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Some  Effects of  Fourier-domain  Phase  Quantization* 

fully retained, while  phase  is  quantized to N equally  spaced  levels. The  iecovered  function is shown-to consist  of  several  different 
contributions, the relative  strengths of which  depend on the number  of  phase quantization levels.  Several specific examples are given. 
Motivation  and  interpretation are presented  in  terms of  digitally  constructed  holograms. 

1. introduction 
The problem 

When constructing  holograms with a digital computer, 
it is necessary to deal with discrete arrays of points and 
to limit the physical quantities  computed to a discrete 
set of possible values. The problem of sampling the 
hologram in a sufliciently fine array to avoid aliasing 
errors  has been studied by others’ and is not of concern 
here. Rather, we limit attention  to  the problem of quanti- 
zation and  its effects on  the images formed by Fourier- 
transform holograms. 

Stated  in the most general possible way, the problem 
can be described as follows. Let the function ~ ( x )  have 
a Fourier  transform G(v), i.e., 

G ( v )  = g ( x )  exp [ - i2nxv] d x .  

Let G(v)  be subjected to quantization, yielding a new 
spectrum &(v). How does the inverse Fourier transform 
; (x) of &(v) relate to  the original  function g(x)? 

As we shall see, the problem stated above has direct 
relevance to digital holography. However, in  its most 
general form it also has  important implications in many 
other fields, including Fourier spectrescopy, pattern 
recognition and communication  bandwidth compression. 
Our point-of-view will emphasize holography, but many 
of the results can be directly transcribed for  other  ap- 
plications. 
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Types of quantization 
The  Fourier  transform G(v) is in general complex-valued, 
and  as a consequence, two distinctly different types of 
quantization can  be envisioned. First, it is possible to 
quantize separately the real and imaginary parts of G(v), 
each to a finite set of N allowable values. For example, 
we might choose the quantization levels to be equally 
spaced, in which case the quantization  operation can 
be mathematically described (for odd N) by 

Re / G ( v ) {  = - (” ~ 2 ‘)a, when 

= “ a ,  when -- 3a < Re {G(v)I < --; 2 -  * 

= 0, when -a < R e  { G ( v ) }  < I 
2 -  

= +a,  when ’ < Re ( G ( u ) }  < 3a 
2 -  - 

= (?)a, when 
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with a similar equation  for  Im { G ( v ) ) .  This  quantization 
scheme is shown diagramatically in Fig. l(a), where 
the dashed lines represent  quantization  boundaries and 
the  dots represent the possible quantized values. 

A second quantization scheme is found by representing 
G(v) in terms of its amplitude IC(v)I and its  phase +(v), 

C(v> = IG(v)/ ~ X P  [i4(v)I. (3) 

In this case we separately quantize lG(v)[ and 4 ( v )  to 
discrete values, perhaps with different numbers of quan- 
tization levels allotted to amplitude and phase. For  the 
special case of equally spaced quantization values, we 
can represent the quantization  operation mathematically 
by 

IG(v)I = 0, when 0 5 IG(v)/ < 5 a 

= a ,  when - < IG(v)l < % a 
2 -  

3a 
= 2a,  when - < IG(v)I < 1 5a 

2 -  

and 

d ( v )  = 0, when -- < 4 ( v )  < +x a a 
N -  

" 

2a  when - < 4 ( v )  < - a 3a 
N '  N -  N 

- 

- __- N - 1  
N 

- 2 a ,  when 

This  particular  quantization scheme is illustrated  in 
Fig. l(b), where again the dashed lines represent quan- 
tization boundaries and  the  dots represent quantized 
values. 

Holographic motivation 
Our emphasis in this  paper will be on the second of the 
two quantization schemes. The reason for concentrating 
on this specific quantization  method is its particular 
relevance to  the binary Fraunhofer hologram technique 
described by Lohmann  and his co-~orkers. ' .~  The reader 
can find a detailed description of the technique used 

Figure 1 Types of Fourier-domain  quantization. (a)  real 
and imaginary part quantization; (b )  amplitude and phase 
quantization. 

in  computing and plotting binary Fraunhofer holograms 
in the references cited above. For  our purposes  here it 
suffices to  note  that when the computed  hologram is 
plotted prior  to photoreduction, the effective phase 
transmission through  an elementary cell  of the hologram 
is controlled by causing the plotter to  stroke at one of a 
certain  quantized set of positions within the cell. In 
addition, the effective amplitude  transmittance is con- 
trolled by causing the  stroke  area  to be one of a certain 
set of quantized values. The result is amplitude and 
phase  quantization of the  Fourier spectrum of the holo- 
graphic image. 

By way of further motivation, a new wavefront re- 
construction device called the kinoform has recently been 
de~cribed.~ Again the reader  can find a detailed discussion 
of the kinoform in  the reference cited; for  our purposes 
we simply note  that a kinoform produces a wavefront 
which differs from  the ideally desired wavefront in two 
respects. First, all amplitude  information is quantized 
to a single value, and second, the phase  information is 
quantized to a finite set of values. Thus a kinoform 
produces a wavefront which is quantized  in  both  am- 
plitude and phase. 

Restrictions of our  analysis 
The analysis to be presented in this  paper  cannot be 
regarded as a complete solution to the amplitude and 
phase quantization problem. Specifically, we shall focus 
our  attention exclusively on phase  quantization, with 
the effects of amplitude  quantization  ignored. The results 
remain meaningful, however, for  two reasons. First, it 
is of some academic interest to understand  in  detail the 
effects of phase  quantization  without  any accompanying 
amplitude  quantization. Second, and more important, 
it has been found experimentally that  in  the Fourier 
plane, amplitude  information is of far less importance 
than phase  information, and  that amplitude  information 
can be fully retained or fully discarded without causing 
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Phase delavs Biased limiters exp,kOI 

\ e x p [ j ( N - l ) 2 ~ / N ]  

Figure 2 Model for analyzing  phase  quantization. 

any significant change in  the image. This  fact is partic- 
ularly true when the object is diffuse, and has been amply 
demonstrated in experiments with kinoforms4 and with 
“phase only” acoustic  hologram^.^ More recently an 
analysis by  Kermisch‘ has verified that for diffuse objects 
the  error that results from discarding amplitude infor- 
mation is small. In view  of the relative insignificance of 
amplitude information in these important situations, we 
feel justified in ignoring the effects of amplitude quan- 
tization by assuming, for mathematical convenience, 
that amplitude information is fully retained. Equivalently, 
we assume an infinite number of amplitude quantization 
levels, but only a finite number of phase quantization 
levels. 

2. Analysis 

The model 
The Fourier spectrum G(v), which  may be written 

G(v) = I W ) l  ~ X P  [i4(v)l, (6) 

is to be quantized in phase alone, yielding a new spectrum 

G(v)  = IC(Y)I exp [44v)1. (7) 

The type of phase quantization assumed is precisely 
that described by Eq. (5); i.e., the interval (0,2?r) is divided 
into N equal quantization cells, each of width 2?r/N. 
Whenever @(v) falls into a particular quantization cell, 
the quantized phase is assigned the value at  the midpoint 
of the quantization interval. 

The transformation from 4 ( v )  to &) may be described 
in an analytically tractable fashion if the model of Fig. 2 
is utilized. The function cos +(v) is applied at  the input, 
which subsequently divides into N separate branches. In 480 
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the kth branch we place a phase delay of amount k(2?r/N), 
followed by an ideal biased limiter which has the input- 
output characteristic 

(0 ,  otherwise. 

The output of the limiter is then multiplied by the complex 
number exp [ik(2?r/N)]. Finally, all branches are summed 
to yield an  output P(v).  For cos +(v) at the  input, we 
find P(v) is given  exactly by 

.. 
P(v> = exp [V(v)I, (9) 

where &v) is the value of the quantized phase described 
by Eq. (5) .  

Our procedure for finding the function ;(x) produced 
after phase quantization will  be the following: 1) find a 
convenient expression for P(v) in terms of 4 ( v ) ,  2) multiply 
P(v) by IG(v)I, and 3) take the inverse Fourier transform 
of the product to obtain ;(x). 

9 Nonlinear  analysis applied to a single branch 
We first analyze the nonlinear transformation introduced 
by the kth branch of the model of Fig. 2, i.e., the mapping 
of cos [I$@) - k(2?r/N)] into Pk(v),  the  kth component 
of P(v) .  Our analysis rests on the “transform method” 
for analyzing nonlinear devices.? Let 

Y ~ Y )  = COS [4@> - k(2~/N)1 (10) 

represent the input to  the kth biased limiter, and let 
g[yB(v)] represent its output. Then g(yk) may  be written as 

(1 1) g(yk )  = S, f ( i t >  exp [ i t y ~  g , dt  

where C; is a complex variable, f(i.$) is defined by 

f ( i t >  = 1; g(y,> exp [- i t yk~   dyk ,  (12) 

and C is a contour chosen in the region of convergence 
of f(i.$). For  the biased limiter of interest here, f( i t)  is 
given  bys 

K i t )  = 
exp [ - it cos (T/ N)] 

iE 
(1 3) 

and the region of convergence is the lower  half of the 
t plane. 

Next we insert Eq. (10) and Eq. (13) into Eq. ( l l ) ,  
obtaining 

S, exp [- it cos (?r/N)I 
d Y k )  = gk = it 
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The identity 

exp [it cos e ]  = (i)' J ~ ( E )  exp [ i l e ]  (15) 

may then be used to reduce Eq. (14) to 

m 

I = - -  

m 

g, = C(k,  1) exp { il[+ - k ( 2 a / N ) I ) ,  (16) 

where the constants C(k, 1) are given by 

I = - -  

exp [ - it cos (a/NJ Q C(k ,  I )  = (if / __ 
iE 

JL ( E )  G' ( 1 7 )  

The constants C(k, 1) could be evaluated by means of 
an appropriate complex integration, if desired. However, 
it is easier to use the following simpler method. Equation 
(16) must hold  for any I$@), and therefore in particular 
it must hold  for  the special case 

+(v) = 2ax0v. (18) 

Since the C(k, I )  are independent of +(v), if they can  be 
found  for  the special case of Eq. (18), they will be known 
for all I$(v). For this special case we have as input  to  the 
kth biased limiter 

y&) = cos [2nxov - k(27r/N)1. (1 9) 

The  output of the limiter is a  periodic series of pulses, 
with period x;', pulse width (Pixo)-', and with the center 
of the first pulse (in the positive v direction) occurring at 
displacement k(NxJ1 .  The waveform is illustrated in 
Fig. 3. 

The limiter output gk(v), being periodic, may be ex- 
pressed as a Fourier series, In particular, we may write 

g k [ v  - ( k , / N x o ) ]  = bl exp [i27rlxov],  (20) 

where, for  the particular pulse train of Fig. 3 ,  the complex 
Fourier coefficients bl are given  by 

bl = (l /N) sinc (l,/N), (21) 

where sinc x = sin ax/nx. It follows directly that 

gk(v) = (I /N) s i n c   ( I / N )  exp [ i 2 a ~ x ~ v ]  

m 

I=" 

m 

IS." 

X exp [ - i2a( Nc/ N ) ]  . ( 2 2 )  

Comparison of Eq. (16) and  Eq. (22) shows that 

C(k, I> = (l/N) sinc ([/A'). (23) 

Finally, to find the  output Pk(v) of the  kth branch we 
must multiply gk(v) by the complex constant exp [i27rk/N], 
which yields 

P,(v) = gk(u)  exp [ i 2 a k / N ]  = ( 1 / N )  sinc ( l / N )  
I=.--  

Xexp [- i 2 a ( k / N ) ( I  - l ) ]  exp [ i l + ] .   ( 2 4 )  
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Figure 3 Periodic  pulse train produced by the  kth  biased 
limiter. 

Total output of the phase  quantizer 
The  total  output of the  phase quantizer may now be 
found by summing Pk(v) over all N branches. Thus, 

N-1 m 

Xexp [ - i27r (k /N) ( l  - l ) ]  exp [ i l I$] .   (25)  

Interchanging  orders of summation we find 

m 

~ ( v )  = sinc ( z / N )  
I=" 

N - l  

exp [ i @ l  {i k = O  exp [- i 2a (k /N) ( I  - l ) ]  

The summation in brackets is readily seen to be  nonzero 
only for certain values of I;  specifically, 

1'5 exp [ - i 2 a ( k / N ) ( l -  1 1 1  
N k = O  

= t 1 - 1 0 ,  f N ,   & 2 N ,  . . .  
otherwise. 

It is therefore  advantageous to change the index of summa- 
tion  to 

rn = ( I  - l)/N, 

in which case we obtain 

The  total spectrum  after  quantization may now be 
found,  noting 6 ( v )  is simply the product of P(v) and 
IG(v)l. Thus, 



GO( 

To find the  x-domain  function ;(x) after  quantization, 
we take  the inverse Fourier  transform of Eq. (30) to 
yield our final analytical result, 

m 

;(x> = C sine [ m  + ( ~ / w M x ) ,   ( 3 1 )  
m = ” m  

where 

gm(x) = [: IG(~>I  exp [i(Nm + 1)+(v)1 

X exp [i2.rrvx] dv. (32) 

The section to follow is devoted to interpretation and 
discussion of the result represented by Eqs. (31) and (32). 

3. Interpretation, discussion  and  examples 

General comments 
Our main analytical result, Eq. (31), demonstrates that 
the recovered function ;(x) consists of a summation of 
several different contributions. The  portion contributed 
by the m = 0 term we call the “primary image” term, 
since, as is readily verified, it contributes a function which 
is simply an attenuated version of the original object. 
Thus  for m = 0 we find the image contribution to be 

sinc (l/N).g(x). (33) 

As the number of quantization levels increases, the 
argument of the sinc  function  approaches zero, and  the 
strength of the primary image increases, approaching that 
of the original function g(x). 

In addition to the primary image, there are contribu- 
tions from  the m # 0 terms which we refer to here  as 
“false images” because, under  certain circumstances they 
can  produce  separate and distinct images of the original 
object. As can be directly seen from our analytical results, 
the strength of the mth false image is attenuated by the 
factor sinc [m + (l/W]. Since m is always an integer, 
and since the value of the sinc  function for integer argu- 
ment is zero, we see that  as  the number N of quantization 
levels increases, the strengths of the false image terms 
decrease. 

In general, the shape of a false image is different from 
that of the primary image, since Eq. (32) demonstrates 
that  the phase  distribution  across the spectrum of the 
mth false image is (Nm + l)+(v). The effect  of phase 
multiplication in  the  Fourier domain is in general com- 
plicated, but several important conclusions can  be drawn. 
First,  there do exist functions with transforms having the 
property 

(Nm + l>+(v) = +(VI. (34) 

When  this is the case, the false image g,(x) will have 
exactly the same  shape as g(x). An example of a transform 
pair having this  property is 
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1 - I 4 ,  1x1 I 1 
d-r) = 

i o ,  otherwise, (35)  

C(v)  = sinc2 v ,  

which has a zero-phase spectrum for all v. 
A second general effect of phase multiplication becomes 

evident when we consider a function g(x) which  may 
consist of a small nonzero object gl(x) in a larger,  empty 
object field. If gl(x) is centered at  the middle of the object 
field, we have 

W )  = Gdv) = IGl(v)l exp [i+dv)I, (36) 

but if gl(x) is shifted to be centered at a point x,, away 
from  the origin, we have 

G(v) = l W ) l  exp I - ~ [ ~ T X O V  - +l(v)ll.  (37) 

The effect of phase multiplication will then be to shift 
the centers of the false images to new points (Nm + l)xo 
in the image field, possibly separating them completely 
from  the primary image and  from each other. Hence the 
origin of the  term “false image.” Examples of this phe- 
nomenon are shown in  the next section. When effects of 
sampling in  the x -  and v-domains are  taken  into  account, 
these displaced false images become potential sources of 
aliasing errors. 

Finally we mention the effects of phase multiplication 
when the object g(x) is diffuse (i.e., has a random phase 
at each  point x) .  For diffuse objects, Eq. (34) would never 
be satisfied for all v, since the phase  function +(v) in  the 
spectrum is in general very complicated [it can in  fact 
be  shown to be statistically distributed with uniform 
probability on  the interval ( 0 , 2 ~ ) ] .  In view of our comments 
in Section 1, however, the amplitude  information IG(v)l is 
relatively unimportant, and we could, with reasonable 
accuracy, approximate the spectrum of the rnth false 
image in  the following way: 

Gm(v) = IG(v)l exp [ 4 N m  + I)+(v)l 
I N m + l l  = IG(v)I exp  [i(Nm 1M(v>1 (38) 

N m + l > O  

= { ~ ~ i ~ ~ ~ v ) ] * ,  N m  + 1 < 0,  

We conclude that,  to a first approximation, the rnth false 
image may be found  as  an INm + 1 I-order self convolution 
of the primary image. The effect of the conjugate sign 
in  Eq. (38) is simply to mirror-reflect the convolution 
about  the x-origin, and  to conjugate the corresponding 
false image. 

Some examples 
We now  illustrate our analytical conclusions with some 
specific examples. Our first example concerns the effect 
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Figure 5 Effects  of  changing the number of quantization 
levels: (a) the  original &x); (b) d(x) recovered  when N = 2; 
(c) $(x) recovered  when N = 3;  (d) $(x)  recovered  when N = 4. 

X 

X 

-2/3.i; 
I 1 -  I I I I I I I I I  

- 5  - 4  - 3  - 2  - 1  0 1 2 3 4 5 

Figure 4 Effects of  shifting g(x), two quantization levels: 
(a) the original g(x); (b) d(x)  recovered  with no shift; (c) d b )  
recovered  with shift x. = 1/4; (d) d(x)  recovered  with xo = 
1 / 2 ;  (e) $(x) recovered  with xn = 1 .  

of shifting a small object in a larger object field. The 
object chosen is a simple one [see Fig. 4(a)], 

g(x) = rect (x - x"), (39) 

where the function rect (x - xn) is defined by 

rect (x - x" )  = , p ,  lx - x01 I 3 
I ( 0 ,  otherwise. 

We quantize  phase to only two levels, 0 and r. Thus 
Eq. (31) becomes 
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where the spectrum GJv) of g,(x) is 

G,(Y) = [sinc vi exp [Qm + 1)4,(v)] 
Xexp [- i2a(2m + l)xOv]. (41) 

The phase is the phase of sinc Y,  and  jumps periodically 
between 0 and a. It follows that 

exp b(2m + 1)44v)I  = exp [i41(v>1 

and, therefore, that 

(42) 

- 

,&x) = sinc (rn + +> 
m = - m  

X rect [x - ( 2 m  + l)xol. (43) 

Figures 4(b), (c), (d) and (e) show the recovered function 
g(x) when x, = 0, 4, 4 and 1, respectively. For any 
x, > 4, the false images are distinct and separate from 
the primary image. 

The effect of changing the number N of quantization 
levels is next considered for  the particular  function 

g(x) = rect (x - 1)  (44) 

shown in Fig. S(a). The results are shown in Figs. 5(b), 
(c) and (d) for N = 2, 3 and 4, respectively. The conclu- 
sions can be summarized as follows: 1) as N increases, 483 
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Figure 6 Intensity of the false images as a  function of N .  

the strength of the primary  image  grows and the strength 
of the false  images  decreases; 2)  as N increases, the false 
images  move farther and farther away from the primary 
image,  assuming that the object is not centered at the 
origin. Note that for the particular case N = 3, the 
m = =tl false  images,  centered at x = - 2  and x = 4, 
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do not have the same shape as the primary  image,  but 
rather are considerably spread out along the x-axis, a 
consequence  of the fact that in this case the phase  does 
not satisfy Eq. (34). 

To develop a general  feeling for the manner in which 
the false  image strengths fall off with increasing N ,  we 
have  plotted in Fig. 6 the value of sinc2 [rn + (l/N)]. 
The intensity of the mth order false  image  falls  asymp- 
totically as 

z, - l / m Z N Z  ( m  # 0)  (45) 

for large N. 

4. Concluding remarks 
The analysis  presented  represents an exact solution to the 
phase-quantization  problem when the quantization levels 
are equally  spaced. A slight  modification  of the phase 
delays and limiter  thresholds in Fig. 2 would  allow a n  
exact solution for unequal quantization intervals. 

The usefulness  of the solution in predicting  image 
degradations caused by phase quantization in holography 
is  probably  limited to  the case  of reasonably  small N .  
As the number of phase quantization levels increases, 
eventually a point will  be reached where amplitude 
quantization effects predominate. 
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