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Characteristics of Dielectric Holograms*

Abstract: The diffraction efficiency and signal-to-noise ratio for two-dimensional and volume diffuse-signal-beam holograms are cal-
culated and experimentally determined. Calculations are based on the statistical properties of the signal beam, and exact integrals rather
than series approximations are used. High signal-to-noise ratio and high diffraction efficiency are possible, with the peak calculated
diffraction efficiency being 229, for two-dimensional and 649, for volume holograms. The experimentally achieved efficiencies were

129, for two-dimensional and 369, for volume holograms.

Introduction

The possibility of converting a hologram intensity pattern
into phase variations was recognized by Rogers' soon
after the invention of holography. More recently, numer-
ous papers have dealt with theoretical and experimental
aspects of two-dimensional phase holograms.””*® Most
of the published theoretical work has been concerned
with diffraction efficiencies achieved by the recorded inter-
ference pattern of two plane wavefronts of uniform am-
plitude.”'" Cathey® determined conditions for which
phase holograms have a constant ratio of signal-wave
to reconstructed-wave amplitude, and a similar estimate
was made by Urbach and Meier.*’® In this paper we
calculate the average diffraction efficiency of a diffuse-
signal-beam dielectric two-dimensional hologram and the
signal-to-noise ratio of the reconstructed wavefront. In
these calculations we assume that refractive index change
within the emulsion is proportional to the exposure, and
we consider only the noise generated by the intermodula-
tion terms.

The experimentally achieved diffraction efficiencies and
signal-to-noise ratios of diffuse-signal-beam dielectric vol-
ume holograms have been previously reported.'®”** The-
oretical calculations have been made independently by
Baugh®® and by the authors.”* The results do not agree,
apparently because different approximations were used.
We include here a summary of the calculations for dif-
fraction efficiency and signal-to-noise of dielectric volume
holograms as derived by the authors.
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Recording of diffuse wavefronts in dielectric media
To calculate diffraction efficiencies and signal-to-noise
ratios of the reconstructed wavefronts we shall first spec-
ify the wavefronts incident upon the hologram. Let the
reference wave be 5, = ag exp Jj¢o and the signal wave-
front be s = a, exp jo,, where only a, is assumed to be
a constant. The irradiance I of the hologram is then

I = [So + S[2
= a(z) + a: + 2aOas COSd) Os> (1)

where ¢¢, = ¢, — ¢. For the case in which the holo-
gram is recorded in a two-dimensional medium, ¢, and
¢y, are variables of the hologram surface coordinates
only; for three-dimensional recording media, we assume
that a, is still only a function of the surface coordinates,
but that ¢, is a function of the medium’s volume coor-
dinates. The latter specification is quite reasonable since
we can have a high spatial carrier frequency and a narrow
signal beam (or angle subtended by the object at the holo-
gram).

We shall assume that the incident signal wavefront has
the Rayleigh-probability amplitude distribution

pa,) = (a,/c”) exp (—a}/2d%), @

where ¢ is the variance of the signal defined as 2¢° =
(a?). This probability distribution arises from the summa-
tion of the amplitudes of a large number of radiators,””
the phases of which are equally likely to have any value
between 0 and 27. An irregular or diffuse surface that
reflects or transmits an incident wavefront can be con-
sidered to have these properties.
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We can now define the beam ratio K as

K = &/(@). 3)
The variance ¢ can then be expressed as
o’ = ai/2K. 4

Because we are dealing with dielectric holograms, we
assume that the exposure is converted into a corresponding
refractive-index variation and that the refractive-index
change is proportional to exposure; i.e.,

An = mrl, (&)

where m is the slope of exposure versus refractive-index
change and 7 is the exposure time. The assumption of
linear refractive-index change as a function of exposure
is probably not realistic for bleached photographic emul-
sions, but other recording media show this characteristic.”
Other authors have also used this assumption.”

Phase modulation of incident wavefronts can also be
achieved by converting exposure into a corresponding
emulsion relief pattern. This technique has been frequently
used, (Refs. 2, 3,9, 10, 12, 13) but we do not consider it
here because the relief pattern is highly sensitive to the
spatial frequency, and this characteristic would greatly
complicate the calculations.

From Eqgs. (1) and (5) we obtain the refractive-index
change An due to exposure by the incident wavefronts:

2
An = mray + mra’l 4+ 2mraga, cos ¢,
= Any + Any + An,, 6)
where An, = mra), Any = mral and An, = 2mra.a,

cos ¢s. For the two-dimensional case, the phase delay
AW caused by refractive-index variations in the recording
medium is given by

AY = (27d/\ cos §)An, M

where A is the wavelength of light, 4 the thickness of
the recording medium, and 6 the angle between the normal
to the surface and the direction of the incident wavefront
within the medium.

The transmittance T of the hologram can be expressed
as T = Y. From Egs. (6) and (7) and the above ex-
pression it is evident that the terms of Eq. (6) become
products in the expression T = 'Y, The first term of
Eq. (6) is a constant and will be neglected. The second
term is a random refractive-index change, and the third
causes reconstruction of the recorded wavefront. We
shall calculate the diffraction efficiency from the third
term and the degradation of the reconstructed wavefront
from the second term of Eq. (6).

For the volume recording of the signal term, An, will
be used directly in the expression for diffraction efficiency,
as will be shown later.
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Figure 1 Response of dielectrically modulated holograms.
The reconstructed wave amplitude, normalized with re-
spect to the incident wave amplitude, is given by A’(q, a)
= Jqo(bas) for two-dimensional holograms and A’(qg = 1,
as) = sin (4ba,) for volume holograms.

Two-dimensional recording media

~ Properties of diffracted orders

From Egs. (6) and (7) we find that the complex trans-
mittance 7T, of the medium caused by the third term of
Eq. (6) is

T, = exp [(j4nm7 dasa,/\ cos 0) cos ¢, ]
= exp (jba, cos ¢o.), (8)

where b = 4wmrda,/\ cos 6. Although the first-order
diffracted wavefront is of most interest, the higher-order
diffracted wavefronts have some useful properties. To
examine these properties let us express Eq. (8) as the
infinite series™:

exp (jba, cos dos) = D (D" Jo(ba,) exp (jados). (9)

g=—c

The right-hand side of Eq. (9) represents a summation
of terms each of which reconstructs a wavefront on a
different carrier frequency, and these wavefronts are
separated from each other.

If we now illuminate the hologram with a wavefront
1 exp (jg¢o), and if we neglect the second factor of Eq. (6),
then we obtain a reconstructed wavefront of amplitude
A(g, a,) for the ¢’s order:

A(g, a;) = J(ba,) exp (jge,). (10)
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Figure 2 Diffraction efficiency (E(¢ = 1)) in percent, and
signal-to-noise ratio (S/N)r of a two-dimensional dielec-
tric hologram versus the reference-to-average signal-beam
irradiance K for the first diffracted order.

The phase of the reconstructed wavefront is g¢, or is
multiplied by the factor g. This characteristic is useful
in amplifying phase differences in interferometry.”® We
also note that the first term of the series expansion for
a Bessel function, a valid approximation for small values
of ba,, is

J{ba,) = (b°/2°q")a.)". )

Thus, we can obtain an amplification of the wavefront’s
inherent amplitude variations by using |g| > 1, and for
an image-plane hologram, a higher contrast image could
be obtained.

Figure 1 shows the response curves for ¢ = 1 and
g = 2. The curve for the first diffracted order shows that
response is linear for small values of ba, as expected from
Eq. (11); for the second diffracted order the response is
proportional to &’ for small values of ba, and is linear
over a range of higher values of ba,. All curves show
an inverse linearity as ba, increases further and a 180°
phase shift as the response goes through zero. Since such
phase reversal generates noise, we consider in our cal-
culations the lower range of ba,, where phase reversal
does not occur.

o Diffraction efficiency
The diffraction efficiency of a two-dimensional phase
hologram as a function of ¢ and a, is simply

EQq, a,) = Jy(ba). (12)
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Figure 3 Diffraction efficiency (E(g)) in percent, and
signal-to-noise ratio (S/N)r of a two-dimensional dielec-
tric hologram versus the reference-to-average signal-beam
irradiance ratio K for the g¢’s diffracted order.

In a typical hologram made of a diffuse object, a, varies
over a wide range of values. Thus we consider the average
diffraction efficiency

(E(q)) =f0 pla,) Jo(ba,) da,. (13)

Since we assumed that p(a,) is a Rayleigh probability
distribution,

Il

(E(9)) fo (a,/7") exp (—az/26%) Jo(ba,) da,

= exp (—o’b)I,(s°b), (14)

where 1,(c°b%) is a hyperbolic Bessel function of order g.
Substituting for ¢ and b, and letting B = Qurdal)/(A
cos 0), we get

(E(g)) = exp (—2m"B*/K)I (2m"B*/K). s)

Figure 2 shows the plot of (E(1)) for two values of mB;
Fig. 3 shows the plot of {E(g)) with mB = = for several
values of g. The maximum efficiency is 229, instead of
the 349, for the two-plane-wave case.”

In these calculations, we have considered only the
third factor of Eq. (6). Since the reconstructed wavefront
is multiplied by the second factor of Eq. (6), the inter-
modulation terms, part of the reconstructed wavefront
will be scattered and will create noise in the reconstructed
image, which will be calculated next. We may also note
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that the various diffracted orders are completely separated
from each other and do not create a superposition of
images.

o Signal-to-noise ratio in the reconstructed wavefront

The fraction of reconstructed wavefront scattered by the
intermodulation terms recorded in two-dimensional media
has been previously calculated elsewhere,”* and we include
a summary of these calculations here.

Let S be the fraction of light flux not scattered and
N = 1 — § be the fraction of light flux scattered by the
intermodulation terms. The phase delay (A¥)y caused by
the intermodulation terms is

— 27 d/\ cos 0)(mral)
—(b/2ay)Ix, (16)

(A¥)x

If

where Iy = a’. We can calculate S by taking the Fourier
transform of the phase pattern generated by the second
factor of Eq. (6) and evaluating it for the zero spatial-
frequency component. Or we can use the equivalent
expression for ¥, where V is the normalized unscattered
fraction of light amplitude for a given plane wave gen-
erated by the signal term, and S = VV*, where

V= [ bl exp [=ib/2a) 1] di. (17

For the Rayleigh-probability amplitude distribution, the
corresponding intensity distribution is p(Iy) = (1/2¢7)
exp (—Iy/25°). The resulting expression for V is

V=114 jbc*/a)]". (18)

After substituting for the constants and using previously
mentioned equalities, we find the total reconstructed un-
scattered-to-scattered flux ratio (S/N); to be

(S/N)r = K*/m°B”. 19)

The quantity (S/N); indicates the effect that converting
intermodulation terms into a phase pattern has on the
ratio of unscattered-to-scattered light flux. (S/N) versus
K is shown in Fig. 2 for two values of mB. It is evident
that by increasing mB and K we can obtain high-diffraction
efficiency and high signal-to-noise ratio as well. Scattering
or noise caused by granularity of the medium or non-
linearities in the amplitude of the reconstructed wavefront
are not included in (S/N)r.

Three-dimensional recording media

The diffraction efficiency from dielectric volume media
has also been reported elsewhere,”" so only a brief sum-
mary is given here. As mentioned previously, we consider
the case where the interference pattern between the ref-
erence and signal beams is recorded as a volume holo-
gram, while the intermodulation terms are recorded as
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two-dimensional phase holograms. The signal-to-noise
ratio is, therefore, the same as for the two-dimensional
case and is given by Eq. (19).

As the basis for calculating the efficiency of diffraction
from a volume dielectric hologram, we use the expression
for efficiency of diffraction from a recorded two-plane-
wave interference pattern derived by Kogelnik:

E(a,) = sin® [(xd/\ cos 8)An)], 0)

where An can be found from Egs. (5) and (6) and is the
same as for two-dimensional media. We find the diffrac-
tion efficiency the same way as for two-dimensional media,
except that diffraction efficiency as a function of a, is
now given by Eq. (20) instead of Eq. (12):

I

(E) fo (a,/c”) exp (—a;/20°) sin® (3ba,) da,

= 1b°" exp (—3b°0") 1 F,(3; §; 3b°0°), 1)

where . F,(e; v; x) is a confluent hypergeometric function,”

and
o a o afat 1)
]Fl(a’b’x)_]+vx+v<v+l>2!
afa+ \fat2\x"
+u<v—l—1>(u+2> 3!+ ’ 22)

Substituting for » and ¢ in Eq. (21), we get
(E) = (m°B*/K)

-exp (—m’B*/K).Fi(3; §; m*B*/K). (23)

Figure 4 shows the diffraction efficiency versus K for
several values of mB and also the efficiency of a two-
plane-wave interference pattern, as given by Eq. (20). The
maximum efficiency for a diffuse signal wave is 649,. It
is obvious that higher (S/N); is possible with larger
constant mB. The results from Eq. (23) and the graphs
in Fig. 4 do not apply to the case in which the inter-
modulation terms are also recorded in volume.

Experimental investigation

Dielectric holograms were made by bleaching developed
photographic emulsions. The bleached plates had some
residual absorption and, therefore, were not purely dielec-
tric holograms. The average transmittance of these holo-
grams was about 50%, and we can expect the diffrac-
tion efficiency also to be lower than the theoretic prediction
by about a factor of two.

Several characteristics of the holograms were measured:
the diffraction efficiency, signal-to-noise ratio (S/N); and
contrast ratio (S/N)¢ of the image. The object consisted
of a square diffuse glass plate with a small opaque rec-
tangle in the center. Contrast was measured at the center
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Figure 4 Diffraction efficiency in percent, and signal-to-
noise ratio (S/N)r of a volume dielectric hologram versus
the reference-to-average signal-beam irradiance K.

Figure 5 Optical system for measuring (S/N)r.
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of the image. The signal beamwidth, defined as the angle
subtended by the object at the hologram plane, was
determined by the object-to-hologram distance. For all
measurements the emulsion side of the hologram was
placed in a liquid gate with xylene to reduce the effects
of surface relief patterns.

(S/N); was measured using the optical system shown
in Fig. 5. The zero-diffracted order was imaged by lens
L, onto a power meter at P;. With the unscattered por-
tion of light blocked at P,, the power reading is propor-
tional to noise N; with all of the zero-diffracted order
light falling on the power meter, a reading proportional
to S + N is obtained. From these readings (S/N); was
calculated.

The holograms were recorded on Kodak 649F plates,
developed in D-19 for five minutes, rinsed, fixed and
washed. They were then bleached as follows:

1) 10 minutes in Kodak SH-1 hardener,**
2) 10 minutes in CuBr, bleach,*’

3) 4 minutes in Kodak CB6 clearing bath,
4) 5 minutes in desensitizing solution.

The plates were rinsed for one minute after the first three
steps, but were not washed after the last step. The plates

SEPTEMBER 1970

2 7
10 / (SIN),

10!

1)y and (S/N)

(E(q

Figure 6 Experimentally measured diffraction efficiency
(E(qg = 1)) in percent, for the first diffracted order, signal-
to-noise ratio (S/N)r, and contrast ratio (S/N)¢ of a two-
dimensional dielectric hologram. Test parameters: average
density before bleaching 2.6, mean carrier frequency 65
lines/mm, signal beamwidth 0.7°.

were wiped clear of excess water with a windshield wiper
blade and then dried in air.

The bleaching solution was the same as described in
Ref. 27 except that equal parts of solutions A and B
were used without being diluted. The use of hardener
eliminated the problems previously encountered with this
bleach. The desensitizing solution consisted of 25g of
CuBr, per liter, with photo flo and Pakasol print-flat-
tening solution added to reduce emulsion shrinkage.

Figure 6 shows the results obtained with a two-dimen-
sional dielectric hologram. A peak efficiency of 129, was
reached, about one-half the theoretical maximum. The
efficiency was 99, with a corresponding (S/N)¢ = 20,
a good contrast level. The (S/N); curve has higher values
than (S/N)c, but theoretical considerations indicate (S/N)¢
< (S/N)¢ for a constant K. This indicates that other
sources of noise besides those considered in the calcula-
tions are significant. Other possible sources of noise
might be grain scattering and lateral distortion of fringe
patterns.

Figure 7 shows similar results for a volume hologram:.
A peak efficiency of 369, was achieved, and 339, effi-
ciency was obtained with (S/N)c = 20. In this case,
(S/N)r < (S/N)c as expected. The value of (S/N)¢ for
large K decreases since grain scattering remains con-
stant while the signal level decreases.

Conclusion

Diffraction efficiencies and signal-to-noise ratios were cal-
culated for diffuse-signal-beam holograms recorded in
dielectric media. The calculations were based on the
assumption of linear refractive-index change as a func-

1 10t 102 10*
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Figure 7 Experimentally measured diffraction efficiency
(Ey in percent, signal-to-noise ratio (S/N)r, and contrast
ratio (S/N)¢ of a volume dielectric hologram. Test param-
eters: average density before bleaching 4.0, mean carrier
frequency 1330 lines/mm, signal beamwidth 6°.

tion of exposure, Rayleigh-probability amplitude distri-
bution in the signal beam and two-dimensional recording
of intermodulation terms. Only noise caused by the con-
version of intermodulation terms into a corresponding
phase pattern was considered; noise generated by non-
linear transfer characteristics or grain scattering was not
included.

Dielectric holograms that depart from the theoretical
model in several aspects were experimentally made. The
holograms have considerable residual absorption; the
emulsion undergoes distortion during processing; the
change in exposure versus refractive index is probably
not very linear; and grain scattering adds to the noise.
Other recording materials have better characteristics."

In comparing general trends, agreement can be observed
between experimental and theoretical results: (S/N)¢ in-
creases with K although, experimentally, at a slower rate
than predicted; diffraction efficiency decreases in propor-
tion to K~ ' at low efficiencies; the shapes of the efficiency
curves near the maximum are similar; the differences in
maximum efficiencies can be accounted for by the residual
absorption of the bleached plates. Closer comparison is
difficult since the constants mB are not known for the
experimental case.

Dielectric holograms have linear response curves over
a range of amplitudes, as shown in Fig. 1. Absorption

J. UPATNIEKS AND C. D. LEONARD

holograms have similar response curves except that the
peak efficiency is approximately 69%. Since, evidently,
intermodulation noise can be made negligible in dielec-
tric holograms, images of higher over-all quality should
be possible with such holograms.
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