4 ,  4 )  = 0, (46) 

so that 

exp [- J W ,  4 ,  dd1 = 1. (47) 

The  combinatorial  term is trivial,  since there is only  one 
state characterized by the vector (dl ,  d,, d3); i.e., 

4 ,  4 )  7 1. (48) 

On substituting into the general formula (39) we obtain 

(49) 

and from m. (41), the probability of  being in a state 
characterized by the vector (dl, d,, d3) is  simply 

p(d,,  d2, d3) = 1/Z = i. (50) 

The mean  value of the variable dl is 

The solution to a more general  problem  can be readily 
obtained.  Consider a switching  network  consisting of n 
switches.  Describe  variables uk and uk as follows: 

If the kth switch is closed, it has a probability ukdt 
of being  opened in time dt, and if it is open, it has a 
probability ukdt of being  closed in time dt. Describe the 
initial state of the system by the vector (el, ez, . . . , e,) 543 
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with (ek = 0 or 1). In a state characterized by the vector 
(dl, 4 ,  . . . , d,,), the change in energy  due to the kth 
switch  is 

- ( e k  - dk) In (uk/uk) 

= o  if dk = ek; 

= In (uk/uk) if f?k = 0 ,  dk = 1; 

In (uk/uk) if ek 1, dk = 0 .  ( 5 2 )  

The energy of the state characterized by the vector 
( 4 9  4 ,  . . . , d,) is then 

E(d1, 4 ,  . .  . , d,,) = - ( ek - dk) In (uk/uk). (53) 
n 

k = l  

Also,  since there is  again  only one state described by the 
vector ( 4 ,  d2, . * . , d,,), we have 

&dl,  dz, . . . , d,) = 1. (54) 

On substituting into Eq. (39), one obtains the partition 
function Z for the switching  network as 

n 

z = ‘ n (c%k/Uk)c’”d*, ( 5 5 )  
d l  d z  dn k = l  

and the probability of being in the state described by 
( 4 ,   4 ,  . . - , d,) as 

P ( ~ I  9 dz, ‘ ’ ‘ 9 dn) = [ fi (uk/uk) / Z ,  ( 5 6 )  
k = l  

with 2 given  by Eq. (55) .  

The machine interference model 
The machine  interference  model3  comprises n identical 
machines and a single  repairman. When a machine  breaks 
down it is repaired by the repairman and put back into 
operation. If the repairman is busy, a broken  machine 
has to wait for service, so that a queue  builds up in front 
of the repairman. 

Let u and u be the breakdown and repair rates of a 
machine  respectively and, furthermore, let the initial or 
ground state of the system  be that  in which all  machines 
are operating, i.e., in which there are no machines  being 
or waiting to be  repaired.  Consider a situation in which 
k machines are broken. The energy  E(k) of states con- 
sisting of k broken  machines  is  given by 

E ( k ) =   - - k l n u + k l n u  

= -k In (u/u) = -1n ( u / u ) ~ ,  (57) 

where - k In u is the energy due to the k “vacancies” 
(created by the breakdown of k machines) and k In u is 
the energy  due to the k elements in the “excited” state, 
i.e., the k machines  awaiting repair. From Eq. (57), we 
have 

exp  [-E(k)l = (u/u)’. (58)  
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The combinatorial term g(k) is the number of distinct 
states that have  energy E(k). There are C) ways in which 
k machines  could  be  broken. For each way in which k 
machines  could  be  broken, there are k!  distinct states 
of the system  since there are no restrictions on the order 
of the broken machines in the queue.  Hence we have 

and the partition function is given  by 

Z = 2 @k! ( u / u ) ~ .  
k-n 

The probability of having k broken  machines  is  then 
given  by 

which is the well-known solution of the machine inter- 
ference  model. 

The generalized machine interference model 
Here  again, as  in  the machine  interference  model, we 
place no restrictions on the order of elements in the 
queue  before the repairman. The system  consists of n 
machines and a single  repairman. The kth machine is 
characterized by a breakdown rate uk and a repair rate 
u k .  We define an occupational  variable dk as 

dk = 0 if the kth machine is broken and is  awaiting 
repair or being  repaired, 

= 1  if the kth machine is operational. (62) 

The model is shown in Fig. 1. Consider the ground state 
as being that  in which all occupational variables  have 
the value 1. The energy of a state of the system charac- 
terized by the vector (dl,  d,, . , d,,) is given  by 

n 

E(d19 dz, * * . , dn) = - (1 - dk) In (uk/uk), (63) 
k = l  

so that 

eXP [ - E ( d l ,  dz, * * * , d,)] = n ( U k / U k ) l - d k .  (64) 
k = l  

If there are no restrictions or constraints on the order 
of elements (broken machines) in the queue  before the 
repairman, then the number of distinct states charac- 
terized by the vector ( 4 ,  d2, . . , d,) is given  by 

&‘(dl, 4 ,  * * ’  3 dm) = (1 - d k ) ] ! .  [ k:l ( 6 5 )  
Hence the partition function for this system is 

1 ,  
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and  the probability of  being in a state characterized by 
the vector (d l ,  d2, . . . , 4 )  is 

A d , ,  dz, . . . I dn) 

= [ p  - d,) 1 ! n k 1 1  ( u k / U k ) " " / z z ,  (67) 

with Z, given in Eq. (66). When  all machines have the 
same characteristics, that is, when both the breakdown 
rate and  the repair rate are the same for all machines, 
the  solution of the machine interference model, Eq. (60), 
is obtained by performing the summation in Eq. (66). 

The cyclic queuing model 
The cyclic queuing model was described by Koenig~berg.~ 
It consists of m sequential stages in a loop with each stage 
acting as a single server. The system serves N indistin- 
guishable units; each of these units goes through  all stages 
in succession and continuously repeats the process. 

Let u k  be  the  rate of servicing a request at  the kth 
stage and, furthermore, let the initial  conditions be such 
that all N units are at the first stage. In one of the states 
characterized by the vector (nl, n2, , nm), where nk is 
the  number of units at the  kth stage, the number of va- 
cancies at  the first stage is N - n,, and  the energy due to 
each vacancy is "In ul. Thus the energy of a state charac- 
terized by a vector (n l ,  nz, . , n,) is given  by 

a n 1 9  n2,  . . .  9 n,) 

" ( N  - nl) h U 1  + ??k In U k ,  (68) 
rn 

k = 2  

the summand being the contribution to the energy due to 
the elements at  the  kth (k = 2, 3, . , m) stage, a unit 
at the kth stage having energy In u k .  Hence 

exp [ - E(n l ,  n 2 ,  . . - , n,)] = u y  n ( I / U ~ ) " ~ .  (69) 
k = l  

Since the units are indistinguishable, for a given (nl, 
n2, . . . , nm), rearrangement of units gives rise to  no new 
distinct configurations and  therefore to no new states. 
In this case we have 

g h ,  n2, . . . , nm) = 1.  (70) 

The partition  function  for  this model is therefore 

with 
... 

The probability of being in a state characterized by the 
vector (nl, n2, . . , n,) is 
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Figure 1 The  generalized  machine  interference  model. 

which is the Koenigsberg solution. For more complex 
models, which are readily solved using the generalized 
configuration-independent partition  function, see Ref- 
erence 5. 

Further considerations 
The ideas put  forward in  this section are familiar to  and 
frequently used in statistical mechanics. Since such tech- 
niques are  not commonly used in queuing or network 
analysis, it is worthwhile to mention them because of 
their  potential applicability in systems analysis. 

The use of exact series expansions in  the analysis of 
complex networks has already been suggested. If the 
total number of elements in a system is large, the summa- 
tion  in  the partition  function,  Eq. (39), may require a 
significant amount of computation time. In this case one 
can  resort to  the use of a truncated series expansion in 
which one uses only the lower-order terms of the series 
represented by the partition function. This  can be easily 
achieved by restricting the summation to only those 
terms of a polynomial of some predefined degree that 
is less than  the degree of the partition  function itself. 
Of course the use of the truncated series implies an assump- 
tion that  the  total contribution to  the partition  function 
(of all terms of order q, for example) is a strictly mono- 
tonic decreasing function of q .  This  condition can very 
often be achieved by a judicious choice of initial condi- 
tions. By comparing results obtained  through the use  of 
a truncated series of degree q, for example, with those 
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Figure 2 The normalized  mean  length of the queue of the 
machine  interference  model  plotted  against w = nu/v for 
w 5 1 and against l / w  for w > 1.  

obtained through  the use of a similar series of degree 
q + 1, one can always decide whether the result will 
converge, at least to the accuracy one desires. In today’s 
queuing systems (computers, traffic, etc.) one  is generally 
confronted with heavily loaded systems for which com- 
putation of the  partition function by digital computers 
may be expensive. The most  promising approach  to this 
problem would seem to be that of determining the asymp- 
totic behavior of the  partition function as a function of 
total system size (number of elements), and  then using 
the asymptotic formula to calculate the properties of the 
system. This technique is now seldom exploited in com- 
puter systems analysis, even for queuing models as simple 
as  the machine interference model. (The asymptotic prop- 
erties of this model are given in Ref. 5.) The use of asymp- 
totic  formulae  not only  provides a better  understanding 
of the properties of a system, but also results in con- 
siderable saving in time and  human effort in  the analysis 
of a large system. 

In present day analysis of complex systems, a simula- 
tion technique is often employed. However, a simulation 
model and a mathematical  model of the  same system 
(if indeed such a mathematical model exists) often give 
different results in a certain region. This difference, in 
some instances, is probably due to a phenomenon similar 

A. E. FERDINAND 

to that of phase  transitions  in statistical mechanics. (By 
way  of definition, transitions in which the first or higher 
derivatives of the logarithm of the  partition function 
diverge or change discontinuously are called phase  transi- 
tions.) The machine interference model exhibits such a 
phenomenon.  Figure 2 illustrates the normalized mean 
length of the queue, i.e., 

L = - x - I n Z ,  1 d  
n dx (73) 

with x = u/u and 2 given in  Eq. (60). In  the limit as 
n .+ m ,  L develops a mathematical singularity at  the 
point w = w, = 1, the “critical point” of the model. 
This  is amply  illustrated in Fig. 2, by the kink at w, = 1 
when n -+ a. The derivative of queue length with respect 
to  the variable x (this is analogous to the specific heat 
in statistical mechanics) diverges to infinity at  the point 
w = 1 a s n +  a. 

For finite n, dL/dx goes through a maximum at a 
point w,,, where 

w,,, = 1 + dn). (w = nx); 

“ 
d L  
dX - Cn a t  w,,,, 

g(n) being a positive decreasing function of n, and C 
a constant. The  point w,,, can  be called the unstable 
point of the system, and it tends  to  the critical point  as 
n + 00. Because of the large  fluctuations in  the vicinity 
of w,,,, one finds in performing  simulation experiments 
around  the point w,,, that  the time taken  to  attain 
equilibrium is longer in  the vicinity of wmaX than it is 
in regions away from wmm. Furthermore,  one also finds 
that this difficulty in attaining  equilibrium (around w,,,) 
increases with increasing n. It is sometimes also found 
that  the mathematical model and  its simulation  counter- 
part give different results in  the neighborhood of w,,,. 
This  is presumably because the mathematical model of 
Eq. (60) is an equilibrium  solution, and  the simulation 
model may not  have  attained  equilibrium, even after a 
presumably long settling time. 

Conclusions 
The techniques described in this paper have their roots 
in statistical mechanics, a science that  has successfully 
predicted the behavior of macroscopic  bodies and systems 
composed of a large  number of microscopic elements. 
It would seem feasible that such statistical mechanical 
techniques should  be  applicable to  the large and complex 
systems envisioned by today’s industry.  Indeed, such an 
approach  has been considered by Benei? but no  further 
work has been performed in this  direction because of a 
certain amount of skepticism surrounding the difficulty of 
evaluating the  partition function. 
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Herein, this difficulty is partially overcome by expressing 
the  partition  function,  not as a sum over all possible 
distinct states as  in its representation by Benes?  but 
instead as a sum over all distinct energy states. This 
latter representation of the  partition  function simplifies 
the problem considerably in  that  it is now reduced to 
finding a combinatorial  term representing the number of 
distinct configurations having a particular energy. This 
combinatorial  term can be obtained, if not by simple 
combinatorial considerations, by computational analysis. 

The technique provides a uniform way  of treating sys- 
tems of varying degrees of complexity and generality, the 
geometry of the system configuration appearing only 
through the combinatorial  term. It  has been demonstrated 
that  the partition  function  can be used to overcome some 
of the inherent difficulties associated with queuing theory. 
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