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Abstract: The maximum entropy principle is used as the criterion for calculating the equilibrium state probabilities of a queuing or
network system in which service rates are exponentially distributed. A configuration-independent partition function is given as the
solution to this network problem; from this function the important properties of the system may be derived. Simple and well known
examples are used to illustrate the method. A phenomenon similar to the phase transition of statistical mechanics is observed in a

queuing model.

Introduction

The computer systems analyst and the traffic engineer
are often faced with the analysis of complex systems
that are difficult to characterize uniquely and can best
be described by statistical methods. The physicist also
deals with complex systems, which for the most part
comprise many particles, in various states, that may or
may not interact; statistical techniques have led to very
satisfactory results in his case. In this paper the methods
of statistical mechanics, usually applied by the physicist,
are shown to be useful in the solution of queuing and
network problems.

The basic mathematical expression in statistical me-
chanics is the partition function, which provides a link
between the mechanical properties of a system and its
thermodynamic properties. The partition function tells
how, in the equilibrium distribution, the system is parti-
tioned or divided among different energy levels. The
important measurable properties of the statistical mechan-
ical system are expressed in terms of derivatives of the
logarithm of the partition function.

A function similar to the partition function of statistical
mechanics can be developed for queuing and network
systems, and important averages can be obtained from
this function and its logarithmic derivatives. The statis-
tical mechanical model of a queuing or network system
is based on the single postulate that the equilibrium
probabilities of the states of a network or queuing sys-
tem maximize the entropy functional of that system. A
high value of the entropy functional is a measure of a
low degree of information. Thus one may say that the
maximum entropy principle further postulates that an
equilibrium distribution corresponds to a condition of
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maximum ignorance for a given average number of ele-
ments enqueued or distributed in the system.

The maximum entropy principle leads to a function
that is similar in structure to the partition function of
statistical mechanics and, for this reason, will also be
called a partition function. In fact, partition functions
are actually just multivariate generating functions.’

The general solution, for systems whose service rates
are exponentially distributed, is configuration independent;
that is, the solution is independent of the number of
components (servers, terminals, channels, tasks, etc.)
comprised by the system, and also independent of the
spatial relationship of these components with one another.
Futhermore, it provides the capability of addressing prob-
lems that are not easily solved by queuing theory tech-
niques. For example, bidirectional queues, i.e., queues in
which the elements can go in one of two directions after
service, are readily addressed by the statistical mechanical
approach. In the next section, the consequences of the
maximum entropy principle are derived.

A similar approach has been taken by Benes,” in
which he demonstrates some of the underlying similarities
between statistical mechanical systems and connecting net-
works.

The maximum entropy principle

In the approach usually taken in queuing and network
problems, equilibrium in a system is assumed to correspond
to some particular distribution of elements throughout the
range of permissible states. This distribution is taken to be
that which is most likely to occur for a very large number
of elements, under assumptions with regard to state
dependencies that lead to a Markov process as a model
of the system. Based on those assumptions, an equation
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is derived according to an invariance principle,® from
which the state probabilities can be calculated.

In the approach to be described here, as in that of
statistical mechanics, equilibrium is assumed to correspond
not to some particular distribution, but to a condition
of maximum entropy. The well known expression for
entropy in terms of the probability vector is maximized
to obtain an equilibrium distribution, and the equilibrium
state probabilities can then be calculated according to
a variational principle. The distribution is thus uniquely
determined. The operative requirement is to defend the
assumption that maximum entropy occurs at equilibrium
in queuing systems and networks, and to establish the
meaning of “entropy” and “energy” in the queuing/net-
work context. It is shown that the probability vector
obtained through the maximum entropy principle is the
same as that obtained from a reversible Markov process
in the same system.

The following lemma will first be proved:

Lemma:

Let S be a set of permissible states in a system, and
rn()k = 1,2, --- , n) with x & S be a set of non-negative
functions defined on S. Then the maximum of

H@) = — 2 q. Ingq., (1

z€S

subject to the conditions

q.> 0, )
}; 7. = 1 3)
and

Z ng. = me k= 1,2,---,n) (4)

where the m, are given positive numbers, is

Ilmax = 1In 22(““9 Wa, * "Vn) - :z: iy In Wi, (5)
k=1

with

n

BRI | S (6)

z€S k=1

Z(yi, Y2, o0
Here w, is the unique positive solution of

wki [ln Z(wy, wa, -+, W)l = my > 0. @)

dwy,

This maximum, Eq. (5), is achieved by choosing

(H WZ“”)/Z(WI, Way = o0 W)

k=1

9

= exp [-(a + 1) — Z bkrk(x)] , (8)
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where a, by, b,, - - - , b, are values of the Lagrange multi-
pliers determined by
a=—14+1n Z(e_b‘, e, - , ey, )]

m; = . ri(x) exp [—<a+ 1) — f: bkrk(x)] ; (10)

z€ES
w, = exp (—by). 11

In this Lemma one may consider ¢ = [g.] as a proba-
bility vector, in which case H(q) is the entropy of the
system. The variable y, in Z(y,, y,, - -- , ¥,) is related to
a service rate in a system via the relation

Ve = U,

where v, is the mean of the service rate (assumed to
be exponentially distributed).

Proof:
With the Lagrange multipliers a, b;, b, ++- , b,, define
h= =2 q.Inqg. —a q.
z€ES z€8
— 2 b 2 (%) (12)
k=1 z€ES

Differentiating with respect to g, and setting the resulting
derivatives to zero gives the equation

14+ a4+ Ing + 2 bnlx) =0 for all x € S.
k=1

13)
The Lagrange multipliers are determined by the conditions
> q. =1 (14)
zeS
> rx)g, = m,  for all k. (15)
zE€S
Condition (14) gives
eV 3 I exp [—bwn0)] = 1, (16)

z€S8 k=1

whereas condition (15) gives

m; = e 3 ) ﬁ exp [— byri(x)]

zE€ES

amn

{Z ri(x) H exp [—bkrk(x)l} /

zES

; kHl exp [—bkrk(x)]}- (18)

By now defining
Wy = e, (19)

it is easily seen that w, is a solution of
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we o U Z0wy, wa, -0 w)l = m, > 0. (20)
k
But since
2
3 InZE "™, ", --- ,¢™ > 0, 21

db

there is only one solution of Eq. (20), and that solution
w, is positive. Furthermore, since

9* .
3 I; =0 if x# y;
qZ ql/ (22)
= -1 if x=y,
qg:
the matrix of second derivatives of H(g) is negative de-
finite and therefore maximized.

In this Lemma, let
k=1,2,-,n) (23)

rdx) = ry

be the number of elements enqueued in or distributed
throughout the different parts of a queuing or network
system in state x.

The following theorem about that system may now be
stated:

Theorem :
Let my, my, - -+ , m, > 0; furthermore, let
ZOh, yas o sy = 2 1L v (24)

zE€ES k=1

and y, be the unique (positive) root of

d
me = yi = [In Z(y1, y2, +*+ , ¥a)]

dy;
k=1,2,---,n). (25)
Then the maximum of
H@ = —2 g.Ing, (26)
z€ES

subject to the conditions that q is a probability vector over
S (so that H(q) is the entropy functional) and

2 na. = m, @n

zE€ES

is

Hmax = ln Z(y19 y?s Tt yn) - Z my, ln Vies (28)
k=1

and is obtained by the vector q with components

4. = (H y;')/Z(yl, Vas t 0 Va)- (29)
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The probability distribution g, over S is precisely that
which is determined uniquely by the maximum entropy
principle. The function Z(y,, y», -+ , y.) is called the
partition function of the queuing or network system, and
a reader familiar with statistical mechanics will immedi-
ately recognize its similarity to that of statistical mechanics.
The quantity m, uniquely determines y, and vice versa.
The constraint introduced through the m; in the derivation
of the probability vector is analogous to the energy con-
straint used in statistical mechanics to derive the partition
function of a statistical mechanical system. This energy
constraint implies a dependence on a new variable, the
temperature, which is of fundamental importance in de-
scribing a statistical mechanical system. The constraint
imposed through the m; in queuing or network problems
similarly gives rise to parameters, analogous to tempera-
ture in statistical mechanics, that can be correspondingly
used to describe the queuing or network system. If a
basic identification is to be made between a queuing or
network model and a statistical mechanical system, it
will be through the variables y, and temperature as

Iny, « 1/(kBT) (30)

where kg is the Boltzman constant and T is the tempera-
ture.

The analogy does not imply any physical equivalence
between temperature (in thermodynamics) and the rate or
availability of service (in a queuing system or network).
Instead it implies that a change in the service rate variable
for one element in a network has an effect on the relation-
ship among elements that is mathematically analogous to
that of a change in the temperature (or energy) variable
for a particle in a statistical mechanical system. Since the
temperature variable kg7 has the dimensions of energy
in statistical mechanics, it seems appropriate to designate
In v, as “energy” in queuing or network theory. It is,
however, only for convenience in nomenclature and the
analogy is only mathematical.

A reversible Markov process

In this section we follow the method of Benes® and de-
scribe an ergodic reversible Markov process 6, which
takes values in the set S of states and has the property
that the distribution over S is precisely the canonical dis-
tribution derived through the maximum entropy principle.

Let x & S be a state of the system and, furthermore, let
the elements in the state x be of n types with r, elements
of type k, so that Zz_l r, is the total number of elements
in the state x.

Let 4, and B, be the sets of states adjacent to x, ie.,
accessible from x by adding an element to those already
in state x and removing an element from those in state
x, respectively. The states A4, accessible by adding an
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element are said to lie “above” x; the states B, accessible
by removing an element are said to lie “below” x. The
sets A, and B, are further subdivided into n subsets as
follows:

Ay, is the set of states immediately above x and ac-
cessible from x by adding an element of kth type to those
of that type in state x.

B,. is the set of states immediately below x and acces-
sible from x by removing an element of the kth type from
those in state x. With these definitions, one may write

4, = U 4 3D
k=1

B, = \UB.. (32)
k=1

Let |X] denote the number of elements in the set X. A
process 0, is defined as follows:

If 6, = x, then 6. is moving to each y & A4, at a rate
v, > 0, to each y & B,, at arate v, = 1 and to any other
state at a rate zero. The transition rate matrix M is, for
this process, given by

I

m.,

— 2 Biel +ve | 4ia]] for y = x,

It

| for y& B,, andallk,

It

v, for y& 4,, andallk, and
=0 for y& 4,V B,; y # x. (33)

In probabilistic terms, the transition rate matrix M
can be interpreted as meaning that if 6, = x, then as
h— 0, (h being a small increment in time), there are con-
ditional probabilities

vyh + o(h) that 0,,, = y& A4, forallk;
h -+ o(h) that 6,,, =y & B, forallk;

1 — & D [|Biel + 00 | 4ia]] + o(h) that 8,,, = x;
k=1

and

o(h) that 8,., = y&E 4, \J B,; y & x.

The v, may be considered as the mean of a holding or
service rate that has a negative exponential distribution.

The statistical equilibrium equation of the process 6,
can be put in the vector form

Mq = 0. (34)

Alternatively, it may be written as

[Z (|1Be.| + v |Ak,|)]qz

=3>(Y oo+ X wg) forallx& s. (35)
vEBkw

k=1 yEAks
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This equation is satisfied by choosing

a. ~ [] v, (36)

k=1

so that a normalized solution of the statistical equilibrium

equation is
n »
9. = <H UZ"> > IIwr
k=1 zE€ES k=1

(Huif)/z(vl,uz, cee L0, (37)

k=1

The canonical distribution of probability over .S, which
is the unique solution obtained through the maximum
entropy principle, is also a solution of the statistical
equilibrium equation. Furthermore, the components of
the probability vector q satisfy the condition of reversi-
bility, namely

x,ye S, (38)

which is analogous to the principle of detailed balance
in statistical mechanics.

q:Mzy = quMyz;

An alternative representation of the partition
function

In its present form the partition function, Z(v,, vg, - -+ , v,),
expressed as a summation over all permissible states, may
become quite unmanageable when dealing with a complex
system in which there are a vast number of states. To
facilitate computation it is prudent to perform a partial
summation and express the partition function in the more
convenient form

Z(vy, 6y, - - ,U,,)Z Z glri, ray 0 )
X exp [—E(ry, r2, -, rals (39)
where
exp [—E(, ro, <o 1)l = [ o (40)
k=1

and g(ry, ry, - -+ , r,) iS a combinatorial term that rep-
resents the total number of states in S that are charac-
terized by the vector (r1, ra, - , Fo).

The probability p(ry, rs, :+- , r,) of being in a state
characterized by the vector (ry, rp, --- , #,) i given by

plry, ray o0 1)
8y, ) eXp [T B,y L r)] gy
Z1, 02, " 5 0,)
The mean value (r,) of variable r, is again
d
(re) = v == In Z@1, 02, -+ ,00). (42)

dvk
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The representation of the partition function in the form
(39) leads to some most interesting possibilities, which to
the author’s knowledge have not been attempted in queuing
or network theory. Observe that the term exp [—E(r,
ry, * - , r,)l, which is henceforth referred to as the energy
term, is an easy one to derive even for a very complex
network. As a consequence, calculation of the partition
function (and of equilibrium probabilities) always reduces
to a combinatorial problem in which the main task is the
derivation of the combinatorial term g(ry, rs, «-* , Fn)-
However, this may not always be a simple problem. The
combinatorial term will mirror the combinatorial prop-
erties of the network, the queuing disciplines, the type
of queue (ordered, random, etc.), any constraints, and
any limits on the queue size, etc. One can easily see that
consideration of such constraints may result in very diffi-
cult, but not insoluble, combinatorial problems.

In cases where constraints, routing and queuing dis-
ciplines make it difficult to derive the combinatorial coef-
ficient in closed form, one may still be able to derive the
explicit numerical value of the combinatorial term corre-
sponding to a given energy by means of numerical tech-
niques on a computer. In so doing, one can develop an
exact series expansion for the partition function and con-
sequently obtain, again in the form of an exact series
expansion, all the desired properties of the system under
consideration.

Simple applications of the general solution

In this section, simple examples are given to demonstrate
the use of the generalized partition function. In the
ensuing discussion a service rate v should be interpreted
as meaning that the service rate is exponentially dis-
tributed and has a mean value v.

Earlier in this paper, it has been stated that if a basic
identification is to be made between a statistical mechanical
system and a queuing system, it will be through the ser-
vice rate v and the temperature 7, via the relation

Inv o« 1/(ksT).

The energy term in the partition function may easily
be derived by first taking the system in some initial or
ground state, and then considering deviations from that
ground state. The choice of the ground state is an arbi-
trary one. Elements leaving the ground state (creating
“vacancies’’) result in decrements in energy. Elements in
an “excited” state (away from the ground state) give
rise to increments in energy. This implies that it is pos-
sible to have an ‘“excited” state in which there is no
change in energy, but in which the presence of a new set
of vacancies is enough to make the new state different
from the ground state, Defined in this way, E(ry, ra, -+ , 7,)
is the energy of those states that are characterized by the
vector (ry, rz, =, Ip).
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o A simple switching network

Consider a switching network comprising three switches,
in which each switch can be either opened or closed.
Suppose that the mean time during which any switch
is open is the same as the mean time during which any
switch is closed. This is, of course, tantamount to saying
that there is no change in energy due to opening or
closing a switch, because the energy of the open state
is equal to that of the closed state. (The energy of work
done in the switching process is not associated with the
energy of states we are discussing here.) Describe each
switch by a binary variable d(k = 1, 2, 3), where

d =1 if the kth switch is open;
=0 if the kth switch is closed. (43)

It is known that for such a system, the mean value of
d, is %, and the probability of any state is equal to %, i.e.

d) =% k=1,2,3) 449
p(dy, s, ds) = % for all di, d», ds . 4%)

These results will be proved directly by use of our general
result. Since there is no change of energy due to the
opening or closing of a switch, the energy of the system
is given by

E(d,, dy, dy) = 0, (46)
so that
exp [— E(dy, ds, d3)] = 1. 7

The combinatorial term is trivial, since there is only one
state characterized by the vector (di, d4,, d3); i.e.,

gdy, ds, dg) = 1. 48)
On substituting into the general formula (39) we obtain
1
z=2 2
d,=0 4

1
2=0

1

d1=2" =38, (49)
da=0
and from Eq. (41), the probability of being in a state
characterized by the vector (di, d», d;) is simply
pdy, do, ds) = 1/Z = 3. (50
The mean value of the variable 4, is

(Za 550/

dy =0 da=0 da=0

(dy)

= 2%/7 = %, (51)

The solution to a more general problem can be readily
obtained. Consider a switching network consisting of n
switches. Describe variables i, and v, as follows:

If the kth switch is closed, it has a probability v,dr
of being opened in time df, and if it is open, it has a
probability u.dr of being closed in time dt. Describe the
initial state of the system by the vector (e, e, - , €,)
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with (e, = 0 or 1). In a state characterized by the vector
(dis do, --- , d,), the change in energy due to the kth
switch is

~(e, — dy) In (u/vy)

=0 if d, = e
In (u/v:) if e = 0,
In @/wy) if ee=1, do=0. (52

The energy of the state characterized by the vector
d, d, --- , d,) is then

I

d],: 1,

E(d, dy, - 5 da) = — 2 (e — di) In (m/0r). (53)
k=1

Also, since there is again only one state described by the

vector (dy, dz, -+ , d,), we have

g(dl, d2’ T dn) = L (54)

On substituting into Eq. (39), one obtains the partition
function Z for the switching network as

Z =2 2 - 2 II (o)™, (55)

d, do dn k=1

and the probability of being in the state described by
(dl, d23 Y dn) as

pldi, dy, -+, d) = [H (uk/vk)”“d"]/Z, (56)
k=1
with Z given by Eq. (55).

o The machine interference model

The machine interference model’ comprises n identical
machines and a single repairman. When a machine breaks
down it is repaired by the repairman and put back into
operation. If the repairman is busy, a broken machine
has to wait for service, so that a queue builds up in front
of the repairman.

Let u and v be the breakdown and repair rates of a
machine respectively and, furthermore, let the initial or
ground state of the system be that in which all machines
are operating, i.e., in which there are no machines being
or waiting to be repaired. Consider a situation in which
k machines are broken. The energy E(k) of states con-
sisting of k& broken machines is given by

Ek)= —klhu+4+klnv
= —kIn (u/v) = —In (u/v)", (57)

where —k In u is the energy due to the k& ‘‘vacancies”
(created by the breakdown of k& machines) and k In v is
the energy due to the k elements in the “excited” state,
ie., the k machines awaiting repair. From Eq. (57), we
have

exp [— E(K)] = (u/v)". (58)
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The combinatorial term g(k) is the number of distinct
states that have energy E(k). There are (;) ways in which
k machines could be broken. For each way in which &
machines could be broken, there are k! distinct states
of the system since there are no restrictions on the order
of the broken machines in the queue. Hence we have

glk) = (Z)k!, (59)

and the partition function is given by

Z = i} (:)k! (u/v)*. (60)

k=0

The probability of having k& broken machines is then
given by

o (/£ e

which is the well-known solution of the machine inter-
ference model.

o The generalized machine interference model

Here again, as in the machine interference model, we
place no restrictions on the order of elements in the
queue before the repairman. The system consists of n
machines and a single repairman. The kth machine is
characterized by a breakdown rate i, and a repair rate
v,. We define an occupational variable d, as

d =0 if the kth machine is broken and is awaiting
repair or being repaired,
=1 if the kth machine is operational. 62)

The model is shown in Fig. 1. Consider the ground state
as being that in which all occupational variables have
the value 1. The energy of a state of the system charac-
terized by the vector (dy, dp, -+ , d,) is given by

E(di, dyy +++ 5 dy) = ~k2_3 (1 — &) In (u/vs), (63)

so that

exp [—E(di, dyy +++ , )] = ,,H (/o) ™. (64)

If there are no restrictions or constraints on the order
of elements (broken machines) in the queue before the
repairman, then the number of distinct states charac-
terized by the vector (dy, ds, +- - , d,) is given by

g(dl’ d2’ DY dn) = l:kz (1 - dk)]" (65)

Hence the partition function for this system is

Z,= 22 2 [ (- dk):t! H VS

dy da dn
(66)
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and the probability of being in a state characterized by

the vector (dy, do, -+ , d,) Is
p(dh d29 Tt dn)
= I:Z a - dk)]! H (uk/uk)l—dk/zn (67)
k=1 k=1

with Z, given in Eq. (66). When all machines have the
same characteristics, that is, when both the breakdown
rate and the repair rate are the same for all machines,
the solution of the machine interference model, Eq. (60),
is obtained by performing the summation in Eq. (66).

o The cyclic queuing model

The cyclic quening model was described by Koenigsberg.*
It consists of m sequential stages in a loop with each stage
acting as a single server. The system serves N indistin-
guishable units; each of these units goes through all stages
in succession and continuously repeats the process.

Let v, be the rate of servicing a request at the kth
stage and, furthermore, let the initial conditions be such
that all N units are at the first stage. In one of the states
characterized by the vector (ny, n,, + - , n,), where n, is
the number of units at the kth stage, the number of va-
cancies at the first stage is N — n;, and the energy due to
each vacancy is —In v;. Thus the energy of a state charac-
terized by a vector (n;, #, -+ , n,) is given by

E(nls Rgy * 0, nm)
= —(N—mn)Inv, + 2 nm Inv,,  (68)
k=2

the summand being the contribution to the energy due to

the elements at the kth (k = 2, 3, -+ , m) stage, a unit

at the kth stage having energy In v;. Hence

exp [—E(ny, ny, -+, m)] = o [T (/)™ (69)
k=1

Since the units are indistinguishable, for a given (n,

ny, - -+ , n,), rearrangement of units gives rise to no new

distinct configurations and therefore to no new states.
In this case we have

gy, ngy -+ L0, = 1. (70)

The partition function for this model is therefore

zZy =o' > I awy, (71)
f;,N2,***,Nm k=l

with

Z Hp = N

k=1

The probability of being in a state characterized by the
vector (ny, ny, *+* , By)is
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Figure 1 The generalized machine interference model.

p(”l’ Hay """ nm) = l:vllv kH (l/vk)nk}/ZN’ (72)

which is the Koenigsberg solution. For more complex
models, which are readily solved using the generalized
configuration-independent partition function, see Ref-
erence 5,

Further considerations

The ideas put forward in this section are familiar to and
frequently used in statistical mechanics. Since such tech-
niques are not commonly used in queuing or network
analysis, it is worthwhile to mention them because of
their potential applicability in systems analysis.

The use of exact series expansions in the analysis of
complex networks has already been suggested. If the
total number of elements in a system is large, the summa-
tion in the partition function, Eq. (39), may require a
significant amount of computation time. In this case one
can resort to the use of a truncated series expansion in
which one uses only the lower-order terms of the series
represented by the partition function. This can be easily
achieved by restricting the summation to only those
terms of a polynomial of some predefined degree that
is less than the degree of the partition function itself.
Of course the use of the truncated series implies an assump-
tion that the total contribution to the partition function
(of all terms of order g, for example) is a strictly mono-
tonic decreasing function of g. This condition can very
often be achieved by a judicious choice of initial condi-
tions. By comparing results obtained through the use of
a truncated series of degree g, for example, with those
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Figure 2 The normalized mean length of the queue of the
machine interference model plotted against w = nu/v for
w < 1 and against 1/w for w > 1.

obtained through the use of a similar series of degree
g + 1, one can always decide whether the result will
converge, at least to the accuracy one desires. In today’s
queuing systems (computers, traffic, etc.) one is generally
confronted with heavily loaded systems for which com-
putation of the partition function by digital computers
may be expensive. The most promising approach to this
problem would seem to be that of determining the asymp-
totic behavior of the partition function as a function of
total system size (number of elements), and then using
the asymptotic formula to calculate the properties of the
system. This technique is now seldom exploited in com-
puter systems analysis, even for queuing models as simple
as the machine interference model. (The asymptotic prop-
erties of this model are given in Ref. 5.) The use of asymp-
totic formulae not only provides a better understanding
of the properties of a system, but also results in con-
siderable saving in time and human effort in the analysis
of a large system.

In present day analysis of complex systems, a simula-
tion technique is often employed. However, a simulation
model and a mathematical model of the same system
(if indeed such a mathematical model exists) often give
different results in a certain region. This difference, in
some instances, is probably due to a phenomenon similar
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to that of phase transitions in statistical mechanics. (By
way of definition, transitions in which the first or higher
derivatives of the logarithm of the partition function
diverge or change discontinuously are called phase transi-
tions.) The machine interference model exhibits such a
phenomenon. Figure 2 illustrates the normalized mean
length of the queue, ie.,

L=%x%ln2, (73)
with x = u/v and Z given in Eq. (60). In the limit as
n — o, L develops a mathematical singularity at the
point w = w, = 1, the “critical point” of the model.
This is amply illustrated in Fig. 2, by the kink at w, = 1
when n— o The derivative of queue length with respect
to the variable x (this is analogous to the specific heat
in statistical mechanics) diverges to infinity at the point
w=1lasn— o,

For finite n, dL/dx goes through a maximum at a
point wy,, where

Woax = 1+ g(n), (w = nx); (74)

daL ~ Cn at Wy, (75)
dx

g(n) being a positive decreasing function of n, and C
a constant. The point w,,, can be called the unstable
point of the system, and it tends to the critical point as
n— o, Because of the large fluctuations in the vicinity
of Wy, one finds in performing simulation experiments
around the point w,,, that the time taken to attain
equilibrium is longer in the vicinity of wm., than it is
in regions away from wy,,. Furthermore, one also finds
that this difficulty in attaining equilibrium (around Wpe,)
increases with increasing n. It is sometimes also found
that the mathematical model and its simulation counter-
part give different results in the neighborhood of wg,..
This is presumably because the mathematical model of
Eq. (60) is an equilibrium solution, and the simulation
model may not have attained equilibrium, even after a
presumably long settling time.

Conclusions

The techniques described in this paper have their roots
in statistical mechanics, a science that has successfully
predicted the behavior of macroscopic bodies and systems
composed of a large number of microscopic elements.
It would seem feasible that such statistical mechanical
techniques should be applicable to the large and complex
systems envisioned by today’s industry. Indeed, such an
approach has been considered by Benes,” but no further
work has been performed in this direction because of a
certain amount of skepticism surrounding the difficulty of
evaluating the partition function.
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Herein, this difficulty is partially overcome by expressing
the partition function, not as a sum over all possible
distinct states as in its representation by Benes,” but
instead as a sum over all distinct energy states. This
latter representation of the partition function simplifies
the problem considerably in that it is now reduced to
finding a combinatorial term representing the number of
distinct configurations having a particular energy. This
combinatorial term can be obtained, if not by simple
combinatorial considerations, by computational analysis.

The technique provides a uniform way of treating sys-
tems of varying degrees of complexity and generality, the
geometry of the system configuration appearing only
through the combinatorial term. It has been demonstrated
that the partition function can be used to overcome some
of the inherent difficulties associated with queuing theory.
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