D. Gabor

Laser Speckle and Its Elimination

Abstract: “Objective” speckle arises from the uneven illumination of an object with a multiplicity of waves that interfere at its surface.
“Subjective” speckle arises at rough objects even if they are illuminated evenly by a single wave. The noise in the image is caused by
the interference of the point-figures, which have random phases. Subjective speckle cannot be reduced except by extending the aperture.
On the other hand the “objective” speckle in a plane, for instance in the plane of a transparency, can be reduced, and in the limit
made invisible, by a special type of wide-angle illumination. This consists of a one-parameter family of plane waves, which can be
produced by diffraction at a special grating, or two crossed gratings, close to the object plane. This makes it possible to produce mul-
tiple holograms, with the same insensitivity to dust or scratches as diffused holograms, but without any visible speckle in the recon-

struction.

Introduction

Laser speckle noise is a direct consequence of the high
coherence of laser light and has been long recognized
as the Enemy Number One of holography. When a
hologram is taken of a transparency illuminated with
a single plane or spherical wave nothing is lost of the
information content. The resolution is given by the angle
subtended by the hologram as seen from the object.
But the reconstructed image of the object is marred by
the schlieren of the optical system; every speck of lens
cement, every particle of dust shows up as a system of
interference fringes. Only lensless Fourier holograms are
free of the schlieren, but here, too, dust or scratches on
the hologram mar the reconstruction. On the other hand,
a hologram taken of a transparency in diffused illumina-
tion does not show up the schlieren, and the reconstruc-
tion is highly insensitive to dust or scratches in the holo-
gram, but the resolution is very strongly reduced by
speckle noise.

I wish to distinguish between two types of laser speckle,
“objective” and “‘subjective.” “Objective” laser speckle
arises from uneven illumination of the object; it is really
there, and a photographic emulsion spread over the sur-
face of the object would show it up. Even a perfect optical
system cannot do better than to reproduce it exactly.
On the other hand, “subjective” speckle arises in the
case of an evenly illuminated rough object, by the im-
perfection of the optical reproduction, whether this is
produced directly or via a hologram. It was first described,
almost as soon as lasers had become available, by Oliver®
and by Rigden and Gordon,” as the “sparkly”” or “gran-
ular” appearance of uniformly illuminated rough surfaces.
These authors gave also a correct qualitative explanation
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of the phenomenon. It arises by a diffraction effect at
the receiving end or, more exactly, by the limitation of
the amount of light admitted for image formation by
the optical instrument or by the eye.

This limitation has two causes. The dimples and pro-
jections of a macroscopically rough object can act as
small reflectors with a complicated system of narrow
lobes, and only a part of these will be caught by the
objective. This, however, is a small effect, negligible in
most cases. It would be the same if the object were illu-
minated with almost monochromatic noncoherent light.
The second effect is far more important. The dimples
and projections, even if they are microscopically small
(so that by themselves they emit almost spherical waves),
give randomly distributed phases to these wavelets, and
their interference produces a strong noise in the image
and spoils the resolution, even if the optical system has
sufficient aperture for good imaging in incoherent light.
A full mathematical theory of this “subjective” speckle
was given by Enloe.?

Enloe’s mathematical results have a simple interpreta-
tion, which I owe to unpublished notes of G. W. Stroke.
An objective that is good enough for incoherent light is
not good enough for coherent light. In incoherent light
the absolute squares of the amplitude point-spread values
are summed. These are always positive, and they decrease
sharply with the distance from the geometrical point-
image; in the case of a round aperture, with the 3rd
power. But the amplitudes themselves decrease only with
the 3/2 power, and they are positive or negative. If
there are other points near the one considered, the ampli-
tudes sometimes add, sometimes subtract, and the result
is strong speckle noise. This becomes even stronger if
the aperture is a thin annulus. In this case the intensity
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falls off with the first power of the distance, the amplitude
only with the one-half power, and photographs taken
through such an aperture in coherent light lose all like-
ness to the object.

As Enloe has recognized, the only remedy to subjec-
tive speckle is to widen the aperture. I will show later
that there is no escaping from this conclusion, because
if by any a posteriori manipulation we could correct the
subjective speckle, we could break through the ‘““informa-
tion barrier.”

On the other hand, I will show that the ‘“objective”
speckle, which arises in the diffuse illumination of plane
transparencies, can be completely eliminated by a special
type of illumination that preserves the advantages of
multiple holograms: the almost uniform distribution of
information and the consequent insensitivity of the recon-
struction to dust or scratches. Gerritsen, Hannan and
Ramberg,” and before them Upatnieks,” have already
made progress in this direction by using certain phase-
gratings in the plane of the object. I will show that in
principle one can approach the advantages of uniform
distribution almost beyond any limit, though the realiza-
tion may require considerable experimental skill.

One-dimensional speckle

For simplicity consider first N plane waves striking a
plane z = 0, with their wave normals all in the x-z plane.
Their interference phenomenon in the zero plane is the
“speckle.” In the usual small-angle approximation we
would obtain exactly the same result with spherical waves
of equal curvature; that is to say, the same effect would
occur if the waves originated not at infinity but at any
z = constant plane, because these too would give straight
interference fringes in the y-direction.

The resulting amplitude of these waves is

N

A(x) = D A, exp [itk,x — wi)], (1)

n—1

where the A, are complex.
The resulting local intensity is

I(x) = A(x) A*(x)
302 A, A% exp [itk, — k,)xl. )

n

The energy collected in an interval X, centered on x, is

To+3X
E(X, x,) = f I(x) dx

o—iX

i

X 20 20 A, Axlsinc 3k, — k) X]
X exp [i(k, — kn)xol. 3)

As is usual in statistical problems, we are asking first
for the mean-square fluctuation of this quantity, which

will give us a sufficient insight into the problem. We
must therefore calculate

((EX, x0) — (E)Y') = (E'(X0)) — (E)’,

where the averaging is over the x,, at given X. We first
calculate the square of Eq. (3), which is

E(X, %) = 2, 0. 2 > A, Ak A, A%
X [sinc 2k, — k,) X][sinc 3k, — k... ) X]
X exXp [l(kn - km - kn’ + km’)xf)]- (4)

Averaging this over x, by integrating over the whole
plane turns the last factor into a delta function, which
is zero except for

lkn - kml = lkn' - km’| (5)

The condition given by Eq. (5) is automatically satisfied
for identical pairs n,m, but it is also satisfied whenever
two intervals between wave numbers coincide so that they
give the same fringe spacing. This latter I call degeneracy.
If it occurs, it can make the speckle much worse, but,
as will be shown later, it can also make it much better.

We can now write the average of Eq. (4) in the form

(X)) = X(O L+ X 2 D LI+ g.)

n#Em ”
X sinc® ik, — k)X, (6)

where I, = A,A* is the intensity of the nth beam by
itself, and g, is the degeneracy factor of the pair n,m:

Bnm = (AnA:kn Z Z An'Az)/InIms

', m" # n, m). @)

The summation here has to be carried out only over
those n',m’ pairs that are not identical with #,m but for
which {k, — kn| = |kv — kw

We now obtain the relative mean-square energy fluc-
tuation in intervals of length X in the form

KE® — (EY'1/(E)’
= (L) > LLA A+ g

n¥Em m

X sinc® ik, — kn) X. (8)

For X = 0 the sinc” factor becomes unity, and Eq. (8)
assumes its maximum value, which is

2 2 LI+ g.)/ (X LY.

nEm m n

In the absence of degeneracy (.e., if g, = 0) for N
waves of equal intensity this value is given by (N — 1)/N
and, for many waves, it approaches the value unity. This
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Figure 1 Relative mean square fluctuation of intensity in
coherent light as a function of the sample interval X, in one
dimension, with random illumination uniform within an
angle (A/27)K.

happens to be exactly the value for the mean-square
fluctuation in a simple fringe system with intensity cos® Kx.

Extension to two dimensions

If the same calculation is carried out for two dimensions,
for waves characterized by wave numbers k,, and k,,
nothing essential changes, except that for degeneracy we
have now a double condition

{k": - km;( = lkn’z -
|k"y - km,,[ = Ik"'v -

km’z!a and
km'y[, (nl: m' ?é n, m):

which means that the fringes produced by two different
pairs must coincide not only in spacing, but also in
direction. This, evidently, will be very rarely the case
with frosted glass and the like; hence, degeneracy can be
neglected except for artificially produced diffusers, such
as will be discussed later. Therefore, in the two-dimensional
case, the relative mean-square energy fluctuation over
areas XY will be simply the product of two expressions
of the form (8), with g,, = O.

Application to a random scatterer

We now consider a plane illuminated by a rectangular
frosted glass or the like, so that in the area of interest
the waves are uniformly distributed in an angular range
0 < k < K or between ==3K, both in the x and y direc-
tions. According to the argument given in the last section
we can neglect the degeneracy and carry out the calcula-
tion in one dimension, taking its square in the end. As
now we deal with (practically) a continum of waves, we
can replace the sum in Eq. (8) by an integral, and there
is no need to exclude the case n = m, as its contribution
is vanishing. We have therefore to calculate the x-factor
of the relative mean-square fluctuation, which is

K K
f f [sinc® (k, — k) X] dk, dk.,
F(KX) = =*+—° .0

K K
f f dk, dk,,
o Jo
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We introduce the new variables x = $(k, + k)X, y =
2(k, — kn.)X. The integrand is a function of y alone;
moreover it is even in y. We can therefore use the formula
that replaces integration over a square by integration over
two triangles:

K K
X f f fkns k) dky dk,,
0 0

i1KX KX -2y
=4 f &) dy f dx,
0 0

which gives
1EX KX-2y
F(KX) = 4(KX)‘2f sinc® y dyf dx
4] Q
IKX
= (%KX)‘z[KXf sinc® y dy
0
i1KX
— 2[ (sin® y/») dy} (10)
0
= GKX){ KX[Si (KX)]
— Cin (KX) — 2sin® $ KX}, a1

where Si is the sine integral, and

Cinz = fz [(1 — cos t)/t] dt,

a function tabulated, for instance, by Abramovitz and
Stegun.® This function is plotted in Fig. 1 in units of the

smallest interference-fringe spacing A = 2x/K which
arises in the range of illuminating waves 0 to K or, —3K
to +3K.

The essential result is very simple. Beyond about 4 or
5 such fringe spacings the function F(KX) assumes the
asymptotic form, for one dimension,

F(KXy~ 2w/KX = A/X, 12)

and in two dimensions the mean-square fluctuation is
the square of this. (This result has been already obtained
by Enloe® and by Gerritsen, Hannan and Ramberg.*)

The significance of this result is explained in Fig. 2.
The object plane is illuminated by a square diffuser in
the angular range K = (27/\) (85I dpar — Pmin). Consider
a square area in this plane, X’X’. An objective picks up
an angular range K’, and images the area into X"X".
As KX is an invariant, K’X’ = K"X''. We can consider
A, the fringe spacing of the extreme waves admitted by
the objective, as the resolution limit. (The factor 0.5 or
0.6 that is usually added is somewhat unreal, as it gives
the extreme limit of discriminability.) We can then express
the result as follows.

Random illumination within a certain solid angle (square
in our case, but evidently it would not make much dif-
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this loss is regained by the fact that the entropy of a
diffused hologram comes near to the theoretical maxi-

VT L 7/ 7/ /L /£ 111/ 7/ 1/ 7/ /////
\ II

\\ /
\ /// mum. The entropy of diffused holograms is probably 10
\\/ K\;/ times that of television pictures and possibly 50 times
\\ / that of printed matter.* Can we not realize at least a
\\ ,’, part of this gain without the loss caused by the speckle?
N/ A diffused hologram can be interpreted as a random
Object plane T repetition of a basic pattern. I will show that at least in
/” ,:' x the case of plane objects we can eliminate the speckle by
/ ,,' the basic holograms distributed not at random, but in
,/ H a regular lattice, with approximately equal intensities,
/ ," provided that certain phase conditions are accurately
/NE"); observed.t
*r' ! The key to speckle-free illumination is the degeneracy
! ,Y factor g,,. In order to make good use of it, we make
Objective /,/;;/;?\/x'; all wave number intervals k equal. Taking first again the
‘,'x““”f one-dimensional case, let us illuminate the object plane
‘,' ,// with N equally .spaced waves with complex amplitudes
[ a,, and a resulting amplitude
ek,
P/ Ax) = Z a, exp (inkx). (13)
Image plane : L/
The total width (N — 1)k = K must be fitted to the

aperture of the optical lens system or to the size of the

hologram.
The resulting intensity is

I(x) = Ad4* = Y D a,ak exp [i(n — mkx]. (14)

Figure 2 Interpretation of the law of relative intensity fluc-
tuation. The mean square intensity fluctuation is a function

of the invariant K’X’ = K”X".

This contains interference fringes with wave numbers
from k£ to (N — 1)k. We can now annul all these fringes,
with the exception of the last (finest) system, which arises
by the interference of the marginal waves. These fringes
are innocuous if they are finer than the finest detail we
want to resolve. The conditions for speckle-free illumina-

ference if it were round) with coherent light produces a
relative mean-square speckle noise that is the inverse of
the resolution elements contained in the sampled areas.

This becomes even more illuminating if we consider
that experience shows that in a picture of good television
or photographic standards the root-mean-square noise
per resolved element must be 20 dB down on the signal,
and the mean-square noise by 40 dB, that is to say, by
a factor of 10*. This means that the “sufficiently noiseless”
elementary area must contain 10* elements which would
be otherwise resolvable; hence, random laser speckle spoils
the linear resolution by about two orders of magnitude.
(A little less in the case of moving pictures.)

tion are, therefore,
aatta,attazait - - Favsa¥o tay_1a¥

=0
aattaatit - Fay_sab_ Fava%=0

aa¥_1+tasaf=0. (15)
These are N — 2 equations for the N — 1 essential ampli-
tudes a,. For practical applications the symmetrical solu-
tions are of interest, with N odd, so that n runs from

Eliminating laser speckle in the imaging of
—3(N — 1) to #(W + 1). For N = 3 and 5 the solutions

plane objects
Diffused holograms have great advantages over holograms

taken with regular (plane or spherical) illumination. They

512

have made it possible to view holograms of three-dimen-
sional objects with two unaided eyes, and the information
in them is redundantly recorded, hence the reconstruction
is insensitive to dirt or scratches in the hologram. One
has, of course, to pay for this redundancy by imperfect
utilization of the photographic emulsion, but a part of

D. GABOR

* In fact both by holography with skew reference beams at various angles
of incidence? and by “‘carrier-frequency photography,” i.e., by placing a line
screen on top of the emulsion and giving it various orientations, one can
increase the entropy of the record to such an extent that up to 60 good line-
drawing pictures can be recorded without appreciable crosstalk.8

t The minefold repetition of the hologram, as used with good resuits by
Gerritsen, Hannan and Ramberg$ can be considered as a first step in this

direction.
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Table 1 Amplitudes for speckle-free illumination for several values of N.

N —~as —as —as —a aqg a; as a; as
1 1

3 1 ip 1

5 1 ip —1ip? ip 1

7 1 ip -3 p —3ip(p* — 4 -t ip 1

9 1 ip -t =i~ =@ -2+ 16 —iip(r -4 —ip ip 1

p is a real parameter with arbitrary value, assigned to even out the absolute values of amplitude. p = 5 is a suitable value.

are easily found (see Table 1). This suggests how to pro-
ceed to larger N. In progressing from N to N < 2 only
one new amplitude has to be calculated, the new ay,
which results from the previous a, and a;, from the rule

new a, = —aoacaf — a;a%)/(acat — a%ar).

How does one produce such a wave complex? The
obvious solution is to make a filter so that on illuminating
it with a plane wave the diffracted light shall have the
amplitudes and phases we have calculated. This means
simply taking a filter with the amplitude transmission
function

(x) = Ax) = Z a, exp (inkx).

To realize such a filter we must represent #(x) = A(x)
in the form R exp (ip), so that it consists of a pure ampli-
tude filter with transmission R, and a pure phase filter
with phase shift ¢(x).

Taking into account the Egs. (15), we obtain for the
amplitude filter the transmission

hix) = (44%)}

= [(2 a.a%) + 2a,a} cos (N — Dkx}*  (16)
because all other fringes have dropped out, except the
marginal ones. Only these will be visible in the object
plane.

For the pure phase filter we obtain the transmission

t:(x) = exp [ig(x)]

= 2 a, exp (ikx)/ (D2 a.a¥)

+ 2ayaf cos (N — Dkx]E. an

We can now cross two such filters at right angles, and
obtain one which will produce N° overlapping holograms
in a regular lattice. Detailed calculation shows that the
transmittance of this system will again consist of the dc
terms plus the two marginal fringe systems at right angles,
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plus two new systems cos (N — 1)k(x + y) and cos (N —
Dk(x — y), at 45° to the main axes. These are also harm-
less, as their spacing is below the resolution limit.

These rules are valid if the filter is in contact with
the object plane. It would not be difficult to put the ampli-
tude transmission #(x)t;(») into this plane, but the two
crossed phase filters may have to be some distance away.
In this case a correction will have to be applied to the
phases by extrapolating the waves to the filter plane.

I would not recommend producing the phase filter
photographically. It is doubtful whether the required
accuracy could be obtained. I would rather recommend
computing the profile ¢(x), drawing it out on a large
scale, reducing it to the right size and producing by some
photomechanical process a tool with which the grating
can be ruled, in a material such as a transparent plastic.

Subjective speckle
“Objective” speckle can be eliminated by a special type
of illumination, which at the same time retains the main
advantage of diffuse holograms: redundant information
at high entropy; that is to say, the ‘“noiselike” aspect
of the diffuse hologram is retained. The situation is dif-
ferent with what I have called “subjective” speckle, i.e.
the noise and distortion arising from insufficient apertures.
The reason is that, if we could achieve this, we could
break through the “information barrier’” of optical trans-
mission. This may be illustrated with an example. Good-
man’ has recently drawn attention to an interesting para-
dox. We take an aperture consisting of N small holes.
These can be distributed in such a way that they have
+N(N — 1) different spacings, approximately evenly dis-
tributed over different directions. Each pair gives a Young
diffraction pattern with a distinct Fourier component;
hence, we have in the image $N(N — 1) data. How can
we transmit $N(N — 1) data with N point-apertures?
The answer is that the experiment would succeed with
incoherent light, but not with coherent light. The intensity
of the Fourier component corresponding to one pair is
the geometrical mean of the intensities at the two point-
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apertures, say A and B, multiplied by the coherence
factor vy,g, which is a function of rwo variables. Hence
if we know v, and y,c we cannot predict ygc. But in
coherent light y,5 = cos (A, B) is the function of one
variable only, the phase; hence, ygc = cos [(A, C) —
(A, B)]. We need only determine the phases (for instance,
with a hologram) in order to carry out this prediction.
Hence the $N(N — 1) Fourier components carry in fact
only N data of information.*

The frustration of such attempts by coherent light
manifests itself in speckle. A set of N small apertures
distributed at random over a circular disc is a fair approxi-
mation to Goodman’s set. Experiments carried out in
CBS Laboratories by F. Weindling have shown that 360
pinholes give a point-figure that appears acceptable.
But as soon as one tries the experiment with, say, 10 to
20 image points close together the speckle becomes in-
tolerable. This, incidentally, is an example of the general
experience that “structural” information theory, which
counts the degrees of freedom, can lead to very misleading
results unless it is supplemented by “metrical” informa-
tion theory, which takes account of the noise. Nature
always finds a way for frustrating those who want to
break through the information barrier!

* One can consider these remarks as a generalization of a result recently
found by Toraldo di Francial® that in incoherent illumination the optical
information capacity of an infinitely thin annulus is equal to that of the
full disc. No optical method has been disclosed yet for achieving this, but
in radio astronomy, Wild!* has shown that N antennas, arranged in a ring,
can produce an image with 3 N2 independent points,
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