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Noise  and  Distortion  in  Photographic  Data  Storage 

Abstract: Noise and  distortion  limit the usefulness  of the  photographic  transparency as a data-storage medium. The  noise,  which  tends 
to be  multiplicative,  derives  from  the  random  distribution of  silver grains  in  the  photographic  image, as well  as from  thickness  variations 
in the developed  emulsion. Distortion, on the other hand, results from 1) the nonlinear  relation between transmittance and exposure, 
2) the finite  width of the emulsion's point-spread  function  and 3) the existence  of an  adjacency-enhancement  function.  Although  grain 
noise  remains  intrinsic  and  untreatable,  nonlinear  distortion-both  global  and local-may be treated by  lowering the contrast of the 
exposure  pattern or, preferably,  by  recording the data in the form of a phase-modulated  carrier wave,  as  in  holography. A solution 
to the remaining  difficulty,  namely,  linear-global distortion, is obtained  through the use of high-resolution,  Lippmann-type  emulsions. 

Introduction 
Noise and distortion limit the usefulness of photographic 
film as a data-storage medi~m."~  The noise arises from 
the statistical nature of the photographic process-that 
is, from  natural fluctuations in  the number of silver- 
halide  grains exposed and developed per  unit  area. 
These fluctuations  produce similar variations in  the 
transparency's  optical density and emulsion thickness, 
and hence also in  its amplitude and intensity transmit- 
tances. Because of the square-root-of-the-sample-size 
rule, such variations increase approximately as  the square 
root of the mean density. Since amplitude  transmittance 
depends exponentially on  both optical density and emul- 
sion thickness, additive  variations in these quantities lead 
to multiplicative fluctuations in  the mean  transmittance 
level. Like the grain noise, the usable signal intensity 
also increases with the mean transmittance. Consequently, 
optimum signal-to-noise ratios are achieved with low- 
level, high-contrast exposure patterns. 

Distortion, on  the  other  hand, results because the 
incoming photon stream exposes the emulsion's silver- 
halide crystals on a roughly one-for-e basis, where e 

denotes the  quantum efficiency of the emulsion. According 
to Nutting's  formula, the optical density increases in 
proportion  to  the silver-grain density, and hence also 
in proportion  to  the exposure. Consequently, the trans- 
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mittance, being an exponential  function of the optical 
density, also  tends to depend exponentially on  the ex- 
posure. Such nonlinearity appears distinctly on all Ti vs E 
curves and generates quadratic  and higher-order de- 
viations from strict linearity. Though nonstatistical, 
quadratic  and higher-order distortion  degrade the recorded 
data much as grain noise, unless such deviations remain 
small. The usual technique for suppressing the effects 
of nonlinearity is to combine the exposing signal with 
a large bias, so that  the  quadratic  term diminishes in 
proportion  to  the signal-to-bias ratio. Consequently, linear 
data recording is achieved by using a low-contrast emul- 
sion in conjunction with a low-contrast exposure. 

According to  the above discussion, the need for high 
signal-to-noise ratios  (SNR)  and high signal-to-distortion 
ratios  (SDR) leads to conflicting requirements for  the 
exposure pattern-the former  requiring  high-contrast 
exposures and  the  latter, low-contrast ones. Although 
the grain noise remains  intrinsic and untreatable, one 
may suppress the various  distortion terms by trading 
off bandwidth for linearity. One such technique, originally 
noted in holography, phase-modulates the signal pattern 
onto a carrier wave whose frequency is at least three 
times the signal bandwidth. In this case the linear,  quad- 
ratic and higher-order effects can  be physically separated 
by ordinary diffraction techniques. Moreover, once 
modulated on  the carrier, linearity restrictions  disappear, 
so that  one may employ both high-contrast film and 521 
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Figure 1 Emulsion geometry. (Dimensions have been ex- 
aggerated for clarity.) 

high-contrast  exposures to increase  both the signal-to- 
noise ratio and absolute signal strength. 

The photographic transparency  also  suffers the problems 
of finite  resolution  capability and adjacency-enhancement 
effects. Loss of resolution, a linear phenomenon,  results 
from the finite  diameter and/or the finite  number of 
silver  grains in the developed  image.  However,  one  can 
purchase  emulsions  with  grain  sizes and grain  densities 
sufficient to resolve the detail of any optical image 
(provided that exposure levels remain  above  threshold), 
thus making the wavelength  of light the limiting factor 
in resolution. The adjacency  effect, on the other hand, 
is a nonlinear  phenomenon that arises from the emulsion's 
tendency to draw unused  developer from low-exposure 
areas of the emulsion to high-exposure  ones.  Because  of 
this  movement,  low-exposure  regions  underdevelop, and 
high-exposure  ones  overdevelop,  exaggerating  thereby 
any sharp changes or discontinuities  in the exposure pat- 
tern. Like other nonlinearities,  adjacency  effects are re- 
duced by using  either  low-contrast or phase-modulated 
exposure patterns. 

follows,  approximately,  Poisson  statistics. Thus the rms 
fluctuation AN expected in the mean  grain  density N 
increases  as the square root of N: 

N f  A N =  N f  d7. 
This  relation  indicates that higher grain densities N lead 
to larger absolute fluctuations AN, but smaller fractional 
variations ANIN. Thus,  fine-grain  emulsions  typically 
generate  less statistical noise than coarse-grain  ones. 

The connection between grain  density N and optical 
density D follows from the geometry of Fig. 1. According 
to this  figure the light d l  lost in the emulsion  layer situated 
between z and z + dz depends on the light  intensity at 
the layer Z(z), the number of grains  per  unit  volume 
( N / f ) ,  the mean absorption cross  section  per  grain a 
and the thickness of the emulsion  layer dz: 

dl  = - a(N/t)Z(z)dz, 

where t denotes the nominal  thickness of the emulsion. 
Integration of this  expression then yields the light  intensity 
as a function of z: 

Z(z) = Z(0) exp ( -aNz/ t ) ,  

where Z(0) represents the incident  light  intensity. The 
intensity transmittance T, defined as the ratio of the 
emerging  intensity to the incident  one, thus depends 
exponentially on the mean  grain  density N: 

Ti = Z(t)/Z(O) = exp ( -aN).  

On the other hand, the optical  density D = -log Ti, 
increases  linearly  with N: 

Ti = = exp ( " 2 . 3 0 )  = exp ( -aN).  

Thus, 2.30 = aN, a relation known as Nutting's  formula." 
The rms  fluctuation in the optical  density  follows  from 

the proportionality between D and N: 

D f AD = (u/2.3)(N f dx). 
This equation implies that the observed  variations in D 
depend on whether N is  measured in grains  per  square 
meter or grains  per  square  micrometer. To eliminate 
this  ambiguity, let d represent the dimension of the finest 
detail to be recorded by the emulsion.  Then the mean 
number of grains n expected in an element  with  dimension 
d X d is just Nd2, and 

D f u = (a/2.3d2)(n f &), 

Grain noise 
The grain  noise  discussed  above  results from the un- 

where u denotes the granularity of the emulsion.  Sub- 
stitution for n then yields 

avoidable statistical fluctuations in the number of  silver = da 
grains  remaining per unit area in the developed  emulsion. 
The exposure  process,  being a quantum-mechanical  This equation indicates that the observed  granularity 

522 interaction between photons and silver-halide  crystals,  increases as the square root of the mean  density (the 
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.\/D law”) and decreases inversely as the image detail d 
(Selwyn’s law1’). 

In practice, film manufacturers measure the rms  gran- 
ularity of their emulsions with a scanning densitometer, 
and  then use the 45 law and Selwyn’s law to convert 
them for use at other densities and  other resolutions. 
In particular, if uo denotes the rms  granularity measured 
at a film density Do and with a scanning aperture do, 
then the granularity u expected at an optical density D 
and with image detail d is given  by 

= uo(do/d) d o /  Do. 

For example, Kodak 649F plate and film-comparatively 
“quiet”  storage media-have un = OS%,, Do = 0.8 
and do = 42 pm. 

Fluctuations in optical density, of course, produce 
corresponding  variations  in intensity transmittance.  If 
one neglects the 6 law-a good  approximation if 
the exposure pattern  has moderate-to-low contrast-then 
the noise-like fluctuations  in density look additive: 

D(x,  y )  = bias + signal + noise 

= Db + DS(x, Y )  Y ) .  

Written this way, the intensity transmittance  takes  the 
form 
T~ = 10-Db-D”-”n = bias X signal X noise. 

In other words, additive  fluctuations in grain or optical 
density produce multiplicative variations in  the intensity 
transmittance. . 

When D, and D, are small relative to unity, both  the 
signal and noise portions of the transmittance become 
additive. That is, 

Ti M 10-Db(l - 2 .3   D , ) ( l  - 2.3 0,) 

M Tb - 2.3Tb  D, - 2.3Tb D, 

Tb + T,  + T, .  

In this case both the signal and  the noise increase in 
proportion  to  the bias transmittance; in addition, T, 
increases as the  square  root of the bias density (the 
law). Thus  the rms  fluctuation in T, has  the  form 

__- 

rmS T, = 2.3Tbg = 2.3Tbgo(do/d)dDb/Do.  

Consequently, lower exposure levels (that is, small values 
of Db) produce the better signal-to-noise ratios. 

The amplitude  transmittance, defined as the  ratio of 
the amplitude emerging from  the emulsion to the ampli- 
tude incident upon  it, depends in addition on any  thick- 
ness variations in  the transparency. Thickness variations, 
both systematic and random,  arise because the silver 
grains  making  up the developed image cause the emulsion 
to bulge out  in proportion to  the volume of residual 

silver. Thus, if to denotes the thickness when no silver is 
present, and t, the thickness when N grains  per unit area 
develop, then 

t = t o  + NU, 

where u equals the mean volume of the various silver 
grains. Substitution from Nutting’s formula then yields 

t = t o  + ~ . ~ D ( u / u ) .  

Thus,  the height of the relief image varies as the optical 
den~i ty .~”  

According to  the above, the relative phase  shift suffered 
by the  radiation  on its trip  through  the emulsion is  just 

4 = k(t - to)(n - 1 )  = 2.3kD(u/~)(n - 1) E 2 . 3 ~ D ,  

where n denotes the refractive index of the gelatin and K ,  
an empirically determined constant. Consequently, the 
amplitude  transmittance  takes the basic form: 

T, = T? exp (i4) ~ t 1 0 t ~ ~  ~ f + ~ ~ .  

In  other words, intensity and amplitude  transmittance 
are linked by a complex power law. (In practice, the 
fixing, bleaching and  tanning operations also affect the 
magnitude of the observed phase  shift 4.) 

Transmittance versus exposure characteristics 
The emulsion’s transmittance versus exposure curve spec- 
ifies the intensity transmittance Ti expected with an ex- 
posure level E .  Qualitatively, the Ti vs E characteristic 
resembles an exponential-decay function since increasing 
exposure levels lead to ever-lower transmittances.  Expo- 
nential  parameterization also produces the correct asymp- 
totic behavior, since this  function  tends toward constant 
transmittance as E tends to zero and  toward zero  trans- 
mittance as E goes to infinity. Exponential dependence is 
also expected on theoretical  grounds. That is, the incoming 
photons tend to expose the emulsion’s silver-halide crys- 
tals  on a one-for-€ basis, where E denotes the  quantum 
efficiency of the emulsion. Consequently, the number of 
grains exposed per unit area increases more or less linearly 
with E:  

N = No + tE/hv, 
where hv represents the energy carried per photon,  and 
No is a number  related to  the emulsion’s fog level. Nutting’s 
formula then yields the exponential behavior 

Ti = exp(-2.30) = exp(-uN) 

= exp(--No - a&/hv) 

= To exp(- E/E’). 

Here, To denotes the maximum intensity transmittance 
of the emulsion, and E’ the exposure level that  drops 
Ti to l / e  of its maximum value. 523 
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Figure 2 Exponential  fits to T,  vs E curves.  The dashed line  represents a best  chi-square fit of the exponential form T,  = 
TO exp ("EIE')  to the  experimental  points of Horner.16 (a) SO-267, dev. 3 min. in DK-76; (b) Pan-X, dev. 3 min. in DK-76; (c) 649F, 
dev. 5 min.  in DK-19 

Exponentiality also results from linearity on  the D vs 
log E curve. The D vs log E curve, it will be recalled, is 
popular with the  portrait photographer because the  human 
eye responds  more or less logarithmically to incident 
light levels. Thus, while data-storage  applications  require 
linearity on  the Ti  vs E curve, the  portrait photographer 
prefers linearity between log Ti and log E or, more con- 
ventionally, between D and log E: 

D = Y log (WE,), 
where y and Eo denote the usual empirical constants. 
The exposure E, of course, consists of a bias term Eb 
and a signal term E,, so that linearity between D and log 
E means that 

Ti = (E/Eo)- ' 
= (&'Eo)-'(1 + &'EJy 

Td1 - 'YEs/&) 

E Tb exp(-./E8/Eb)* 

Thus, to first order, linearity on  the  portrait photographer's 
D vs log E curve implies exponentiality on  the  data 
processor's Ti vs E curve.13  (See also Fig. 2.) 

Using exponential  parameterization one  can  look  both 
quantitatively and qualitatively at  the distortion generated 
by the nonlinearity in  the Ti  vs E curve. In particular, 
since E,/Eb = Is/Ib, 

Ti = Tb exp(-yla/lb) 

N" Tb[l - y(zs/zb) + $yz(za/1b)21 

524 Tb T, + Td . 

The first term, Tb, represents the bias transmittance;  the 
second, T., the signal transmittance; and  the last, T,, a 
quadratic distortion  term. For accurate data recording 
the distortion  should  appear small relative to  the signal: 

SDR = T,/Td = 2/y(Zs/Zb). 

This  formula  indicates that  both low-contrast emulsions 
(small y) and low-contrast exposures (small rms la/&) 
are required for good  signal-to-distortion  ratios (SDR). 
On  the  other  hand,  for good signal-to-noise ratios, 

both high-contrast emulsions and high-contrast, low-level 
(small &) exposures are required. Consequently, the need 
for both  good SDR and SNR leads to conflicting exposure 
and emulsion conditions. 

To alleviate the conflict, one can phase-modulate the 
signal (or an equivalent thereof, such as  its Fourier or 
Fresnel  transform) onto a carrier wave of spatial frequency 
v. The exposure pattern then has  the basic form 

I(x, Y )  = Ib + Io cos[2avx + +(x, Y) l ,  

where Io denotes a constant, and +(x, y )  the phase modula- 
tion. The intensity transmittance  generated by this  pat- 
tern contains  harmonics of all orders: 

Ti = Tb exp [-y(lo/Zb) cos (2avx + +)] 

= Tb ("y)"(lo/lb)" COSn (2TVX + +)/n! 
n 

As is evident from Fig. 3, the power spectrum of the nth 
order will overlap the first unless 

v + !2 < n(v - !2), 
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where f2 denotes the highest spatial frequency in  the 
phase-factor exp(i4). Inspection of the inequality indicates 
that  the spectrum of no order will overlap that of the 
first if u > 30 .  Consequently, by reducing the signal 
bandwidth in  the x-dimension by one-third and using 
coherent  optical techniques to separate the various  orders, 
one can  pass the signal undistorted through  the non- 
linearity, and  thus eliminate the "exposure/emulsion" 
conflict noted  above. 

Resolution  and  adjacency 
The nonlinearity associated with the Ti vs E curve classi- 
fies as a local nonlinearity. In photography, local non- 
linearity implies that  the transmittance observed at 
the point (x, y )  depends only on  the exposure at (x, y). 
In practice, however, global dependencies also arise, so 
that  the transmittance  produced at  (x, y )  depends not 
only on  the exposure at  (x, y ) ,  but also on  the exposure 
at points nearby (x, y) .  By restricting consideration to 
linear- and quadratic-type  distortions, one can represent 
the effects of local and global distortion as products 
and convolutions, respectively: 

7; = A E  local linearity 
T, = BE2 local nonlinearity 
T, = C * E  global linearity 
T, = D * E2 global nonlinearity. 

Here A and B denote  constants; C and D, functions of 
x and y ;  and *, two-dimensional convolution. 

The finite resolution capability of the photographic 
transparency classifies, for example, as a global linearity. 
It is  specified quantitatively by defining a point-spread 
function S(x, y )  for  the emulsion. The point-spread func- 
tion, in  turn, specifies the image expected when the ex- 
posure pattern is a Dirac delta  function, and  the non- 
linear  character of the Ti vs E curve has been accounted 
for.  In  other words, the observed transmittance has  the 
form 

Ti = T, exp[-y(l,/Z,) * SI. 
According to the l i t e r a t~ re '~  the point-spread  function 
looks roughly Gaussian: 

S(X, y )  = (1/2nc2) exp(-r'/202), 

where u denotes the rms width of the Gaussian  distri- 
bution, and r2 = x' + y2 .  Consequently, its Fourier 
transform S(l,  7) also appears  Gaussian: 

$6, 7) = exp(--'pZ/2), 

where [ and 7 are measured in  radians per unit  length, 
and p2 = 6' + 7'. For portrait-type films, CT is typically 
on  the  order of 10 micrometers; for high-resolution, 
Lippmann-type emulsions, it may be  one micrometer or 
less. 
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Figure 3 Distorted  power  spectrum of phase-modulated 
signal. Note  that the low-frequency edge of the  nth dif- 
fraction order will not overlap  the high-frequency edge of 
the first if ( V  + a) < n ( v  - a). 

Adjacency effects, on  the  other  hand, classify as global 
nonlinearities of the  quadratic variety.'5 Adjacency, 
it will be recalled, tends to enhance sharp changes and 
discontinuities in  the exposure pattern,  and is specified 
quantitatively by defining an adjacency-enhancement func- 
tion A(x ,  y )  for  the emulsion. Assuming, as before, an 
exponential Ti vs E nonlinearity leads to  an observed 
transmittance of the form: 

Ti = Tb exp[-y(Z,/Zb) * S - -y(ZS/Z$ * A]. 

Homer'' has suggested that  the adjacency-enhancement 
function has  the  form of the second derivative of a 
Gaussian  distribution: 

A(X, y )  = - (~ , / . r r ) (d ' /dr~)  exp(-- r2/27'), 

where A. reflects the strength of the enhancement and T 
measures its effective range. Consequently, its  Fourier 
transform  takes the  form of a Maxwell-Boltzmann dis- 
tribution: 

A(< ,  7) = A,,(T~~') exp(--'p2/2). 

Typically, T is on  the  order of 10 pm. 

The modulation  transfer  function, as specified and meas- 
ured by the film m a n u f a c t ~ r e r , ~ ~  represents  a mixture of 
resolution and adjacency effects. To measure the  MTF 
associated with a given emulsion, one exposes the film 
to a cosinusoidal intensity distribution of the form 

Z(x, y )  = Zb + Is(x, y )  = z, + lo cos wx 

and then measures the resulting intensity transmittance. 
The  MTF is defined as the  ratio of the modulation M' 
of the developed image to  the modulation M of the 
exposing intensity pattern-after correction for any non- 
linearity in  the Ti vs E curve. Calling R = Zs/Zb thus 
leads to the following expression for  the  MTF: 

MTF = M'/M = rms(R * S + R2 * A)/rms R. 

Substitution for  R, S and A ,  and evaluation of the con- 
volution integrals then yields 
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Figure 4 Point-spread,  adjacency-enhancement, and MTF 
curves. (a) Point-spread function; (b) its Fourier transform; 
(c) adjacency-enhancement function; (d) its Fourier trans- 
form; (e) theoretical MTF; and ( f )  experimental MTF 
(Royal-X Pan, dev. 5 min.  in  DK-50I1). 
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The first term decreases monotonically with increasing W ;  

the second rises to a maximum at w = 1 / 4 2  7, after 
which it decreases exponentially toward zero. The  two 
terms thus  form a  typical MTF curve, as shown in Fig. 4. 
Adjacency effects, it will be noted, generate the experi- 
mentally observed bump at  the lower spatial frequencies. 
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