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Noise and Distortion in Photographic Data Storage

Abstract: Noise and distortion limit the usefulness of the photographic transparency as a data-storage medium. The noise, which tends
to be multiplicative, derives from the random distribution of silver grains in the photographic image, as well as from thickness variations
in the developed emulsion. Distortion, on the other hand, results from 1) the nonlinear relation between transmittance and exposure,
2) the finite width of the emulsion’s point-spread function and 3) the existence of an adjacency-enhancement function, Although grain
noise remains intrinsic and untreatable, nonlinear distortion—both global and local-—may be treated by lowering the contrast of the
exposure pattern or, preferably, by recording the data in the form of a phase-modulated carrier wave, as in holography. A solution
to the remaining difficulty, namely, linear-global distortion, is obtained through the use of high-resolution, Lippmann-type emulsions.

Introduction

Noise and distortion limit the usefulness of photographic
film as a data-storage medium.'”® The noise arises from
the statistical nature of the photographic process—that
is, from natural fluctuations in the number of silver-
halide grains exposed and developed per unit area.
These fluctuations produce similar variations in the
transparency’s optical density and emulsion thickness,
and hence also in its amplitude and intensity transmit-
tances. Because of the square-root-of-the-sample-size
rule, such variations increase approximately as the square
root of the mean density, Since amplitude transmittance
depends exponentially on both optical density and emul-
sion thickness, additive variations in these quantities lead
to multiplicative fluctuations in the mean transmittance
level. Like the grain noise, the usable signal intensity
also increases with the mean transmittance. Consequently,
optimum signal-to-noise ratios are achieved with low-
level, high-contrast exposure patterns.

Distortion, on the other hand, results because the
incoming photon stream exposes the emulsion’s silver-
halide crystals on a roughly one-for-e¢ basis, where e
denotes the quantum efficiency of the emulsion. According
to Nutting’s formula, the optical density increases in
proportion to the silver-grain density, and hence also
in proportion to the exposure. Consequently, the trans-
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mittance, being an exponential function of the optical
density, also tends to depend exponentially on the ex-
posure. Such nonlinearity appears distinctly on all T; vs E
curves and generates quadratic and higher-order de-
viations from strict linearity. Though nonstatistical,
quadratic and higher-order distortion degrade the recorded
data much as grain noise, unless such deviations remain
small. The usual technique for suppressing the effects
of nonlinearity is to combine the exposing signal with
a large bias, so that the quadratic term diminishes in
proportion to the signal-to-bias ratio. Consequently, linear
data recording is achieved by using a low-contrast emul-
sion in conjunction with a low-contrast exposure.
According to the above discussion, the need for high
signal-to-noise ratios (SNR) and high signal-to-distortion
ratios (SDR) leads to conflicting requirements for the
exposure pattern—the former requiring high-contrast
exposures and the latter, low-contrast ones. Although
the grain noise remains intrinsic and untreatable, one
may suppress the various distortion terms by trading
off bandwidth for linearity. One such technique, originally
noted in holography, phase-modulates the signal pattern
onto a carrier wave whose frequency is at least three
times the signal bandwidth. In this case the linear, quad-
ratic and higher-order effects can be physically separated
by ordinary diffraction techniques. Moreover, once
modulated on the carrier, linearity restrictions disappear,
so that one may employ both high-contrast film and
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Figure 1 Emulsion geometry. (Dimensions have been ex-
aggerated for clarity.)

high-contrast exposures to increase both the signal-to-
noise ratio and absolute signal strength.

The photographic transparency also suffers the problems
of finite resolution capability and adjacency-enhancement
effects. Loss of resolution, a linear phenomenon, results
from the finite diameter and/or the finite number of
silver grains in the developed image. However, one can
purchase emulsions with grain sizes and grain densities
sufficient to resolve the detail of any optical image
(provided that exposure levels remain above threshold),
thus making the wavelength of light the limiting factor
in resolution. The adjacency effect, on the other hand,
is a nonlinear phenomenon that arises from the emulsion’s
tendency to draw unused developer from low-exposure
areas of the emulsion to high-exposure ones. Because of
this movement, low-exposure regions underdevelop, and
high-exposure ones overdevelop, exaggerating thereby
any sharp changes or discontinuities in the exposure pat-
tern. Like other nonlinearities, adjacency effects are re-
duced by using either low-contrast or phase-modulated
exposure patterns.

Grain noise

The grain noise discussed above results from the un-
avoidable statistical fluctuations in the number of silver
grains remaining per unit area in the developed emulsion.
The exposure process, being a quantum-mechanical
interaction between photons and silver-halide crystals,
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follows, approximately, Poisson statistics. Thus the rms
fluctuation AN expected in the mean grain density N
increases as the square root of N:

N+ AN=N=x 4/N.

This relation indicates that higher grain densities N lead
to larger absolute fluctuations AN, but smaller fractional
variations AN/N. Thus, fine-grain emulsions typically
generate less statistical noise than coarse-grain ones.

The connection between grain density N and optical
density D follows from the geometry of Fig. 1. According
to this figure the light dI lost in the emulsion layer situated
between z and z 4+ dz depends on the light intensity at
the layer I(z), the number of grains per unit volume
(N/r), the mean absorption cross section per grain a
and the thickness of the emulsion layer dz:

dl = —a(N/0l(z)dz,

where ¢ denotes the nominal thickness of the emulsion.
Integration of this expression then yields the light intensity
as a function of :z:

I(z) = I(0) exp (—aNz/1),

where I(0) represents the incident light intensity. The
intensity transmittance 7;, defined as the ratio of the
emerging intensity to the incident one, thus depends
exponentially on the mean grain density N:

T, = I(t)/I0) = exp (—aN).

On the other hand, the optical density D = —log T;,
increases linearly with N:

T, = 107° = exp (—2.3D) = exp (—aN).

Thus, 2.3D = aN, a relation known as Nutting’s formula. "’
The rms fluctuation in the optical density follows from
the proportionality between D and N:

D+ AD = (a/2.3)(N £+ +/N).

This equation implies that the observed variations in D
depend on whether N is measured in grains per square
meter or grains per square micrometer. To eliminate
this ambiguity, let d represent the dimension of the finest
detail to be recorded by the emulsion. Then the mean
number of grains n expected in an element with dimension
d X dis just Nd”, and

D =+ o = (a/2.3d)(n = V/n),

where o denotes the granularity of the emulsion. Sub-
stitution for n then yields

g = \/aD/2.3/d.

This equation indicates that the observed granularity
increases as the square root of the mean density (the
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\/ D law'") and decreases inversely as the image detail d
(Selwyn’s law™?).

In practice, film manufacturers measure the rms gran-
ularity of their emulsions with a scanning densitometer,
and then use the +/ D law and Selwyn’s law to convert
them for use at other densities and other resolutions.
In particular, if ¢, denotes the rms granularity measured
at a film density D, and with a scanning aperture d,
then the granularity o expected at an optical density D
and with image detail d is given by

o = oo(dy/d)\/ D/ D,.

For example, Kodak 649F plate and film—comparatively
“quiet” storage media—have o, = 0.5%, D, = 0.8
and dy = 42 ym.

Fluctuations in optical density, of course, produce
corresponding variations in intensity transmittance. If
one neglects the vV D law—a good approximation if
the exposure pattern has moderate-to-low contrast—then
the noise-like fluctuations in density look additive:

D(x, y) = bias 4 signal + noise

= Dy 4+ Dy(x, y) + Dulx, »).

Written this way, the intensity transmittance takes the
form

T, = 107P*~P==P» = pias X signal X noise.

In other words, additive fluctuations in grain or optical
density produce multiplicative variations in the intensity
transmittance.

When D, and D, are small relative to unity, both the
signal and noise portions of the transmittance become
additive. That is,

T; ~ 10771 — 23 D)1 — 2.3 D)
~ T, — 23T, D, — 2.3T, D,
= Tb + Ts + Tn'

In this case both the signal and the noise increase in
proportion to the bias transmittance; in addition, T,
increases as the square root of the bias density (the +/ D
law). Thus the rms fluctuation in T, has the form

rms T, = 2.3Ty0 = 2.3Ty0o(do/d)\/ Dy/ Ds.

Consequently, lower exposure levels (that is, small values
of D,) produce the better signal-to-noise ratios.

The amplitude transmittance, defined as the ratio of
the amplitude emerging from the emulsion to the ampli-
tude incident upon it, depends in addition on any thick-
ness variations in the transparency. Thickness variations,
both systematic and random, arise because the silver
grains making up the developed image cause the emulsion
to bulge out in proportion to the volume of residual
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silver. Thus, if #, denotes the thickness when no silver is
present, and ¢, the thickness when N grains per unit area
develop, then

t = t,+ Nu,

where v equals the mean volume of the various silver
grains. Substitution from Nutting’s formula then yields

t = 1, + 2.3D@w/a).

Thus, the height of the relief image varies as the optical
density.”®

According to the above, the relative phase shift suffered
by the radiation on its trip through the emulsion is just

¢ = k(t — to)(n — 1) = 2.3kD(v/a)(n — 1) = 2.3«D,

where n denotes the refractive index of the gelatin and «,
an empirically determined constant. Consequently, the
amplitude transmittance takes the basic form:

T. = T exp (ip) = TF10°™> = T,

In other words, intensity and amplitude transmittance
are linked by a complex power law. (In practice, the
fixing, bleaching and tanning operations also affect the
magnitude of the observed phase shift ¢.)

Transmittance versus exposure characteristics
The emulsion’s transmittance versus exposure curve spec-
ifies the intensity transmittance 7; expected with an ex-
posure level E. Qualitatively, the T; vs E characteristic
resembles an exponential-decay function since increasing
exposure levels lead to ever-lower transmittances. Expo-
nential parameterization also produces the correct asymp-
totic behavior, since this function tends toward constant
transmittance as E tends to zero and toward zero trans-
mittance as E goes to infinity. Exponential dependence is
also expected on theoretical grounds. That is, the incoming
photons tend to expose the emulsion’s silver-halide crys-
tals on a one-for-e basis, where e denotes the quantum
efficiency of the emulsion. Consequently, the number of
grains exposed per unit area increases more or less linearly
with E:

N = N, + €E/hv,

where hv represents the energy carried per photon, and
N, is a number related to the emulsion’s fog level. Nutting’s
formula then yields the exponential behavior

T, = exp(—2.3D) = exp(—aN)
= exp(—aN, — aeE/hv)
T, exp(—E/E’).

i

Here, T, denotes the maximum intensity transmittance
of the emulsion, and E’ the exposure level that drops
T; to 1/e of its maximum value.
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Figure 2 Exponential fits to T, vs E curves. The dashed line represents a best chi-square fit of the exponeatial form T, =
Ty exp (— E/E") to the experimental points of Horner.1¢ (a) SO-267, dev. 3 min. in DK-76; (b) Pan-X, dev. 3 min. in DK-76; (c) 649F,

dev. 5 min. in DK-19

Exponentiality also results from linearity on the D vs
log E curve. The D vs log E curve, it will be recalled, is
popular with the portrait photographer because the human
eye responds more or less logarithmically to incident
light levels. Thus, while data-storage applications require
linearity on the 7; vs E curve, the portrait photographer
prefers linearity between log T; and log E or, more con-
ventionally, between D and log E:

D = v log (E/Ey),

where v and E, denote the usual empirical constants.
The exposure E, of course, consists of a bias term E,
and a signal term E,, so that linearity between D and log
E means that

T, = (E/E)"
= (E/E) "(1 + E./E) "
~ T(l — vE,/E)
~ T, exp(—vE,/E.,).

Thus, to first order, linearity on the portrait photographer’s
D vs log E curve implies exponentiality on the data
processor’s 7; vs E curve.'? (See also Fig. 2.)

Using exponential parameterization one can look both
quantitatively and qualitatively at the distortion generated
by the nonlinearity in the 7; vs E curve. In particular,
since E,/E, = L/,

T, =T, eXP(—’YIs/Ib)
A Tl — v(IL/L) + 3L/ L)
Tb + Ts + Td .

i

D. G. FALCONER

The first term, 7}, represents the bias transmittance; the
second, T, the signal transmittance; and the last, T,, a
quadratic distortion term. For accurate data recording
the distortion should appear small relative to the signal:

SDR = T./Ti = 2/v(L/k).

This formula indicates that both low-contrast emulsions
(small ) and low-contrast exposures (small rms I,/I)
are required for good signal-to-distortion ratios (SDR).
On the other hand, for good signal-to-noise ratios,

SNR = T,/T, = v(I,/1,)/2.300(ds/d)\/ Dy/ Do,

both high-contrast emulsions and high-contrast, low-level
(small D,) exposures are required. Consequently, the need
for both good SDR and SNR leads to conflicting exposure
and emulsion conditions.

To alleviate the conflict, one can phase-modulate the
signal (or an equivalent thereof, such as its Fourier or
Fresnel transform) onto a carrier wave of spatial frequency
v. The exposure pattern then has the basic form

I(x, y) = L, + I, cos[2mvx + ¢(x, )],

where I, denotes a constant, and ¢(x, y) the phase modula-
tion. The intensity transmittance generated by this pat-
tern contains harmonics of all orders:

T; = T, exp [_’Y(Io/lb) cos (2mvx + @)}
=T, 2, (=)' I/ L) cos™ Qmx + ¢)/n!

As is evident from Fig. 3, the power spectrum of the nth
order will overlap the first unless

v+ Q@< n(p — Q),
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where Q denotes the highest spatial frequency in the
phase-factor exp(i¢). Inspection of the inequality indicates
that the spectrum of no order will overlap that of the
first if » > 3Q. Consequently, by reducing the signal
bandwidth in the x-dimension by one-third and using
coherent optical techniques to separate the various orders,
one can pass the signal undistorted through the non-
linearity, and thus eliminate the ‘‘exposure/emulsion”
conflict noted above.

Resolution and adjacency

The nonlinearity associated with the T, vs E curve classi-
fies as a local nonlinearity. In photography, local non-
linearity implies that the transmittance observed at
the point (x, y) depends only on the exposure at (x, y).
In practice, however, global dependencies also arise, so
that the transmittance produced at (x, y) depends not
only on the exposure at (x, y), but also on the exposure
at points nearby (x, y). By restricting consideration to
linear- and quadratic-type distortions, one can represent
the effects of local and global distortion as products
and convolutions, respectively:

T, = AE local linearity

T, = BE’ local nonlinearity
T, =C*E global linearity

T, = D*E’ global nonlinearity.

Here 4 and B denote constants; C and D, functions of
x and y; and *, two-dimensional convolution.

The finite resolution capability of the photographic
transparency classifies, for example, as a global linearity.
It is specified quantitatively by defining a point-spread
function S(x, y) for the emulsion. The point-spread func-
tion, in turn, specifies the image expected when the ex-
posure pattern is a Dirac delta function, and the non-
linear character of the T; vs E curve has been accounted
for. In other words, the observed transmittance has the
form

T; = T, exp[—v(L,/L) * Sl.

According to the literature'* the point-spread function
looks roughly Gaussian:

S(x, y) = (1/270°%) exp(—r*/267),

where o denotes the rms width of the Gaussian distri-
bution, and r* = x* 4+ y°. Consequently, its Fourier
transform S(£, 7) also appears Gaussian:

8¢, m = exp(—o’p’/2),

where £ and 7 are measured in radians per unit length,
and p° = £ -+ 4°. For portrait-type films, o is typically
on the order of 10 micrometers; for high-resolution,

Lippmann-type emulsions, it may be one micrometer or
less.
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Figure 3 Distorted power spectrum of phase-modulated
signal. Note that the low-frequency edge of the nth dif-
fraction order will not overlap the high-frequency edge of
the first if (v + ) < n(r — Q).

Adjacency effects, on the other hand, classify as global
nonlinearities of the quadratic variety.'® Adjacency,
it will be recalled, tends to enhance sharp changes and
discontinuities in the exposure pattern, and is specified
quantitatively by defining an adjacency-enhancement func-
tion A(x, y) for the emulsion. Assuming, as before, an
exponential 7; vs E nonlinearity leads to an observed
transmittance of the form:

T, =T, eXP[—’Y(Is/Ib) *S— ’Y(Is/lb)2 * A].

Horner'® has suggested that the adjacency-enhancement
function has the form of the second derivative of a
Gaussian distribution:

A(x, ) = —(Ao/m)d’/dr’) exp(—1°/277),

where 4, reflects the strength of the enhancement and 7
measures its effective range. Consequently, its Fourier
transform takes the form of a Maxwell-Boltzmann dis-
tribution:

A, m) = Ar"p”) exp(—7"p/2),
Typically, 7 is on the order of 10 um.

The modulation transfer function, as specified and meas-
pred by the film manufacturer,'” represents a mixture of
resolution and adjacency effects. To measure the MTF
associated with a given emulsion, one exposes the film
to a cosinusoidal intensity distribution of the form

I(x,y) = L 4+ L(x,y) = I + I, cos wx

and then measures the resulting intensity transmittance.
The MTF is defined as the ratio of the modulation M’
of the developed image to the modulation M of the
exposing intensity pattern—after correction for any non-
linearity in the T; vs E curve. Calling R = I,/I, thus
leads to the following expression for the MTF:

MTF = M'/M = rms(R * S + R® * A)/rms R.

Substitution for R, S and A4, and evaluation of the con-
volution integrals then yields

MTF = exp(—o’w’/2) + Ay(27°w") exp(—27°w?).
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Figure 4 Point-spread, adjacency-enhancement, and MTF
curves. (a) Point-spread function; (b) its Fourier transform;
(c) adjacency-enhancement function; (d) its Fourier trans-
form; (e) theoretical MTF; and (f) experimental MTF
(Royal-X Pan, dev. 5 min. in DK-50").
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The first term decreases monotonically with increasing w;
the second rises to a maximum at w = 1/4/ 2 7, after
which it decreases exponentially toward zero. The two
terms thus form a typical MTF curve, as shown in Fig. 4.
Adjacency effects, it will be noted, generate the experi-
mentally observed bump at the lower spatial frequencies.
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