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A Theory of Granularity and Bleaching for Holographic

Information Recording®

Abstract: The Kelly three-stage model of photographic information recording is a mathematical model of black-and-white silver-
halide film with granularity neglected. In the work reported here, the theory is extended for use in phase-holographic applications.
Granularity effects are contained in the fourth and final stage, a two-dimensional, nonhomogeneous, filtered Poisson process. The
output of this stage is a sample function of the random process that describes the pattern of modification of the emulsion. Formulas
for the signal-to-noise ratio of a hologram and the optimum granular behavior are derived as examples of the use of the granularity

model.

Introduction

A decade ago D. H. Kelly' formulated a mathematical
model of photographic information recording in terms of
a sequence of three operations or stages connected in
tandem, the output of one being the input of the next.
To ensure that each operation was a separate entity, free
of interaction with the other two, he separated the opera-
tions in space and time. That is, he noted that first the
radiant-flux pattern incident on an emulsion sifts its way
through the turbid emulsion and perhaps even bounces
off the back of the film before it strikes the silver-halide
crystals in the emulsion. It is only when the incident
photons strike the crystals that they create latent-image
centers on and in the crystals. And it is much later that
the activated crystals, and perhaps their near neigh-
bors, are developed into silver grains at a rate which
depends on the local concentration of developer at the
crystals. Thus, Kelly was led to describe the photographic
process in terms of 1) an optical-diffusion stage functioning
in the emulsion and its backing during exposure, 2) a
sensitometry stage functioning in and on the crystals
during the formation of the latent image and 3) a chemical-
diffusion stage functioning during development (see
Fig. 1).

The present work is based on Kelley’s original concepts
with modifications of interest in phase holography.” To
begin with, the optical-diffusion formulation is modified
for exposure with coherent light. Secondly, the sensitometry
and chemical-diffusion stages are discussed in terms of
developed-silver density rather than optical density. Lastly,
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Figore 1 The structure of Kelly’s model of photographic
information recording, showing the decomposition of the
over-all operation into three spatially and temporally sepa-
rated stages.

a fourth stage is added following the chemical-diffusion
stage to account for granularity and bleaching or etching
of the emulsion.

The design of the granularity stage is based on both
conceptual and experimental considerations. Conceptually,
it is reasonable to expect the effects of individual bleached-
silver grains to appear in a mathematical model as carriers
as well as corrupters of information. (No grains, no
hologram.) The similar dual role played by the electrons
in a phototube suggests that the mathematical model of
granularity effects should be closely related to the theory
of shot noise in vacuum tubes.> * Those additional random
fluctuations of amplitude transmission and phase shift in
the hologram that are independent of granularity effects
can be accounted for as additive or multiplicative noise.

Admittedly, in a phototube all of the electrons are
identical, whereas in a hologram all of the grains are
different. The clouds of bleached or etched emulsion
surrounding the bleached-out grains are also all different.
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Figure 2 Square of the Selwyn-granularity G for Royal-X
Pan film plotted to show the approximate direct propor-
tionality of the variance and the mean of the optical
density. The optical density is approximately proportional
to the developed-silver density.

Fortunately, however, this situation has been treated
mathematically for the time domain by Parzen® in his
book on stochastic processes. Parzen’s treatment is used
here. The extension to two dimensions is based in part
on the methods of Hurwitz and Kac.*

Experimentally, it has been found that in certain cases
the variance of the optical density of photographic film
is directly proportional to the average density for uniform
exposures (see Fig. 2). This direct proportionality is char-
acteristic of shot-noise processes. In addition, using an
80 cycle/mm exposure pattern, Kelly® has shown that
increased chemical-diffusion effect, with gamma held
nearly constant, can result in greater strength for high
spatial-frequency image components and relatively in-
creased freedom of these components from the disturbing
effects of granularity. This result is consistent, not only
with the shot-noise type of model but also with the notion
that granularity can be accounted for in terms of a fourth
stage appended to the model following the chemical-
diffusion stage (see Fig. 3). In this fourth stage, the re-
sponse of the emulsion layer to the bleaching or etching
away of a developed-silver grain is treated in a manner
analogous to the response of the electrical circuit of a
phototube to the impact of an electron on the anode.

In the development that follows, the four stages, in
sequence, are considered quantitatively. A discussion is
included in which the signal-to-noise ratio and frequency-
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domain implications of the granularity theory are con-
sidered.

Stage 1: Optical diffusion

The input to Stage 1 is the incident complex-scalar dis-
turbance pattern u; the output of the stage is the real,
non-negative effective exposure pattern e. The effective
exposure of the film over the time interval (¢;, £;) at the
point r = (x, y) in the plane of the emulsion is given by
the equation

e(r) = /t“ {f h(r) — r)hE@E — 1)

X u(ry, Du*(r,, 1) d'r, d2r2} dr. N

The complex optical-diffusion point-spread function 4, is
normalized subject to the condition

f f ' — r)hF@E — 1) dr, dr, = 1. 2)

When limits are not specified, the integration is over the
entire plane. The asterisk (*) is used to indicate the com-
plex conjugate. A discussion of the properties of Eqgs.
(1) and (2) is provided by Raney.” The quantity in braces
is the time-dependent effective irradiance falling on the
emulsion. (Reciprocity-law failure has been neglected here
but it could be taken into account through a modification
of Eq. (1) of the form

ew) = [ si-Dar,

where the argument of the function f is the quantity in
braces in Eq. (1).

Stage 2: Sensitometry

This stage is a point-by-point, nonlinear, nonstochastic
stage whose input is the effective exposure at any point
1’ and whose output is directly proportional to the ex-
pected effective number of latent-image centers created
by the exposure, per unit of plate area, at r’. The effective
exposure at r’, e(r’), and the resultant expected latent-
image-center density 7(r’) are related by the sensitometry
function s. This functional relationship can be defined
in terms of the equation

(1) = s[e(r)]. 3

The graph of the function s is closely related to the
familiar d vs log e curve of conventional photographic
sensitometry.® The expected latent-image-center density
7(r') resulting from the effective exposure e(r’) can be
defined as being equal to the spatially averaged developed-
silver density (¢ ) resulting from a spatially uniform ex-
posure equal to e(r’) in the limit as the area of the exposed
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Figure 3 Four-stage model of phase-holographic information recording. The granular pattern y of emulsion modification is
shown as having been generated by the Poisson random process Y. In turn, the process Y is shown being modulated by the non-
granular expected developed-silver density pattern o. The four stages are described mathematically in terms of the functions
printed in the blocks. The spatial patterns that convey information from stage to stage are described mathematically in terms

of the functions printed above the connecting lines.

and developed plate becomes infinite. Thus, the sensi-
tometry function is macroscopic rather than microscopic.
The developed-silver density is expressed in units of mass
per unit of plate area.

Stage 3: Chemical diffusion
This stage is responsible for the various adjacency effects.’
Its behavior has been attributed to the restricted flow of
solution within the emulsion during development. The
input to the stage is the effective latent-image-center
density pattern 7, and the output is o, the pattern of
expected mass of developed silver per unit of plate area.
There is no fundamental reason why the relationship
between the input and output patterns, o and 7, must be
linear. Consequently, following Volterra,'® let us express
the silver density at r in terms of the input pattern 7
by means of the expansion

@’ = a, + a f " — @) dr

+ a, /:/ '@ —r, 1" — 1)

X 7(r)7(r,) d’r, d'r,

+ a; [ff @~ 1, — 1,1 — 1)

X 1)) 1) dry dr, drs + -0 L (4)

This expansion is a generalization of the familiar power
series.

In his pioneering work Kelly''® assumed that chemical
diffusion had a purely linear effect. More recently, how-
ever, Nelson et al.'* have reported using a variant of the
second-order form consisting of a linear and a quadratic
term. For latent-image-center density patterns of low
contrast, it can be shown that the second-order form of
Nelson et al. reduces to the linear form of Kelly.

Stage 4: Granularity and bleaching

It can be deduced from five rather reasonable assump-
tions that this stage is a two-dimensional, filtered Poisson
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random process® designated as ¥. The five basic assump-
tions are designated (A) through (E) below.

The input to Stage 4 is the silver depsity pattern o.
The output is y, which is the granular pattern of modi-
fication of the emulsion and a sample function of the
random process Y. This modification may be a relief
pattern due to bleaching or etching, or a pattern of modi-
fication of the refractive index, or some combination of
these. Following Ooue and Hatanaka,'” let us assume
that each developed-silver grain is replaced by a localized
but diffuse microscopic cloud of modification, centered
at the grain location. Let us also assume that the total
modification at a point r on the hologram is the sum of
the modifications at that point due to the individual
grain contributions.

These remarks can be put in mathematical form as
follows. Let the number of developed grains on the holo-
gram be n, the value of a random variable N. Let the
location of the kth grain be g, the value of a random
position vector P,. Let the modification at r due to the
kth grain be w(r — g;; a,), where w is the general grain-
modification function and a, is an ordered set of param-
eters, the values of an ordered set of random variables
A, that account for variations in w from grain cloud to
grain cloud.

(A) The total modification at r is

n

@) = D owlr — o aw), (5)

k=1
the value of the random variable
N
Y() = 2 wir — Py Ay). (6)

k=1

(B) For any single grain-cloud %,

EA[/ wr — P,; A4,) d2r:l =e, @)

where E,,[-] indicates the expectation taken over the
random parameters 4, and where e is a constant, inde-
pendent of P,.
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(C) The locations of individual silver-halide crystals
are mutually independent, and whether or not a developed
grain forms from a crystal is independent of whether or
not a developed grain forms on any other crystal, except
through chemical diffusion.

(D) Nowhere on the plate can one be certain about
the presence of a grain, without looking.

(E) Probabilities Pr{-} of grain locations are given in
terms of the expected silver-density pattern by the equa-
tion

Pr{the kth grain on the hologram is located on

a surface element d°r at r}

= o(r) dzr/f o) d’r’.

Assumption (A) is a statement to the effect that, during
reconstruction of the image, the phase-shift pattern of
the hologram is the sum of the contributions of the
individual grain-clouds. Assumption (B) states merely
that the plate and its processing are spatially uniform.
Assumption (E) requires that the expected emulsion modi-
fication be proportional to the expected silver density
and, together with Assumptions (C) and (D), requires
that the grain locations be statistically independent and
identically distributed with a finite probability density
function whose value at r is

(T(l‘)/f o) d'r’.

Two results that can be derived from these assump-
tions are

E[Y®)] = a f ki — @)o(g) d’o (8)
and
Var [Y(@)] = «a f B @ — o)o(e) d’p, &)

where a is a constant of proportionality and where, by
Eq. (7),

hi(x — o) = Elw(r — o; Al/e (10)
and
By (r — @) = E llw(x — o3 A)"Y/le|”. an

The subscript & on the random set of parameters A4,
has been removed since the grain clouds are all the same
insofar as their statistical properties are concerned. Equa-
tions (8) through (11) indicate that for a sequence of
uniform exposures, such as those made with a step wedge,
the variance of the emulsion modification is directly pro-
portional to its mean value. Equations (8) and (10)
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account for the limitation on resolution in the hologram
plane imposed by the finite average size of the grain
clouds. The function 4, may be regarded as a granularity
point-spread function.

Discussion: Granularity effects in the frequency
domain

It must be admitted that the modification random pro-
cess Y is nonstationary, if only because the hologram
is of finite size. Yet it is often useful to employ the con-
cepts of the Wiener spectrum, which has been defined
only for stationary processes, and of spatial filtering, in
which all regions on the hologram plane or on the image
plane are affected equally. One technique, which is used
widely in the study of granularity, is to impose station-
arity by assuming spatially uniform exposure and pro-
cessing of the emulsion, which is assumed to be infinite
in extent. An alternative scheme, used here, spares the
analyst who wishes to use stationary-process concepts
from having to neglect the pattern recorded on the emul-
sion.

In effect, one manufactures a stationary process, U’
let us say, from a nonstationary process U first by sup-
pressing all absolute position references so that U is free
to drift at random over the entire plane. One then takes
expectations such that ¢4y, the autocorrelation function
of the manufactured process, is the inverse Fourier trans-
form of ¢y which is (2x)™® times the expectation of
the absolute square of the Fourier transform of the orig-
inal nonstationary process. The Wiener spectrum vyyy
of the nonstationary process is then defined as being the
Wiener spectrum of the manufactured process, ¢y y-. The
same technique can be used for cross-correlation func-
tions ¢y v and Wiener cross spectra yyy = Yy v, With
the U and ¥V set free to drift at random over the plane
but kept rigidly fixed relative to each other.

From the preceding discussion it follows that the
Wiener spectrum vyy of the modification random pro-
cess Y is defined such that

Yrr) = @m) *El Y()|] a2)
Similarly, for the individual grain cloud, one has
Yuul®) = @) Ellww; 4)°]. 13

Let the object whose hologram is being recorded be
described by an ordered set of parameters o, the value
of an ordered set of random variables O. Then the ex-
pected silver-density pattern o(-; 0) is a sample function
of the random process Z(-; O). The Wiener spectrum
of the expected silver-density process Z is therefore de-
fined such that

ve3) = @m) EoliZ(w; O], (14)

Here the tilde over the symbol for a function indicates
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its Fourier transform, and o = (w,, w,) designates a
point in the spatial-frequency plane. The expectations
are taken over all relevant random variables. Following
Rice,® it can be shown that the Wiener spectrum of the
emulsion modification pattern satisfies the equation

Yrr@) = 174, + 2 17:20)/7::0Vuu(®), (15)

where 7 is the expected number of grain clouds making
up the hologram.

An intuitive explanation for the form of Eq. (15) is
not difficult to provide. Since the properties of the indi-
vidual grain clouds (in particular, their locations on the
hologram) are assumed to be statistically independent,
the Wiener spectrum of the exposure-pattern-independent
(i.e., noise) contributions of the aggregate of grain clouds
may be expected to be just 7 times the Wiener spectrum
of a single cloud. Thus, the contributions of the individual
grain clouds to the noise content of the hologram add
incoherently.

On the other hand, the exposure-pattern-dependent
(i.e., signal) contributions of the individual grain clouds
to the Wiener spectrum of the hologram add coherently,
hence the factor #°. Moreover, the signal component of
the emulsion-modification pattern of the hologram is pro-
vided by the grain clouds, not by the silver-density pro-
cess 2. Consequently, the contribution of the silver-density
process enters the expression in a normalized fashion,
as vz z(®)/vx=(0). In this way, only the form of Z affects
the Wiener spectrum of the emulsion-modification pattern.

Additional random variations in the hologram plate
that are independent of the locations and other prop-
erties of the grain clouds can be accounted for as addi-
tional additive or multiplicative noise.

Neglecting these additional noise components, it is easy
to see from Eq. (15) that the signal-to-noise ratio of a
hologram can be defined by the equation

f [y22@)/ Y220}y pu @) d(©)
(S/N) = & —- (16)
[ Yent) @)

Following the rule that maximization of (S/N) results
in optimized performance, one is led to conclude that
1) the more grains the better and 2) if ® = ®ua, is the
spatial frequency for which vz z(e) is maximum, then the
optimal grain clouds have Wiener spectra that look like
delta functions centered at wam.,. The first conclusion
seems reasonable enough; the second is absurd. Clearly,
a signal-to-noise ratio criterion used by itself is not ade-
quate for optimizing a holographic system.

Considering the granularity stage alone, one could
reasonably desire that the output pattern y represent the
input silver-density pattern ¢ with minimum mean-squared-
error (MSE). The remainder of this paper deals with the
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determination of grain-cloud parameters to meet the min-
imum MSE condition.

The granular properties of a holographic plate are
approximately uniform over the plate. It is reasonable,
therefore, to define J, the MSE, in terms of the manu-
factured (primed) stationary processes introduced earlier
in this section. Thus J is defined in accordance with the
equation

J = E[Y'(r) — a2'(r)|"] for all 1. an

The minimization of J can be accomplished through the
use of Wiener filter theory.'®™

Let a spatial-frequency filter be inserted following the
granularity stage in the model diagrammed in Fig. 3.
The input to this filter is considered to be a sample func-
tion of the manufactured process Y’. Let the value of
the transfer function of the filter at the spatial frequency
o be g(w) and let the filter-output stationary process be
designated a2’. Now, let the filter be of the Wiener type,
designated such that E[[aﬁ’(r) — aZ(0){’1 is minimum
for all r. This implies that the transfer function of the
filter must satisfy the condition

8®@) = Yarr(@)/vrr(®), 18)

where v,z is the Wiener cross-spectrum of ¢2 and Y.
The Wiener cross-spectrum is defined such that

Yezr@) = Q) *EaZ*(0) V(). 19)

As with Eq. (15), it can be shown, following Rice,? that
the Wiener cross-spectrum satisfies the equation

Yarr(@) = (21) *aAE4[wlw; DIE[IZ(w; 0)*/2(0; O)).
(20)

Since the task of minimizing the MSE has been assigned
to the grain clouds rather than to a separate filter, the
Wiener-filter optimality condition must be reformulated
such that the best filter is no filter at all; that is, Eq. (18)
must be rewritten as

Yrr(®) = Yoz r(w). 21

It is convenient to assume that the total mass of developed
silver, as well as the number of developed-silver grains,
is negligibly dependent on the set of object parameters
o. Then the quantity £(0; O) can be removed from the
expectation brackets and rewritten as 6(0) = | o(r)d’r.
Consequently, by Egs. (14), (15) and (20), Eq. (21) can
be written as

Ywwl®) _ _4 Y22(0)yz:(0) . (22)
Eilww; 4)] 60)vz3(0) + Ayzz()

This is the desired result. If it were not for the statistical
variations from grain cloud to grain cloud, the left-hand
side of Eq. (22) would be proportional to the transfer
function of the granularity stage.
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The right-hand side of Eq. (22) reduces to a constant,
(a/A)yz:(0)/5(0), for all spatial frequencies @ for which
Y2z(@)/vz=(0) >> 1/7. Since typically 77 X2 107 or more,
this condition may be expected to hold for almost all
spatial frequencies of interest, except when extreme care
is taken to ensure that the zeroth- and first-order images
are kept separate. When the inequality signs are reversed,
the right-hand side of Eq. (22) reduces to [a/¢(0)lyz z(w).
Thus, for example, if $(w) tends to decay as ' at high
spatial frequencies [w = (o} + wi)%], then w(w) should
tend to decay as w >

When the grain clouds are optimized such that Eq. (21)
is satisfied, the MSE is a minimum and is equal to

(27r)‘2f {a'y:3:0) — vrr@)} do. (23)

By Eags. (14), (15), (20) and (21), this expression reduces to

_2 _ ¥33(0)  E4lw(0; 4)]
(27) f m(w){l 70 X

X E4[w(w; A)]} dfo. (24)

The frequency-domain properties of real grain clouds
obtained with commercially available emulsions and pro-
cesses may be inferred from experiments reported by
Smith.'®

Summary

Kelly’s tandem-stage approach to the formulation of a
mathematical model of photographic information record-
ing has been modified for phase holography and extended
to include granularity effects. Following Kelly, the first
three stages—optical diffusion, sensitometry and chemical
diffusion—have been formulated in terms of nonstochastic
functions. In contrast to Kelly’s treatment, however, the
emulsion has been taken as being exposed to coherent
light, with u being the total (object wave plus reference
wave) incident complex-amplitude pattern. In addition,
whereas Kelly had described chemical diffusion as a
linear operation on the optical-density pattern, in the
present work the formulation has been generalized to
account for recent findings of nonlinearity,"' and the
stage has been assumed to operate on the silver-density
pattern. Effects of granularity have been discussed in
terms of the theory of nonhomogeneous filtered Poisson
processes, on the strength of the observed variation of
Selwyn granularity with density, an experimental result
reported by Kelly, widely-held conceptual considerations
(grains as carriers as well as corrupters of information),
and the plausibility of a set of five assumptions which
have been shown elsewhere to be sufficient for the theory
to hold. The granularity theory has been formulated in
such a way as to make use of the valuable frequency-
domain concepts of stationary-process theory without
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forcing the analyst to assume a uniform, featureless ex-
posure pattern. As examples of its versatility, the gran-
ularity theory has been used 1) to define the signal-to-
noise ratio of a phase hologram and 2) to determine the
optimal frequency-domain characteristics of a grain cloud
in the bleached emulsion.
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