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A Theory  of  Granularity  and  Bleaching  for  Holographic 
Information  Recording* 

Abstract: The Kelly  three-stage  model  of  photographic information  recording  is a mathematical  model of black-and-white  silver- 
halide  film  with granularity neglected. In the work  reported  here, the theory  is  extended  for  use  in  phase-holographic  applications. 
Granularity effects are  contained in the  fourth  and  final  stage, a two-dimensional,  nonhomogeneous,  filtered  Poisson  process.  The 
output of this  stage  is a sample function of the  random process that describes the pattern of modification of the emulsion.  Formulas 
for  the  signal-to-noise ratio of a hologram  and  the  optimum  granular  behavior are derived as examples  of the use  of the  granularity 
model. 

Introduction 
A decade ago D. H. Kelly’ formulated a mathematical 
model of photographic  information recording in terms of 
a sequence of three operations or stages connected in 
tandem, the  output of one being the  input of the next. 
To ensure that each  operation was a separate  entity,  free 
of interaction with the  other two, he separated the opera- 
tions in space and time. That is, he noted that first the 
radiant-flux pattern incident on  an emulsion sifts its way 
through  the  turbid emulsion and perhaps even bounces 
off the back of the film before it strikes the silver-halide 
crystals in  the emulsion. It is only when the incident 
photons strike the crystals that they  create latent-image 
centers on  and  in  the crystals. And  it is much later that 
the activated crystals, and  perhaps their near neigh- 
bors, are developed into silver grains at a rate which 
depends on  the local concentration of developer at  the 
crystals. Thus, Kelly was led to describe the photographic 
process in terms of 1) an optical-diffusion stage  functioning 
in  the emulsion and  its backing during exposure, 2) a 
sensitometry stage  functioning in  and  on  the crystals 
during  the formation of the latent image and 3) a chemical- 
diffusion stage  functioning  during development (see 
Fig. 1). 

The present work is based on Kelley’s original concepts 
with modifications of interest in phase holography.’ To 
begin with, the optical-diffusion formulation  is modified 
for exposure with coherent light. Secondly, the sensitometry 
and chemical-diffusion stages are discussed in terms of 
developed-silver density rather  than optical density. Lastly, 
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Figure 1 The structure of  Kelly’s  model of photographic 
information recording,  showing the decomposition  of the 
over-all operation into three spatially  and  temporally  sepa- 
rated stages. 

a fourth stage is added following the chemical-diffusion 
stage to account for granularity and bleaching or etching 
of the emulsion. 

The design of the granularity  stage is based on  both 
conceptual and experimental considerations. Conceptually, 
it is reasonable to expect the effects of individual bleached- 
silver grains to  appear  in a mathematical model as  carriers 
as well as corrupters of information. (No grains, no 
hologram.) The similar dual role played by the electrons 
in a phototube suggests that  the mathematical model of 
granularity effects should  be closely related to the theory 
of shot noise in vacuum Those  additional random 
fluctuations of amplitude  transmission and phase shift in 
the hologram that  are independent of granularity effects 
can be accounted for as  additive or multiplicative noise. 

Admittedly, in a phototube all of the electrons are 
identical, whereas in a hologram  all of the grains are 
different. The clouds of bleached or etched emulsion 
surrounding the bleached-out grains are also all different. 
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Figure 2 Square of the  Selwyn-granularity G for Royal-X 
Pan film plotted to show the approximate direct propor- 
tionality of the  variance  and the mean of the  optical 
density. The optical  density  is  approximately proportional 
to the  developed-silver  density. 

Fortunately, however, this  situation has been treated 
mathematically for  the time  domain by Parzen5 in his 
book  on stochastic processes. Parzen’s treatment is used 
here. The extension to two dimensions is based in  part 
on  the methods of Hurwitz and K ~ c . ~  

Experimentally, it has been found  that  in certain cases 
the variance of the optical density of photographic film 
is directly proportional to the average density for uniform 
exposures (see Fig. 2). This direct proportionality is char- 
acteristic of shot-noise processes. In  addition, using an 
80 cycle/mm exposure pattern, Kelly‘ has shown that 
increased chemical-diffusion effect, with gamma held 
nearly constant,  can result in greater strength for high 
spatial-frequency image  components and relatively in- 
creased freedom of these components from  the disturbing 
effects of granularity. This result is consistent, not only 
with the shot-noise  type of model but also with the  notion 
that granularity  can be accounted for  in terms of a fourth 
stage  appended to  the model following the chemical- 
diffusion stage (see Fig. 3). In this fourth stage, the re- 
sponse of the emulsion layer to  the bleaching or etching 
away of a developed-silver grain is treated  in a manner 
analogous to  the response of the electrical circuit of a 
phototube  to  the impact of an electron on the  anode. 

In  the development that follows, the  four stages, in 
sequence, are considered quantitatively. A discussion is 
included in which the signal-to-noise ratio  and frequency- 

domain implications of the granularity theory are con- 
sidered. 

Stage 1: Optical diffusion 
The  input to Stage 1 is the incident complex-scalar dis- 
turbance  pattern u; the  output of the stage is  the real, 
non-negative effective exposure pattern e. The effective 
exposure of the film over the time  interval ( t l ,  tz) at the 
point r = (x ,  y )  in  the plane of the emulsion is given by 
the  equation 

X u(rl, t)u*(r,, t )  d2rl d‘r, dt. I (1) 

The complex optical-diffusion point-spread  function h, is 
normalized subject to  the condition 

hl(r’ - r,)hf(r’ - r2) d2rl d’r, = 1 .  ( 2 )  

When limits are  not specified, the integration is over the 
entire  plane. The asterisk (*) is used to indicate the com- 
plex conjugate. A discussion of the properties of Eqs. 
(1) and (2) is provided by Raney.’ The quantity in braces 
is the time-dependent effective irradiance falling on the 
emulsion. (Reciprocity-law failure has been neglected here 
but it could be taken  into account through a modification 
of Eq. (1) of the  form 

4r’)  = 1;’ f ( i  1 )  dt, 

where the argument of the function f is the quantity  in 
braces in  Eq. (1). 

Stage 2: Sensitometry 
This  stage is a point-by-point, nonlinear,  nonstochastic 
stage whose input is the effective exposure at any point 
r’ and whose output is directly proportional  to  the ex- 
pected effective number of latent-image centers created 
by the exposure, per  unit of plate area, at r’. The effective 
exposure at r’,  e(r’), and  the resultant expected latent- 
image-center density 7(r’) are related by the sensitometry 
function s. This  functional  relationship can be defined 
in terms of the  equation 

T(r’) = s[e(r’)]. (3) 

The graph of the function s is closely related to the 
familiar d vs log e curve of conventional photographic 
sensitometry.’ The expected latent-image-center density 
T(r’) resulting from  the effective exposure e(r’) can be 
defined as being equal  to  the spatially averaged developed- 
silver density (u) resulting from a spatially uniform ex- 
posure  equal to e(r’) in  the limit as the  area of the exposed 
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Figure 3 Four-stage  model of phase-holographic information recording. The granular pattern y of emulsion  modification is 
shown as having  been  generated by the  Poisson  random  process Y .  In turn, the process Y is  shown  being  modulated by the non- 
granular expected  developed-silver  density pattern u. The four stages are described  mathematically  in  terms of the functions 
printed in the blocks. The spatial patterns that convey information from  stage to stage are described  mathematically in terms 
of the  functions  printed  above the connecting  lines. 

and developed plate becomes infinite. Thus, the sensi- 
tometry  function is macroscopic rather  than microscopic. 
The developed-silver density is expressed in units of mass 
per unit of plate area. 

Stage 3: Chemical  diffusion 
This  stage is responsible for  the various adjacency  effect^.^ 
Its behavior has been attributed  to  the restricted flow of 
solution within the emulsion during development. The 
input to the stage is the effective latent-image-center 
density pattern T, and  the  output is u, the  pattern of 
expected mass of developed silver per unit of plate area. 

There  is  no fundamental  reason why the relationship 
between the  input  and  output patterns, u and r,  must  be 
linear. Consequently, following Volterra,'' let us express 
the silver density at r in terms of the  input  pattern T 

by means of the expansion 

X T(r1)T(r2)T(r3) d7rl d'r, d2r, + . . . . (4) 
This expansion is a generalization of the familiar power 
series. 

In his pioneering work Kelly"G assumed that chemical 
diffusion had a purely linear effect. More recently, how- 
ever, Nelson et al.ll  have reported using a variant of the 
second-order form consisting of a linear and a quadratic 
term. For latent-image-center density patterns of low 
contrast, it can  be shown that  the second-order form of 
Nelson et al. reduces to  the linear form of Kelly. 

Stage 4: Granularity  and bleaching 
It  can be deduced from five rather reasonable assump- 
tions that this  stage is a two-dimensional, filtered Poisson 

random process5 designated as Y. The five basic assump- 
tions are designated (A) through (E) below. 

The  input  to Stage 4 is  the silver density pattern u. 

The  output is y ,  which is  the granular pattern of modi- 
fication of the emulsion and a sample  function of the 
random process Y. This modification may  be a relief 
pattern  due  to bleaching or etching, or a pattern of modi- 
fication of the refractive index, or some  combination of 
these. Following Ooue and  Hatanaka," let us assume 
that each developed-silver grain is replaced by a localized 
but diffuse microscopic cloud of modification, centered 
at the grain  location. Let us also assume that  the  total 
modification at a point r on  the hologram is the sum of 
the modifications at  that  point  due  to  the individual 
grain  contributions. 

These  remarks  can be put  in mathematical form as 
follows. Let  the number of developed grains on  the holo- 
gram be n, the value of a random variable N.  Let  the 
location of the  kth grain be gkr the value of a random 
position vector Pk. Let the modification at r due to the 
kth grain  be w(r - pk; ak), where w is the general grain- 
modification function and a, is an  ordered set of param- 
eters, the values of an ordered set of random variables 
Ak that account for variations  in w from grain cloud to 
grain cloud. 

(A) The  total modification at r is 

the value of the  random variable 
N 

Y(r) = w(r - pk;  A ~ ) .  
k = l  

(B) For any single grain-cloud k ,  

where EA ,[.I indicates the expectation taken over the 
random parameters Ak and where e is a constant,  inde- 
pendent of Pk. 51 7 
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(C) The locations of individual silver-halide crystals 
are mutually independent, and whether or  not a developed 
grain  forms from a crystal is independent of whether or 
not a developed grain forms on any  other crystal, except 
through chemical diffusion. 

(D) Nowhere on  the plate  can one be certain about 
the presence of a grain, without looking. 

(E) Probabilities Pr{ . } of grain locations are given in 
terms of the expected silver-density pattern by the equa- 
tion 

Pr { the  kth grain on the  hologram is located on 

a surface element d2r at r ]  

= a(r> d’r/ /’ u(r’) d*r’. 

Assumption (A) is a statement to  the effect that, during 
reconstruction of the image, the phase-shift pattern of 
the hologram  is the sum of the  contributions of the 
individual grain-clouds. Assumption (B) states merely 
that  the plate and its processing are spatially uniform. 
Assumption (E) requires that  the expected emulsion modi- 
fication be proportional to the expected silver density 
and, together with Assumptions (C) and (D), requires 
that the grain locations be statistically independent and 
identically distributed with a finite probability density 
function whose value at r is 

a@)// u(r’) d’r’. 

Two results that can be derived from these assump- 
tions  are 

E[ Y(r)l = a [ h’( 4 r - @>a(@) d 2 e  (8) 

and 

Var [ ~ ( r ) ]  = a /’ hi’(r - e)a(e> d*p, (9 )  

where a is a constant of proportionality  and where, by 
Eq. (7), 

and 

The subscript k on the random set of parameters Ak 
has been removed since the grain clouds are all the same 
insofar as their statistical properties are concerned. Equa- 
tions (8) through (11) indicate that  for a sequence of 
uniform exposures, such as  those made with a step wedge, 
the variance of the emulsion modification is directly pro- 
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account for  the  limitation on resolution in the hologram 
plane imposed by the finite average size of the grain 
clouds. The  function hi may be regarded as a granularity 
point-spread function. 

Discussion:  Granularity  effects in the frequency 
domain 
It must be admitted that  the modification random pro- 
cess Y is nonstationary, if only because the hologram 
is of finite size. Yet it is often useful to employ the con- 
cepts of the Wiener spectrum, which has been defined 
only for  stationary processes, and of spatial filtering, in 
which all regions on the  hologram plane or  on  the image 
plane are affected equally. One technique, which is used 
widely in  the study of granularity, is to impose station- 
arity by assuming spatially uniform exposure and pro- 
cessing  of the emulsion, which is assumed to be infinite 
in extent. An alternative scheme, used here, spares the 
analyst who wishes to use stationary-process concepts 
from having to neglect the  pattern recorded on the emul- 
sion. 

In effect, one manufactures a  stationary process, U‘ 
let us say, from a nonstationary process U first by sup- 
pressing all absolute position references so that U is free 
to drift at  random over the entire plane. One  then  takes 
expectations such that q5uc u,, the  autocorrelation  function 
of the manufactured process, is the inverse Fourier  trans- 
form of &,rut which is (2?r)-’ times the expectation of 
the absolute  square of the  Fourier  transform of the orig- 
inal  nonstationary process. The Wiener spectrum yuu 
of the nonstationary process is then defined as being the 
Wiener spectrum of the manufactured process, u,. The 
same technique can be used for cross-correlation func- 
tions q50rvj and Wiener cross spectra yuv  = yurv.,  with 
the U and V set free to drift at  random over the plane 
but  kept rigidly fixed relative to each other. 

From the preceding discussion it follows that  the 
Wiener spectrum y y y  of the modification random  pro- 
cess Y is defined such that 

Y Y Y ( ~ )  = (~T)-~E[I F(a)121. 
Similarly, for the individual grain cloud,  one has 

Y,,(@) = ( ~ ~ ) ” E A [ / & w  A)/’]. (1 3) 

Let the object whose hologram  is being recorded be 
described by an ordered set of parameters 0, the value 
of an ordered set of random variables 0. Then the ex- 
pected silver-density pattern a(. ; 0) is a sample function 
of the  random process Z(.; 0). The Wiener spectrum 
of the expected silver-density process Z is therefore de- 
fined such that 

Y Z Z ( ~ )  = (2?r)-ZEotI%~; 0)I’I. (14) 

Here the tilde over the symbol for a  function indicates 
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its Fourier  transform,  and o = (aT, w,) designates a 
point in the spatial-frequency plane. The expectations 
are taken over all relevant random variables. Following 
Rice," it can be shown that the Wiener spectrum of the 
emulsion modification pattern satisfies the  equation 

where A is the expected number of grain clouds making 
up the hologram. 

An intuitive explanation for  the form of Eq. (15) is 
not difficult to provide. Since the properties of the indi- 
vidual grain clouds (in particular,  their locations on the 
hologram) are assumed to be statistically independent, 
the Wiener spectrum of the exposure-pattern-independent 
(Le., noise) contributions of the aggregate of grain clouds 
may be expected to be just A times the Wiener spectrum 
of a single cloud. Thus,  the contributions of the individual 
grain clouds to  the noise content of the hologram  add 
incoherently. 

On the other hand, the exposure-pattern-dependent 
(i.e., signal) contributions of the individual grain clouds 
to  the Wiener spectrum of the hologram add coherently, 
hence the factor t i 2 .  Moreover, the signal component of 
the emulsion-modification pattern of the hologram  is  pro- 
vided  by the grain clouds, not by the silver-density pro- 
cess X. Consequently, the contribution of the silver-density 
process enters the expression in a normalized fashion, 
as yzz(o)/yz8(0). In this way, only the form of Z affects 
the Wiener spectrum of the emulsion-modification pattern. 

Additional random variations in  the hologram plate 
that are independent of the locations and  other  prop- 
erties of the grain clouds can be accounted for  as  addi- 
tional  additive or multiplicative noise. 

Neglecting these additional noise components, it is easy 
to see from Eq. (15) that the signal-to-noise ratio of a 
hologram can be  defined by the equation 

1 [rzz(o)/rzz(0)lrw,(o) d'(o) 

/ r w w @ )  d 2 ( 4  

(S/N) = rf " . (16) 

Following the  rule that maximization of (S/N) results 
in optimized performance, one is led to conclude that 
1) the  more grains the better and 2 )  if o = a,,, is the 
spatial frequency for which y z z ( o )  is maximum, then  the 
optimal grain clouds have Wiener spectra that look  like 
delta functions centered at a,,,. The first conclusion 
seems reasonable enough; the second is absurd. Clearly, 
a signal-to-noise ratio criterion used by itself is not ade- 
quate  for optimizing a holographic system. 

Considering the granularity stage alone, one could 
reasonably desire that  the  output pattern y represent the 
input silver-density pattern u with minimum mean-squared- 
error (MSE). The remainder of this paper deals with the 

determination of grain-cloud parameters to meet the min- 
imum MSE condition. 

The granular properties of a holographic  plate  are 
approximately uniform over the plate. It is reasonable, 
therefore, to define J ,  the MSE, in terms of the manu- 
factured (primed) stationary processes introduced earlier 
in this section. Thus J is defined in accordance with the 
equation 

J = E[lY'(r) - ~Z'(r)1~] for all r. (17) 

The minimization of J can be accomplished through  the 
use  of Wiener filter 

Let a spatial-frequency filter be inserted following the 
granularity stage in  the model diagrammed in Fig. 3. 
The  input  to this filter is considered to be a sample func- 
tion of the manufactured process Y'. Let the value of 
the transfer function of the filter at  the spatial frequency 
o be g(o) and let the fiIter-output stationary process be 
designated ue'. Now, let the filter be of the Wiener type, 
designated such that  E[[ae'(r) - aX'(r)l"] is minimum 
for all r. This implies that  the transfer function of the 
filter must satisfy the condition 

g(4 = Ya z Y(w)IY Y Y(4, 

where razv is the Wiener cross-spectrum of a 2  and Y .  
The Wiener cross-spectrum is defined such that 

yazy(o) = (2~)-~E[aZ*(o) ?(")I. 
As  with Eq. (15), it can be shown, following Rice,3 that 
the Wiener cross-spectrum satisfies the equation 

~ ~ z y ( ~ )  = (~T) -~u~?E , [G(~ ;  A ) ] E o [ l e ( ~ ;  0)12/li'(O; O)]. 
(20) 

Since the  task of minimizing the MSE has been assigned 
to  the grain clouds rather  than  to a separate filter, the 
Wiener-filter optimality condition  must be reformulated 
such that  the best filter is no filter at all; that is, Eq. (18) 
must be rewritten as 

Y Y Y ( 4  = YazY(o). (21) 

It is convenient to assume that the total mass of developed 
silver, as well as  the number of  developed-silver grains, 
is negligibly dependent on  the set of object parameters 
0. Then the quantity z(0; 0) can be removed from the 
expectation brackets and rewritten as 5(0) = lu(r)d2r. 
Consequently, by Eqs. (14), (15) and (ZO), Eq. (21) can 
be written as 

?,do) - a r zz (O)yzz (o )  . 
EA[;("; A ) ]  Z(O)Yzz(o) -k @l"Yz(o) 

(22)  

This is the desired result. If it were not  for the statistical 
variations from grain cloud to grain cloud, the left-hand 
side of Eq. (22) would be proportional to the  transfer 
function of the granularity stage. 
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The right-hand side of Eq. (22) reduces to a constant, 
( u / f i ) ~ ~ ~ ( O ) / c ? ( O ) ,  for all  spatial frequencies w for which 
yzZ(w)/yzz(o) >> I/E. Since typically A 10’ or more, 
this  condition may be expected to  hold  for almost all 
spatial frequencies of interest, except when extreme care 
is taken to ensure that  the zeroth- and first-order images 
are  kept separate.  When the inequality signs are reversed, 
the right-hand side of Eq. (22) reduces to [u/c?(0)]yrz(w). 
Thus, for example, if e(,) tends to decay as 0 - l  at high 
spatial frequencies [U = (0,” + u:)’], then &(a) should 
tend to decay as w-’. 

When the grain clouds are optimized such that Eq. (21) 
is satisfied, the MSE is a minimum and is equal  to 

By Eqs. (14), (15), (20) and (21), this expression reduces to 

X EA[&(”; A ) ]  d 2 u .  (24) 

The frequency-domain properties of real grain  clouds 
obtained with commercially available emulsions and  pro- 
cesses may be inferred from experiments reported by 
Smith.15 

} 

Summary 
Kelly’s tandem-stage approach  to  the formulation of a 
mathematical model of photographic  information  record- 
ing has been modified for phase  holography and extended 
to include granularity effects. Following Kelly, the first 
three stages-optical diffusion, sensitometry and chemical 
diffusion-have been formulated in terms of nonstochastic 
functions. In contrast to Kelly’s treatment, however, the 
emulsion has been taken  as being exposed to coherent 
light, with u being the  total (object wave plus reference 
wave) incident complex-amplitude pattern. In addition, 
whereas Kelly had described chemical diffusion as a 
linear operation  on  the optical-density pattern, in  the 
present work the formulation has been generalized to 
account for recent findings of nonlinearity,” and  the 
stage has been assumed to operate on the silver-density 
pattern. Effects of granularity  have been discussed in 
terms of the theory of nonhomogeneous filtered Poisson 
processes, on  the strength of the observed variation of 
Selwyn granularity with density, an experimental result 
reported by Kelly, widely-held conceptual  considerations 
(grains as  carriers as well as corrupters of information), 
and  the plausibility of a set of  five assumptions which 
have been shown elsewhere to be sufficient for  the theory 
to hold. The granularity  theory has been formulated in 
such a way as  to make use of the valuable frequency- 

520 domain concepts of stationary-process theory  without 
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forcing the analyst to assume a uniform, featureless ex- 
posure pattern. As examples of its versatility, the gran- 
ularity theory has been used 1) to define the signal-to- 
noise ratio of a phase  hologram and 2) to determine the 
optimal frequency-domain characteristics of a grain cloud 
in  the bleached emulsion. 
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