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Laser  Speckle  and  Its  Elimination 

Abstract: “Objective”  speckle  arises  from the uneven  illumination of an object  with a multiplicity of waves that interfere at its surface. 
“Subjective”  speckle  arises at rough  objects  even  if  they are illuminated  evenly by a single  wave. The  noise  in  the  image  is  caused by 
the interference of the  point-figures,  which  have  random  phases.  Subjective  speckle  cannot  be  reduced  except by extending the aperture. 
On the  other  hand the “objective”  speckle in a plane,  for  instance  in  the  plane of a transparency,  can be reduced,  and  in  the  limit 
made  invisible,  by a special  type  of  wide-angle illumination.  This  consists of a one-parameter family of plane  waves,  which can be 
produced by diffraction at a special grating, or two  crossed  gratings,  close to the  object  plane.  This  makes it possible to produce  mul- 
tiple  holograms,  with the same  insensitivity to dust or scratches  as  diffused  holograms,  but  without  any  visible  speckle  in  the  recon- 
struction. 

Introduction 
Laser speckle noise is a direct consequence of the high 
coherence of laser light and  has been long recognized 
as the Enemy Number One of holography.  When a 
hologram is  taken of a transparency  illuminated with 
a single plane or spherical wave nothing is lost of the 
information  content. The resolution is given by the angle 
subtended by the hologram as seen from  the object. 
But the reconstructed image of the object is marred by 
the schlieren of the optical system; every speck of lens 
cement, every particle of dust shows up  as a system of 
interference fringes. Only lensless Fourier holograms are 
free of the schlieren, but here, too,  dust  or scratches on 
the hologram mar  the reconstruction. On  the  other  hand, 
a hologram  taken of a transparency in diffused illumina- 
tion  does not show  up the schlieren, and  the reconstruc- 
tion is highly insensitive to dust or scratches in  the holo- 
gram, but  the resolution is very strongly reduced by 
speckle noise. 

I wish to distinguish between two types of laser speckle, 
“objective” and “subjective.” “Objective” laser speckle 
arises from uneven illumination of the object; it is really 
there, and a photographic emulsion spread over the sur- 
face of the object would show it up. Even a perfect optical 
system cannot do better than  to reproduce it exactly. 
On  the  other  hand, “subjective” speckle arises in  the 
case of an evenly illuminated  rough object, by the im- 
perfection of the optical  reproduction, whether this is 
produced directly or via a hologram. It was first described, 
almost as  soon  as lasers had become available, by Oliver’ 
and by Rigden and  Gordon,2  as  the “sparkly” or “gran- 
ular”  appearance of uniformly illuminated  rough surfaces. 
These authors gave also a correct qualitative  explanation 
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of the phenomenon. It arises by a diffraction effect at 
the receiving end  or, more exactly, by the limitation of 
the  amount of light  admitted for image formation by 
the optical  instrument or by the eye. 

This  limitation has two causes. The dimples and  pro- 
jections of a macroscopically rough object can act  as 
small reflectors with a complicated system of narrow 
lobes, and only a part of these will be  caught by the 
objective. This, however, is a small effect, negligible in 
most cases. It would be the  same if the object were illu- 
minated with almost  monochromatic  noncoherent light. 
The second effect is  far  more  important.  The dimples 
and projections, even if they are microscopically small 
(so that by themselves they  emit  almost  spherical waves), 
give randomly  distributed phases to these wavelets, and 
their interference produces a strong noise in  the image 
and spoils the resolution, even if the optical system has 
sufficient aperture  for good imaging in incoherent light. 
A full mathematical  theory of this “subjective” speckle 
was given by En10e.~ 

Enloe’s mathematical results have a simple interpreta- 
tion, which I owe to unpublished notes of G. W. Stroke. 
An objective that is good enough for incoherent light is 
not good enough for coherent fight. In incoherent light 
the absolute  squares of the amplitude  point-spread values 
are summed. These are always positive, and they decrease 
sharply with the distance from  the geometrical point- 
image; in  the case of a round aperture, with the 3rd 
power. But the amplitudes themselves decrease only with 
the 3/2 power, and they are positive or negative. If 
there are  other points  near the  one considered, the ampli- 
tudes sometimes add, sometimes subtract, and  the result 
is strong speckle noise. This becomes even stronger if 
the  aperture is a thin annulus. In this case the intensity 509 
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falls off with the first power of the distance, the amplitude 
only with the one-half power, and photographs taken 
through such an aperture in coherent light lose all like- 
ness to  the object. 

As Enloe has recognized, the only remedy to subjec- 
tive speckle is to widen the aperture. I will show later 
that there is no escaping from this conclusion, because 
if by any a posteriori  manipulation we could correct the 
subjective speckle, we could break  through the “informa- 
tion  barrier.” 

On  the  other hand, I will show that  the “objective” 
speckle, which arises in  the diffuse illumination of plane 
transparencies, can be completely eliminated by a special 
type of illumination that preserves the advantages of 
multiple holograms: the almost uniform  distribution of 
information and  the consequent insensitivity of the recon- 
struction to dust or scratches. Gerritsen, Hannan  and 
Ra~nberg,~ and before them Upatnieks,’ have already 
made progress in this direction by using certain phase- 
gratings in  the plane of the object. I will show that  in 
principle one  can  approach the advantages of uniform 
distribution almost beyond any limit, though the realiza- 
tion may require considerable experimental skill. 

One-dimensional  speckle 
For simplicity consider first N plane waves striking a 
plane z = 0, with their wave normals all in  the x-z plane. 
Their interference phenomenon in  the zero plane is the 
“speckle.” In  the usual small-angle approximation we 
would obtain exactly the same result with spherical waves 
of equal curvature; that is to say, the same effect would 
occur if the waves originated not  at infinity but at any 
z = constant plane, because these too would give straight 
interference fringes in  the y-direction. 

The resulting amplitude of these waves is 
N 

A ( X )  = A ,  exp  [i(knx - ut)], (1) 

where the A, are complex. 

D- I 

The resulting local intensity is 

Z(x) = A(X)A*(X) 

= A,A; exp [i(kn - km)xl.  (2) 

The energy collected in  an interval X ,  centered on x. is 

n m  

z o + j X  

E ( X ,  xn) 1 Z(X) dx 
%.-+X 

= X A,A;[sinc +(kn -  XI 

X exp [i(k, - km)xOl. (3)  

As is usual in statistical problems, we are asking first 
for  the mean-square fluctuation of this  quantity, which 

n m  

will  give us a sufficient insight into the problem. We 
must therefore calculate 

( [ J W ,  x01 - ( W )  = (@(X))  - ( E ) 2 ,  

where the averaging is over the x g ,  at given X .  We first 
calculate the square of E q .  (3), which  is 

E’(x, xo> = A , A ; A , ,  A:,  
n m n’ m’ 

X [sinc +(kn - k,)X][sinc +(k,,, - km,)X] 

X exp [i(kn - k ,  - + km,)xol. (4) 

Averaging this over x, by integrating over the whole 
plane turns  the last  factor into a delta function, which 
is zero except for 

lk, - km/ = lk,, - k m .  I /  ( 5 )  

The condition given  by Eq. ( 5 )  is automatically satisfied 
for identical pairs n,m, but it is also satisfied whenever 
two intervals between  wave numbers coincide so that they 
give the same fringe spacing. This  latter I call degeneracy. 
If it occurs, it  can make the speckle much worse, but, 
as will be shown later, it can  also make it much better. 

We can now write the average of Eq. (4) in  the form 

(E’(X))  = ~ ‘ ( x  In)’ + X’ znzm(1 + g m n >  
n # m  m 

X sinc’ +(kn - k , ) ~ ,  (6) 

where Z, = &A*, is the intensity of the nth beam by 
itself, and g,,, is the degeneracy factor of the pair n,m: 

grim = ( A J ;  A n ,  ~;)/znzm> 
nl m’ 

(n’, m’ # n, m ) .  (7) 

The summation here has  to be carried out only over 
those n’,m’ pairs that  are not identical with n,m but  for 
which ikn - k,j = lkn. - kmrl. 

We now obtain the relative mean-square energy fluc- 
tuation in intervals of length X in  the form 

[(E’) - (E)2V(E)2 

=z CC In)-’ C C ZnZm(1 + grim> 
n n # m  m 

X sine' +(kn - k , ) ~ .  (8) 

For X = 0 the sinc’ factor becomes unity, and Eq. (8) 
assumes its maximum value, which is 

In  the absence of degeneracy (i.e., if g,, = 0) for N 
waves  of equal intensity this value is given  by (N - 1)/N 
and,  for many waves, it  approaches the value unity. This 
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Figure 1 Relative  mean square fluctuation of intensity in 
coherent  light as a function of the sample  interval X ,  in  one 
dimension, with random  illumination  uniform  within an 
angle ( h / 2 r )  K .  

happens to be exactly the value for  the mean-square 
fluctuation in a simple fringe system with intensity cos2 Kx. 

Extension to two  dimensions 
If the same  calculation is carried out  for two dimensions, 
for waves characterized by  wave numbers k,, and k,,, 
nothing essential changes, except that  for degeneracy we 
have now a double  condition 

Ik,, - kmzl = lkn,* - km,J ,  and 

Ik,, - k,,l = lk,,, - kmrVl, (n', m' # n, m), 

which means that  the fringes produced by two different 
pairs  must coincide not only in spacing, but also  in 
direction.  This, evidently, will be very rarely the case 
with frosted glass and  the like; hence, degeneracy can be 
neglected except for artificially produced diffusers, such 
as will be discussed later. Therefore, in  the two-dimensional 
case, the relative mean-square energy fluctuation over 
areas X Y  will be simply the  product of two expressions 
of the  form (S), with g,, = 0. 

Application to a random  scatterer 
We now consider a plane  illuminated by a rectangular 
frosted glass or  the like, so that  in  the area of interest 
the waves are uniformly distributed in  an angular  range 
0 < k < X or between &$K, both  in  the x and y direc- 
tions. According to  the argument given in  the last section 
we can neglect the degeneracy and carry out  the calcula- 
tion in  one dimension, taking its  square  in  the end.  As 
now we deal with (practically) a continum of  waves, we 
can replace the  sum  in  Eq. (8) by an integral, and there 
is no need to exclude the case n = rn, as its  contribution 
is vanishing. We have therefore to calculate the x-factor 
of the relative mean-square  fluctuation, which is 

la  la [sinc' (k, - k,)X]  dk,   dk,  
F ( K X )  = - (9) LK lK dkn dkm 
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We  introduce the new variables x = $(k, + k,)X, y = 

$(k, - k,)X. The integrand is a function of y alone; 
moreover it  is even in y .  We can  therefore use the formula 
that replaces integration over a square by integration over 
two triangles: 

X 2  S,"  S," f(kn, km) dkn dkm 

= 4 lKX f ( y )   d y  dx ,  
K X " P V  

which  gives 

K X - 2 "  

F ( K X )  = 4 ( K X ) - '  LiKx sinc2 y d y  S, dx 

= (*KX)-'  [ K X  C K x  sinc' y dy 

- 2 l'"* (sin' y / y )  d y ]  (10) 

= ( + K X ) - ' (  KX[Si  (KX)] 

- Cin  (KX) - 2 sin' + K X ]  , (1 1) 

where Si is the sine  integral, and 

Cin z = [(l - cos t ) / t ]  d t ,  

a function tabulated,  for instance, by Abramovitz and 
Stegun.' This function is plotted in Fig. 1 in units of the 
smallest interference-fringe spacing A = 2n/K which 
arises in  the  range of illuminating waves 0 to K or, -$K 
to +$K. 

The essential result is very simple. Beyond about 4 or 
5 such fringe spacings the function F(KX) assumes the 
asymptotic form,  for  one dimension, 

F(KX) N 2r/KX = A / X ,  (12) 

and  in two dimensions the mean-square fluctuation is 
the  square of this. (This result has been already  obtained 
by Enloe3 and by Gerritsen, Hannan  and Ramberg.4) 

The significance of this result is explained in Fig. 2. 
The object plane is illuminated by a square diffuser in 
the angular range K = (2r/X) (sin - &in). Consider 
a square  area  in this plane, X'X'. An objective picks up 
an angular  range K', and images the  area  into XI'X". 
As KX is an invariant, K'X' = R'X''. We can consider 
A, the fringe spacing of the extreme waves admitted by 
the objective, as the resolution limit. (The factor 0.5 or 
0.6 that is usually added  is somewhat unreal, as it gives 
the extreme limit of discriminability.) We can  then express 
the result as follows. 

l 

Random illumination within a certain solid angle (square 
in  our case, but evidently it would not make much dif- 51 1 
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Image  plane j [x, 
Figure 2 Interpretation of the  law  of  relative  intensity fluc- 
tuation.  The mean  square  intensity  fluctuation is a function 
of the  invariant K‘X‘ = KI’X”. 

ference if it were round) with coherent light produces a 
relative mean-square speckle noise that is the inverse of 
the resolution elements contained in the sampled areas. 

This becomes  even more  illuminating if  we consider 
that experience  shows that in a picture of good  television 
or photographic standards the root-mean-square noise 
per  resolved  element  must  be 20 dB down on the signal, 
and the mean-square  noise by 40 dB, that is to say, by 
a factor of lo4. This means that the “sufficiently  noiseless” 
elementary area must contain lo4 elements  which  would 
be otherwise  resolvable;  hence, random laser speckle spoils 
the linear resolution by about two orders of magnitude. 
(A little less in the case of  moving pictures.) 

Eliminating  laser  speckle  in  the  imaging of 
plane objects 
Diffused holograms  have  great  advantages  over  holograms 
taken with regular  (plane or spherical)  illumination.  They 
have  made it possible to view holograms of three-dimen- 
sional  objects  with  two  unaided  eyes, and the information 
in them  is redundantly recorded,  hence the reconstruction 
is insensitive to dirt or scratches in the hologram.  One 
has, of come,  to pay for this redundancy by imperfect 
utilization of the photographic emulsion, but a part of 

this  loss is regained by the fact that the entropy of a 
diffused  hologram  comes  near to the theoretical maxi- 
mum. The entropy of diffused  holograms is probably 10 
times that of television  pictures and possibly 50 times 
that of printed matter.* Can we not realize at least a 
part of this gain  without the loss  caused by the speckle? 

A diffused  hologram can be interpreted as a random 
repetition of a basic pattern. I will  show that  at least in 
the case of plane  objects we can eliminate the speckle by 
the basic  holograms distributed not at random, but in 
a regular  lattice,  with  approximately equal intensities, 
provided that certain phase conditions are accurately 
observed.? 

The key to speckle-free  illumination  is the degeneracy 
factor grim. In order to make  good  use  of it, we make 
all wave number  intervals k equal.  Taking  first  again the 
one-dimensional  case,  let us illuminate the object  plane 
with N equally  spaced waves  with  complex amplitudes 
G, and a resulting amplitude 

~ ( x )  = a, exp (inkx).  

The total width (N - 1)k = K must  be  fitted to the 
aperture of the optical  lens  system or  to the size  of the 
hologram. 

The resulting  intensity  is 

[ ( x )  = A A* = ana: exp [i(n - rn)kx]. (14) 
n n  

This contains interference  fringes with  wave  numbers 
from k to (N  - 1)k. We can  now annul all  these  fringes, 
with the exception of the last  (finest)  system,  which  arises 
by the interference of the marginal waves. These  fringes 
are innocuous if they are finer than the finest detail we 
want to resolve. The conditions for speckle-free  illumina- 
tion are, therefore, 

a l a ~ + a , a ~ + a 3 a * , + ~  . . +aN-,aD-,+aN-,a~= 0 

a1a;+a2a*4+. . * +aN-aaD-l+a‘v-2aR= 0 

These are N - 2 equations for the N - 1 essential  ampli- 
tudes 4. For practical  applications the symmetrical  solu- 
tions are of interest, with N odd, so that n runs from 
- i ( N  - 1) to i ( N  + 1). For N = 3 and 5 the solutions 

of incidence? and by “carrier-frequency photography,” i.e.,  by placing a line 
* In  fact both by holography with skew reference beams at various angles 

screen on top  of the emulsion and giving it various orientations, one can 

drawing pictures can  be recorded without appreciable crosstalk.8 
increase the entropy of the record to such an extent that up to 60 good line- 

t The ninefold repetition of the hologram, as used with good results by 

direction. 
Gerritsen, Hannan and Ramberg4 can  be considered as a first step in this 
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Table 1 Amplitudes for speckle-free  illumination  for  several  values of N .  

N -a4 -a3 -a2 - a1 a0 a1 a? a3 a4 

1 1 

3 1 iP 1 

5 1 iP - ip2 iP 1 

I 1 iP - f p2 - + ip(pz - 4) - 4 p L  ip 1 

9 1 ip -4p’ -; i p ( p 2  - 4) - & ( p 4  - 24p2 + 16) -i ip(p2 - 4) - 3 p 2  ip 1 

p is a real parameter  with  arbitrary value, assigned to even out the absolute values of amplitude. p = 2 is a suitable value. 

are easily found (see Table 1). This suggests  how to pro- 
ceed to larger N.  In progressing from N to N + 2 only 
one new amplitude has to be calculated, the new ao, 
which results from the previous a, and a, from the rule 

new a, = -ao(aoa$ - a,a:)/(aaa: - &,al). 

How  does one produce such a wave  complex? The 
obvious solution is to make a filter so that  on illuminating 
it with a plane wave the diffracted  light  shall  have the 
amplitudes  and  phases we have  calculated.  This  means 
simply  taking a filter with the amplitude  transmission 
function 

r(x)  = A ( x )  = a, exp ( inkx).  
n 

To realize  such a filter we must  represent t (x )  = A(x)  
in the form R exp (@), so that it consists of a pure  ampli- 
tude filter  with  transmission R, and a pure  phase  filter 
with phase  shift #(x). 

Taking into account the Eqs. (15), we obtain for the 
amplitude  filter the transmission 

t l ( x )  = ( A A * ) f  

= [( a&) + 2alak cos (A’ - l)kxI4 (16) 

because  all other fringes  have dropped out, except the 
marginal  ones.  Only  these will  be  visible in the object 
plane. 

For the pure phase filter we obtain the transmission 

We can now cross  two  such  filters at right  angles, and 
obtain one which  will produce N 2  overlapping  holograms 
in a regular  lattice.  Detailed  calculation  shows that the 
transmittance of this system  will  again  consist of the dc 
terms  plus the two  marginal  fringe  systems at right  angles, 

pIus  two  new  systems  cos (N  - l)k(x -I- y )  and cos (N  - 
l)k(x - y), at 45’ to the main axes. These are also harm- 
less,  as their spacing is below the resolution  limit. 

These  rules are valid if the filter is in contact  with 
the object  plane. It would not be  difficult to put the ampli- 
tude transmission tl(x)tl(y) into this  plane, but the two 
crossed  phase  filters  may  have to be  some  distance  away. 
In this case a correction will have to be  applied to the 
phases by extrapolating the waves to the filter  plane. 

I would not recommend  producing the phase  filter 
photographically. It is doubtful whether the required 
accuracy  could  be obtained. I would rather recommend 
computing the profile +(x), drawing it out on a large 
scale,  reducing it  to the right  size and producing by some 
photomechanical  process a tool with  which the grating 
can be  ruled,  in a material  such as a transparent plastic. 

Subjective  speckle 
“Objective”  speckle  can  be  eliminated by a special  type 
of  illumination, which at the same  time retains the main 
advantage of diffuse  hoIograms: redundant information 
at high entropy; that is to say, the “noiselike”  aspect 
of the diffuse  hologram  is  retained. The situation is dif- 
ferent with what I have  called  “subjective”  speckle,  i.e. 
the noise and distortion arising  from  insufficient  apertures. 

The reason is that, if  we could  achieve this, we could 
break through the “information barrier” of optical trans- 
mission. This may  be illustrated with an example. Good- 
mang has recently  drawn attention to  an interesting para- 
dox. We take an aperture consisting of N small  holes. 
These can be distributed in such a way that they  have 
$N(N - 1) different  spacings,  approximately  evenly  dis- 
tributed over  different  directions.  Each pair gives a Young 
difliaction pattern with a distinct Fourier component; 
hence, we have in the image $N(N - 1) data. How can 
we transmit $N(N - 1) data with N point-apertures? 

The answer  is that the experiment  would succeed  with 
incoherent light, but not with coherent  light. The intensity 
of the Fourier component  corresponding to one pair is 
the geometrical  mean of the intensities at the two point- 
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apertures, say A and B, multiplied by the coherence 
factor yAB, which is a function of two variables. Hence 
if we know yAB and yAC we cannot predict yBC. But in 
coherent  light TAB = cos (A, B) is  the function of one 
variable only, the phase; hence, yBC = cos [(A, C) - 
(A, B)]. We need only  determine the phases (for instance, 
with a hologram) in  order to carry out this  prediction. 
Hence the i N ( N  - 1) Fourier components  carry in fact 
only N data of information.* 

The  frustration of such attempts by coherent light 
manifests itself in speckle. A set of N small apertures 
distributed at  random over a circular disc is a  fair  approxi- 
mation  to Goodman’s set. Experiments carried out in 
CBS Laboratories by F. Weindling have shown that 360 
pinholes give a point-figure that appears acceptable. 
But as  soon  as  one tries the experiment with, say, 10 to 
20 image points close together the speckle becomes in- 
tolerable. This, incidentally, is an example of the general 
experience that “structural” information theory, which 
counts the degrees of freedom,  can  lead to very misleading 
results unless it is supplemented by “metrical”  informa- 
tion theory, which takes  account of the noise. Nature 
always finds a way for  frustrating  those who want to 
break through  the information  barrier! 

found by Toraldo di Francialo that in incoherent illumination the optical 
* One can consider these remarks as a generalization of a result recently 

full disc. No optical method has  been disclosed yet for achieving this, but 
information capacity of an infinitely thin annulus is equal to that of the 

can produce an image with ; Nz independent points. 
in radio astronomy, Wild11 has shown that N antennas, arranged in a ring, 
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