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Some Effects of Fourier-domain Phase Quantization*

Abstract: If the Fourier transform of a function g{x) is quantized, the function recovered by inverse transformation differs from g(x).
By means of a biased limiter model, the effects of Fourier-domain phase quantization are studied. Amplitude information is assumed
fully retained, while phase is quantized to N equally spaced levels. The recovered function is shown to consist of several different
contributions, the relative strengths of which depend on the number of phase quantization levels. Several specific examples are given.
Motivation and interpretation are presented in terms of digitally constructed holograms.

1. Introduction
o The problem
When constructing holograms with a digital computer,
it is necessary to deal with discrete arrays of points and
to limit the physical quantities computed to a discrete
set of possible values. The problem of sampling the
hologram in a sufficiently fine array to avoid aliasing
errors has been studied by others' and is not of concern
here. Rather, we limit attention to the problem of quanti-
zation and its effects on the images formed by Fourier-
transform holograms.

Stated in the most general possible way, the problem
can be described as follows. Let the function g(x) have
a Fourier transform G(»), i.e.,

Gy) = [ g(x) exp [— 27xv] dx. (1)

Let G(v) be subjected to quantization, yielding a new
spectrum é(v). How does the inverse Fourier transform
;(x) of G(») relate to the original function g(x)?

As we shall see, the problem stated above has direct
relevance to digital holography. However, in its most
general form it also has important implications in many
other fields, including Fourier spectrescopy, pattern
recognition and communication bandwidth compression.
Our point-of-view will emphasize holography, but many
of the results can be directly transcribed for other ap-
plications.
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o Types of quantization

The Fourier transform G(y) is in general complex-valued,
and as a consequence, two distinctly different types of
quantization can be envisioned. First, it is possible to
quantize separately the real and imaginary parts of G(»),
each to a finite set of N allowable values. For example,
we might choose the quantization levels to be equally
spaced, in which case the quantization operation can
be mathematically described (for odd N) by

N N —
Re {GW)} = —( 3 1>a, when

— » < Re {GW)} < _<—2d - l)a
3a a
= —a, when -5 < Re {GW)! < -3

= 0, when —g < Re {G@W)! <g

a 3a

= +4ga, when 55 Re {G()| < 5

N—1
—( 5 >a,when

<§-— 1>a < Re (GO} < + =,
(2)
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with a similar equation for Im {G(v)}. This quantization
scheme is shown diagramatically in Fig. 1(a), where
the dashed lines represent quantization boundaries and
the dots represent the possible quantized values.

A second quantization scheme is found by representing
G(») in terms of its amplitude |G(»)| and its phase ¢(v),

G() = |G()| exp [ip(»)]. 3

In this case we separately quantize |G(v)| and ¢(») to
discrete values, perhaps with different numbers of quan-
tization levels allotted to amplitude and phase. For the
special case of equally spaced quantization values, we
can represent the quantization operation mathematically
by

IG@)| = 0, when 0 < |GO)| <52’—
3a
= a, when = < |GW)| < )
= 2a, when 3a < 1GM)| < 3a
2 2
3
= (M — 1)a, when <M — *)a < |GE)| <
2 .
)]
and
$) = 0,  when ~L < ¢0) < +7
27 T 37
= —_— — < —_—
N when N_¢(V)<N
= —NW_—I 2w, when
2N — 3 2N — 1
2! < 1
~ T < o) < ~ . %)

This particular quantization scheme is illustrated in
Fig. 1(b), where again the dashed lines represent quan-
tization boundaries and the dots represent quantized
values.

e Holographic motivation

Our emphasis in this paper will be on the second of the
two quantization schemes. The reason for concentrating
on this specific quantization method is its particular
relevance to the binary Fraunhofer hologram technique
described by Lohmann and his co-workers.”® The reader
can find a detailed description of the technique used
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Figure 1 Types of Fourier-domain quantization. (a) real
and imaginary part quantization; (b) amplitude and phase
quantization.

in computing and plotting binary Fraunhofer holograms
in the references cited above. For our purposes here it
suffices to note that when the computed hologram is
plotted prior to photoreduction, the effective phase
transmission through an elementary cell of the hologram
is controlled by causing the plotter to stroke at one of a
certain quantized set of positions within the cell. In
addition, the effective amplitude transmittance is con-
trolled by causing the stroke area to be one of a certain
set of quantized values. The result is amplitude and
phase quantization of the Fourier spectrum of the holo-
graphic image.

By way of further motivation, a new wavefront re-
construction device called the kinoform has recently been
described.* Again the reader can find a detailed discussion
of the kinoform in the reference cited; for our purposes
we simply note that a kinoform produces a wavefront
which differs from the ideally desired wavefront in two
respects. First, all amplitude information is quantized
to a single value, and second, the phase information is
quantized to a finite set of values. Thus a kinoform
produces a wavefront which is quantized in both am-
plitude and phase.

e Restrictions of our analysis

The analysis to be presented in this paper cannot be
regarded as a complete solution to the amplitude and
phase quantization problem. Specifically, we shall focus
our attention exclusively on phase quantization, with
the effects of amplitude quantization ignored. The results
remain meaningful, however, for two reasons. First, it
is of some academic interest to understand in detail the
effects of phase quantization without any accompanying
amplitude quantization. Second, and more important,
it has been found experimentally that in the Fourier
plane, amplitude information is of far less importance
than phase information, and that amplitude information
can be fully retained or fully discarded without causing
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Figure 2 Model for analyzing phase quantization.

any significant change in the image. This fact is partic-
ularly true when the object is diffuse, and has been amply
demonstrated in experiments with kinoforms* and with
“phase only” acoustic holograms.” More recently an
analysis by Kermisch® has verified that for diffuse objects
the error that results from discarding amplitude infor-
mation is small. In view of the relative insignificance of
amplitude information in these important situations, we
feel justified in ignoring the effects of amplitude quan-
tization by assuming, for mathematical convenience,
that amplitude information is fully retained. Equivalently,
we assume an infinite number of amplitude quantization
levels, but only a finite number of phase quantization
levels.

2. Analysis

o The model

The Fourier spectrum G(v), which may be written

G() = |G()| exp [ip()], (6)
is to be quantized in phase alone, yielding a new spectrum
G() = GG)| exp [BG)]. )

The type of phase quantization assumed is precisely
that described by Eq. (5); i.e., the interval (0, 27) is divided
into N equal quantization cells, each of width 2x/N.
Whenever ¢(v) falls into a particular quantization cell,
the quantized phase is assigned the value at the midpoint
of the quantization interval.

The transformation from ¢(») to {{s(v) may be described
in an analytically tractable fashion if the model of Fig. 2
is utilized. The function cos ¢(») is applied at the input,
which subsequently divides into N separate branches. In
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the kth branch we place a phase delay of amount &Q2m/N),
followed by an ideal biased limiter which has the input-
output characteristic

gn) = {1’
0,

The output of the limiter is then multiplied by the complex
number exp [ik(2x/N)]. Finally, all branches are summed
to yield an output P(v). For cos ¢(») at the input, we
find P(v) is given exactly by

P(v) = exp [ip()], )

where $(v) is the value of the quantized phase described
by Eq. (5).

Our procedure for finding the function ;(x) produced
after phase quantization will be the following: 1) find a
convenient expression for P(») in terms of ¢(v), 2) multiply
P(v) by |G(v)|, and 3) take the inverse Fourier transform
of the product to obtain g(x).

i > cos (x/ N) ®)

otherwise.

o Nonlinear analysis applied o a single branch

We first analyze the nonlinear transformation introduced
by the kth branch of the model of Fig. 2, i.e., the mapping
of cos [¢(») — k(2w/N)] into Py(v), the kth component
of P(y). Our analysis rests on the “transform method”
for analyzing nonlinear devices.” Let

ye(v) = cos [¢(») — k(2m/N)] 10)

represent the input to the kth biased limiter, and let
glyi(»)] represent its output. Then g(y,) may be written as

3

g0n) = fc f(ig) exp [iE2] 5= (1)
where £ is a complex variable, f(if) is defined by
1 = [ g0 e 1—itnd v, (12)

and C is a contour chosen in the region of convergence
of f(i£). For the biased limiter of interest here, f(if) is
given by®

exp [— it cos (x/ N)]

i£) = 13
fG&) it 13)
and the region of convergence is the lower half of the
£ plane.

Next we insert Eq. (10) and Eq. (13) into Eq. (11),
obtaining

_ _ exp [—if cos (w/ N)]
g = g = fc i
) s
Xexp {if cos [¢p — k(2r/N)1} P (13)
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The identity

exp [it cos 8] = i (i)' J1(¢) exp [il6] (15)

l=—w

may then be used to reduce Eq. (14) to

g = 2. Ck,I)exp lillp — kQ2r/N)]}, (16)

l=—o

where the constants C(k, ]) are given by

c, = g [ 2RIEes @M ;& )
c i£ 27
The constants C(k, /) could be evaluated by means of
an appropriate complex integration, if desired. However,
it is easier to use the following simpler method. Equation
(16) must hold for any ¢(»), and therefore in particular
it must hold for the special case

&) = 2mxov. (18)

Since the C(k, [) are independent of ¢(»), if they can be
found for the special case of Eq. (18), they will be known
for all ¢(»). For this special case we have as input to the
kth biased limiter

vi(») = cos 2mwxy — kQm/N)L. (19)

The output of the limiter is a periodic series of pulses,
with period x;?, pulse width (Nx,)” ', and with the center
of the first pulse (in the positive v direction) occurring at
displacement &(Nx.)"'. The waveform is illustrated in
Fig. 3.

The limiter output g.(v), being periodic, may be ex-
pressed as a Fourier series. In particular, we may write

@lv — (k/Nxp)l = 2. b, exp [i2xlxe], (20)

=~

where, for the particular pulse train of Fig. 3, the complex
Fourier coefficients b, are given by

b = (1/N) sinc (I/N), @1

where sinc x = sin wx/7x. It follows directly that

g) = ij (1/N) sinc (I/ N) exp [i27Ixw)

l=—c0

Xexp [—i2n(lk/N)]. (22)
Comparison of Eq. (16) and Eq. (22) shows that
C(k, I) = (1/N) sinc (//N). (23)

Finally, to find the output P,(») of the kth branch we
must multiply g.(») by the complex constant exp [i2wk/N],
which yields

P.(v) = g.(v) exp [i2rk/N] = D (1/N)sinc (I/N)
l=~—c

Xexp [—i2n(k/NYI — 1)] exp [ilp]. (24)
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Figure 3 Periodic pulse train produced by the kth biased
limiter.

e Total output of the phase quantizer
The total output of the phase quantizer may now be
found by summing P,(v) over all N branches. Thus,

PG) = X 3 (1/N)sinc (/M)

k=0 l=—®
Xexp [—i2n(k/N)Y1 — 1)] exp [ilp]. (25)

Interchanging orders of summation we find

P@) = OZ sinc (I/ N)

l=—c
N-—-1
exp [ilg] {—]1;, kz exp [—i2m(k/ N)(1 — 1)]}- (26)

The summation in brackets is readily seen to be nonzero
only for certain values of /; specifically,

N—-1

%{ kz; exp [—i2r(k/NY(I — 1)]

27

_{1, I —1=0,%N, £2N, -
0, otherwise.

It is therefore advantageous to change the index of summa-
tion to

m= (I — 1)/N, (28)

in which case we obtain

=0

P() = D sinc [m + (1/N)]

Xexp [i(Nm + 1)¢@)]. (29)

The total spectrum after quantization may now be
found, noting G(v) is simply the product of P(») and
|G)|. Thus,

G@) = . sinc[m + (1/N)] |G)|

m=—0o

Xexp [i(Nm + Do@)]. 30)
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To find the x-domain function ;:(x) after quantization,
we take the inverse Fourier transform of Eq. (30) to
yield our final analytical result,

gx) = X sinc [m + (1/N)lgn(x), (31)

m=—c

where

©

8.0 = [ 166 exp iNm + 1Da0)]

Xexp [i2mvx] dv. (32)

The section to follow is devoted to interpretation and
discussion of the result represented by Egs. (31) and (32).

3. Interpretation, discussion and examples

& General comments

Our main analytical result, Eq. (31), demonstrates that
the recovered function §(x) consists of a summation of
several different contributions. The portion contributed
by the m = 0 term we call the “primary image” term,
since, as is readily verified, it contributes a function which
is simply an attenuated version of the original object.
Thus for m = 0 we find the image contribution to be

sinc (1/N)-g(x). (33)

As the number of quantization levels increases, the
argument of the sinc function approaches zero, and the
strength of the primary image increases, approaching that
of the original function g(x).

In addition to the primary image, there are contribu-
tions from the m = 0 terms which we refer to here as
“false images” because, under certain circumstances they
can produce separate and distinct images of the original
object. As can be directly seen from our analytical results,
the strength of the mth false image is attenuated by the
factor sinc [m + (1/N)]. Since m is always an integer,
and since the value of the sinc function for integer argu-
ment is zero, we see that as the number N of quantization
levels increases, the strengths of the false image terms
decrease.

In general, the shape of a false image is different from
that of the primary image, since Eq. (32) demonstrates
that the phase distribution across the spectrum of the
mth false image is (Nm -+ 1)¢(v). The effect of phase
multiplication in the Fourier domain is in general com-
plicated, but several important conclusions can be drawn.
First, there do exist functions with transforms having the
property

(Nm + Do(v) = $(v). (34)

When this is the case, the false image g,(x) will have
exactly the same shape as g(x). An example of a transform
pair having this property is
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1~ |xl, <1
o) { x| x| <
0, otherwise, (35)

G(v) = sinc’ v,

which has a zero-phase spectrum for all ».

A second general effect of phase multiplication becomes
evident when we consider a function g(x) which may
consist of a small nonzero object g,(x) in a larger, empty
object field. If g,(x) is centered at the middle of the object
field, we have

G() = Gi(») = |G:()| exp [ip1()], (36)

but if g,(x) is shifted to be centered at a point x, away
from the origin, we have

G(V) = \Gl(V)‘ eXp {—i[27rxov —_ ¢1(v)]} . (37)

The effect of phase multiplication will then be to shift
the centers of the false images to new points (Nm + 1)x,
in the image field, possibly separating them completely
from the primary image and from each other. Hence the
origin of the term “false image.”” Examples of this phe-
nomenon are shown in the next section. When effects of
sampling in the x- and v-domains are taken into account,
these displaced false images become potential sources of
aliasing errors.

Finally we mention the effects of phase multiplication
when the object g(x) is diffuse (i.e., has a random phase
at each point x). For diffuse objects, Eq. (34) would never
be satisfied for all v, since the phase function ¢(») in the
spectrum is in general very complicated [it can in fact
be shown to be statistically distributed with uniform
probability on the interval (0, 27)]. In view of our comments
in Section 1, however, the amplitude information |G(»)| is
relatively unimportant, and we could, with reasonable
accuracy, approximate the spectrum of the mth false
image in the following way:

G,() = [G@)| exp [i(Nm + 1)o()]

X |G| exp [i(Nm + 1)o()] (38)
_ {GN"‘“(V), Nm +1>0
G o),  Nm 41 <0.

We conclude that, to a first approximation, the mth false
image may be found as an |Nm -+ 1|-order self convolution
of the primary image. The effect of the conjugate sign
in Eq. (38) is simply to mirror-reflect the convolution
about the x-origin, and to conjugate the corresponding
false image.

» Some examples

We now illustrate our analytical conclusions with some
specific examples. Our first example concerns the effect
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Figure 4 Effects of shifting g(x), two quantization levels:
(a) the original g(x); (b) §(x) recovered with no shift; (c) d(x)
recovered with shift x, = 1/4; (d) ¢(x) recovered with xo =
1/2; (&) 6(x) recovered with x, = 1.

of shifting a small object in a larger object field. The
object chosen is a simple one [see Fig. 4(a)],

g(x) = rect (x — Xxo), (39)

where the function rect (x — x,) is defined by

_ <1
rect (x — xo) = _JI’ x — xo] < 3%

)

0, otherwise.

We quantize phase to only two levels, 0 and =. Thus
Eq. (31) becomes

glx) = . sinc (m + Hgax), (40)

m=—~cw
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Figure 5 Effects of changing the number of quantization
levels: (a) the original g(x); (b) #(x) recovered when N = 2;
(c) §(x) recovered when N = 3; (d) ¢(x) recovered when N = 4.

where the spectrum G(v) of g.(x) is

G,.(») = [sinc »| exp [i2m + D(»)]
Xexp [— i2nr(2m + Dxov]. “n

The phase ¢, is the phase of sinc », and jumps periodically
between 0 and =. It follows that

exp [i2m + D] = exp [ig,(v)] 42)

and, therefore, that

,;g(x) = Z sinc (m + 1)

X rect [x — 2m + 1)x,]. “43)

Figures 4(b), (c), (d) and (e¢) show the recovered function
2(x) when x, = 0, 1, % and 1, respectively. For any
X, > 1, the false images are distinct and separate from
the primary image.

The effect of changing the number N of quantization
levels is next considered for the particular function

g(x) = rect (x — 1) (44)

shown in Fig. 5(a). The results are shown in Figs. 5(b),
(c) and (d) for N = 2, 3 and 4, respectively. The conclu-
sions can be summarized as follows: 1) as N increases,
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Figure 6 Intensity of the false images as a function of N.

the strength of the primary image grows and the strength
of the false images decreases; 2) as N increases, the false
images move farther and farther away from the primary
image, assuming that the object is not centered at the
origin. Note that for the particular case N = 3, the
m = =1 false images, centered at x = —2 and x = 4,

J. W. GOODMAN AND A. M. SILVESTRI

do not have the same shape as the primary image, but
rather are considerably spread out along the x-axis, a
consequence of the fact that in this case the phase does
not satisfy Eq. (34).

To develop a general feeling for the manner in which
the false image strengths fall off with increasing N, we
have plotted in Fig. 6 the value of sinc® [m + (1/N)).
The intensity of the mth order false image falls asymp-
totically as

L, ~ 1/m°N? (m > 0) (CH)]

for large N.

4. Concluding remarks

The analysis presented represents an exact solution to the
phase-quantization problem when the quantization levels
are equally spaced. A slight modification of the phase
delays and limiter thresholds in Fig. 2 would allow an
exact solution for unequal quantization intervals.

The usefulness of the solution in predicting image
degradations caused by phase quantization in holography
is probably limited to the case of reasonably small N.
As the number of phase quantization levels increases,
eventually a point will be reached where amplitude
quantization effects predominate.
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