D. T. Tang
V. Y. Lum

Error Control for Terminals with Human Operators™

Abstract: The man-machine interface at any terminal in a computer system is a likely source of error and can be regarded as a noisy
channel. Certain data, such as ID numbers, can be precoded to protect against most-likely errors, including transposition of adjacent
symbols and substitutions, as well as deletions and insertions, This paper first considers certain basic requirements for error detection
with minimum redundancy. An efficient special coding scheme designed for decimal terminals is described next. Finally, certain cyclic
codes are shown to be adaptable to transposition error control when appropriate decoding schemes are implemented.

1. Introduction

Man-machine communication plays an important role in
today’s large-scale time-sharing computer systems. When
data are entered at a remote keyboard or dial-up terminal,
the man-machine interface becomes a likely source of
error. Since any error control coding’ introduced at the
terminal clearly cannot protect against errors made by
the operator in keying or dialing, certain data, such as
ID numbers, must be precoded to guard against errors
introduced in this “noisy channel”—the man-machine
interface.

A coding scheme is most effective when it protects the
data transmission against the most-likely errors resulting
from the noise. When a man-machine interface exists in
a transmission system, the most common types of errors
are transpositions of adjacent symbols, substitutions and
occasional insertions and deletions of symbols.

The first part of this paper deals with the detection
capability of coding schemes with minimum redundancy,
i.e., with one or two check symbols. A special coding
scheme designed for decimal terminals is then described.
The second part of this paper is concerned with cyclic
coding schemes adapted for transposition error control.

2. Coding schemes with permutation mappings
Consider the problem of detecting single-transposition
errors in addition to single-substitution errors in a variable
length message. We shall derive conditions under which
the desired detection capability can be achieved with only
one check symbol.

® Some of the results included in this paper were presented at the Fifth
Annual Allerton Conference on Circuit and System Theory, Monticello,
Illinois, October, 1967, and at the Third Hawaii International Conference on
System Sciences, January, 1970.

D. T. Tang is at the IBM Thomas J. Watson Research Center, Yorktown

Heights, New York, and V. Y, Lum is at the IBM Research Laboratory in
San Jose, California.

JuLy 1970

Let us consider a check equation in the general form

fila) + fola) + -+ - + filar) + fri(@ = O0mod q, (1)

where f,(x) are functions mapping the set of code symbols
toitself; a;, & 4 = {0,1, --- , g — 1} is the information
symbol in the jth digit; ¢ the check symbol; and g the
radix of the system (number of code symbols). Hereafter,
in this section, a congruence sign, when used alone, will
be understood to imply a modulo g operation.

If a single check equation is to detect all single errors,
f:(a;) must not be the same as f,(a;) for any a; # a,
where a;, a, & A. Hence, f,(a) must be a permutation
function. Equation (1) can now be written as

pilar) + polas) + -+ + plaw) + prele) = 0, ¢))

where the p; are permutation functions.

So far, no detection of transposition errors has been
considered. To detect transposition errors, p,(a) must not
be the same as p;,:(a). This is a necessary condition but
not a sufficient one. Before we go on to derive the necessary
and sufficient condition of single-transposition error detec-
tion, we need the following definition.

Definition: A permutation p(a) = p(a) is a “‘perfect-
difference permutation” (PDP) if p(a;) — a; &£ pla,) — a;
for any a; # a,, where a;, a, & A.

It is easy to see that if j(a) is a PDP, so are [p(a)]*
and p(a) + m, where [p(a)]”"' is the inverse mapping of
P(a), and m & A is a constant.

Permutations and PDP’s have corresponding graphs®
with interesting properties. Let each of the symbols in 4
represent a node. Then a directed edge can be drawn
from a; to a; if p(a;) = a;. Since p is a permutation,
each node will be incident to two edges, one directed

409

ERROR CONTROL FOR TERMINALS




410

a {0[1(2(3]|4 a 0]1|213|4 a 0|1]2(3|4

pafof2t4l1{3| @1 Y o|3]1]|4|2] |sa+2]2]a]|1]3]0

(a) (b) (c)

Figure 1 Some PDP’s and their corresponding graphs for
qg=>5.

toward and one directed away from the node. An imme-
diate result is that this graph, to be called G,, the per-
mutation graph of p(a), is a disjoint union of cycles. Let
us denote these cycles by Cy, C,, --- , C,, and define the
distance of an edge b, from g, to a; to be d;; = a; — a;.
Alternatively, the distance of an edge b, can be written
as d(b,). Clearly, in a PDP graph, distinct edges must
have distinct distances. When the distances of all the edges
in a cycle are summed, each node number a; on the cycle
will appear twice in the summation with opposite signs,
thus cancelling each other. That is,

> d) =0 3)

bi€Ci

for each C;, and thus

2 db)y =2, 2 db)=0 (4)

biEGp Ci b;E€EC;

for every permutation graph G,.

Figure 1 shows some PDP’s and their corresponding
graphs.

The following theorem states the capability of a code
using PDP mappings.

Theorem 1: A code with check equation as in Eq. (2)
will detect single-transposition errors if and only if the
mappings between permutation on adjacent positions, i.e.,
pislpi@) ™ i= 1,2, -+, k, are all PDP’s.

Proof* Let two adjacent symbols a;, a, .., beinterchanged.
To detect this error, the check equation must not be zero
after the interchange; that is,

pi(a;) + pinais) # piai) + pialan). &)
Substituting b; = p.(a;), we obtain
b; + pi+1[pi(bi+1)]_l # b+ P«;+1[Pc‘(bi)]—l~ 6

By definition, p;..[p.(®)] " is a PDP.

D. T. TANG AND V. Y. LUM

Conversely, if p;.[p@]" for i = 1, 2, --- , k are
PDP’s, then Egs. (6) and (5) follow, and, therefore, all
single-transposition errors will be detected.

One may think that it would be generally difficult to
find enough permutations that satisfy the conditions of
Theorem 1. However, simple observation reveals that the
existence of a single PDP, p(a), is sufficient. To show this,
let p,(a;) = a;, for all odd i, and let p;(a;) = p(a;) for
all even i. The check equation becomes

a + Bla) + as + -+ + a, + ple)) = 0 for k odd
a+ pa)+ as+ -+ fla)+ ¢ = Ofor keven. (7)

The existence of PDP’s is considered in the following
theorems.

Theorem 2: No PDP exists for ¢g even.
Proof: We have noted earlier that in a PDP graph,
distinct edges must have distinct distances. Since there
are exactly g edges, we must have
2 )
b, €6,
g — 1)
2

from Eq. (4), which requires [g(¢ — 1)]/2 be divisible by
q. It is easy to see that, if ¢ is even, and thus ¢ — 1 is odd,
this condition cannot be satisfied.

—0+14+ -+ @—D= =0 ®

Theorem 3: PDP exists for g odd.

Proof: Although Eq. (8) is satisfied for ¢ odd, it is
only a necessary but not a sufficient condition. To show
that PDP exists for g odd, we shall rely on a constructive
proof.

Consider the permutation graph of p(i) = ¢ — i for
i & A. The edge directed from i to g — i has a distance

qg—i—i= —2i
For two edges to have the same distance,
—2i+2j=2(j—i=0. )

Since 2 is relatively prime with the odd ¢, Eq. (9) is
satisfied if and only if i = j. Thus, all distances are dis-
tinct and the permutation so defined is a PDP.

Let us now define a linear permutation p to be one
which satisfies p(a@) = ma, where a, m & A. Linear per-
mutations are easy to implement since only one simple
arithmetic operation is needed.

Theorem 4. If p(a) = mais a PDP, then p’(a) = (m — 1a
is a permutation function. Conversely, if p(a) = ma and
p'(@ = (m — l)a are permutations, then p is a PDP.

Proof: If p(a) is a PDP, then
pa) — a; # pla;) —

For p(a) = ma, Eq. (10) becomes

a;, for i % j. (10

IBM J. RES. DEVELOP.



ma; — a; % ma; — a; an)
or
(m— bDa; # (m — 1a;. (12)

It follows that p’(a) = (m — 1)a is a permutation.

Conversely, if p’(a) = (m — 1)a is a permutation, then
Eq. (12) holds for a; ¥ a;. Equations (11) and (10) then
follow and, therefore, p(a) = ma is a PDP.

It follows from Theorem 4 that the function f(a) =
ma is a PDP if and only if g, m and (m — 1) are pair-
wise relatively prime. Thus, if ¢ > 3 and odd, and if
m= 2, (m — 1) = 1, then p(a) = 2a is a PDP. Similarly,
pla) = (g — 1a is another PDP which is described in
the constructive proof of Theorem 3. Thus, for ¢ > 3
and odd, there are at least two distinct PDP’s.

For g an odd prime, all linear permutations except the
identity are PDP’s. The converse of this statement is not
true. Figure 2 illustrates a nonlinear PDP for ¢ = 7.

For g even, Theorem 2 states that no PDP exists.
However, one may still be interested in finding a scheme
that will detect as many single-transposition errors as
possible. Indeed, for g even, there exists a check scheme
in the form of Eq. (7) such that all single-transposition
errors are detected except when the transposition is be-
tween a specific pair a; and a,. This means that there
exists a permutation p(a) such that the condition p(a;) —
a; # p(a;) — a; is satisfied for all a;, a; & A except for
a specific pair a; and a,. To show this, we see that first
of all, for ¢ = 2, the only confusion pair is (0, 1). For
g > 2 and even, we consider the following two cases.

If g = 4m, let the permutation p be given by

pla) = q—a,for0<a<§and%<a<q

g+ 1—a for%<a§%- (13)

If g = 4m + 2, let p be given by

a, for a=0,g—j_—2
4
g — a, for 0<a<%—2
pla) = (14)
3g — 2
and q4 <a<gqg
g+ 1—a for L2 ,<c20=2

4 =

The graphs of these permutations are illustrated for
the cases ¢ = 8 and ¢ = 10 in Fig. 3. It is clear from the
graphs that the edges all have distinct distances except

JuLy 1970

for the pair 0 and g/4 if ¢ = 4m, or 0 and (g -+ 2)/4
if g = 4m + 2. These pairs constitute the only undetect-
able single-transposition errors.

It should be pointed out that since often there exist
more than one such permutation, one can choose a per-
mutation in which the undetectable transposition error
corresponds to the pair of symbols least likely to be con-
fused. In the case of ¢ = 10, the only undetectable trans-
position may be made to occur to any prescribed pair
of symbols. Note that the permutations here are always
nonlinear.

3. Detection of deletion and insertion errors

Suppose that we wish to detect single-deletion and single-
insertion errors in addition to the single-substitution and
single-transposition errors with two check digits ¢; and
¢, where ¢; is defined by Eq. (7) and ¢, is to be added at
the end of the code word after c¢,. If ¢, is deleted, then ¢;
will be taken as ¢, and a, as ¢,. The first check will be
satisfied if and only if ¢, = 0 for k even or p(c,) = 0 for
k odd. On the other hand, if a digit is inserted after c,
then ¢, will be taken as c¢;. Here again, the first check will
be satisfied if ¢, = 0 for k odd, or p(c,) = 0 for k even.

Figure 2 A nonlinear PDP for ¢ = 7.

Figure 3 Scheme for detection of most single-transposition
errors when g is even. (a) g = 8; (b) ¢ = 10.

’
@ 0 6
3 © @0
O] 9 3(®)
O
(a) (b)

411

ERROR CONTROL FOR TERMINALS




412

iai }, decimal message sequence

Shift Shift
register registers
Mod 10 | Mod 2 Mod 4
adder counter adder

‘ 0 for message symbol k
1 for cp the (k+1)th symbol

| 2 for ¢, the (k+2)th symbol

Switch S is in position

(a)
Shift
ist
registers s 0 Encoder
- F——»0—»
Received
coded 1 J)
sequence 0 Error signal
Compare -« O »
check —e0 S
symbols 1

0 for the duration of received sequence
1 for additional two symbol periods

(b)

Figure 4 Scheme for detecting single-substitution, single-
transposition, single-insertion or single-deletion errors in a
decimal message. (a) The encoder; (b) the decoder.

Switches S are in position

In light of the above observations, let us choose the
PDP in Eq. (7) to be one such that p(0) = 0. Let ¢, be
nonzero and take different values for k4 even and odd.
Since single substitutions, single transpositions, single
deletions not involving ¢,, or single insertions before c,
will clearly be detectable, the only cases left consist of
a deletion of ¢, or an insertion after c,. The latter case is
detectable since ¢, # 0 and j(c,) # 0, implying that the
first check must fail. In the former case, where ¢, is deleted,
the first check will be satisfied only if ¢, = 0. Therefore,
either this check will fail, thus indicating an error, or
we must have ¢, = j(c;) = 0. But ¢, is taken as ¢, and
both ¢, and p(c,) are not zero. The error is, therefore,
also detectable.

We observe that, for single-deletion and single-insertion
detection as described above, ¢, must take different non-
zero values for even and odd k. This implies that ¢ > 3.
For g > 3, special schemes can be used to obtain addi-
tional detection capability. This is demonstrated for the
decimal case in the next section.

D. T. TANG AND V. Y. LUM

The detection of deletion and insertion errors by an
additional symbol as described above appears to be very
practical. Furthermore, such a check can always be used
in conjunction with any other nonbinary checking scheme
in which the last check equation takes the general form
of Eq. (1).

4, A coding scheme for decimal terminals
We now describe a special coding scheme for decimal
message sequences of arbitrary length. With two check
symbols the scheme is capable of detecting either a single-
substitution, a single-transposition, a single-deletion or a
single-insertion error.

Let the message sequence a,, as, - - - , a; be followed by
two check symbols ¢; and ¢,. The first check ¢, satisfies
the following equation,

=D + (=D A+ -

— a1t ar—c, =0
mod 10. s
To obtain ¢,, we first determine b, and b, as follows:
b=k mod 2, and 16)
ot aps— aps+ a,— b= 0 mod4, an

where b, = Oor 1 and b, = 0,1, 2 or 3. The second check
¢, is determined by the equation

¢ = 2 — b, + 2b,. 18)

Note that ¢, never equals zero.

A sequential encoder and a sequential decoder of the
above scheme are shown in Figs. 4(a) and 4(b), respec-
tively. At the receiving end, the last two received symbols
are taken as ¢; and ¢}, and are compared with check
symbols ¢{’ and ¢}’ regenerated with the received message
sequence according to Eqgs. (15)-(18). Detection of errors
as claimed works as follows:

(A) Single substitutions

(1) A substitution in the first & + 1 symbols implies
Eq. (15) fails.

(2) A substitution at the (X 4 2)th symbol implies Eq. (18)
fails.

(B) Single transpositions

(1) A transposition between a,; and a,,; such that a; —
a;+1 # 5 mod 10 implies Eq. (15) fails.

(2) A transposition between a; and a, ., such that a, —
a..1 = 5 mod 10 implies Egs. (17) and (18) fail.

(3) A transposition between a, and ¢, implies Eq. (17)
fails.

(4) A transposition between c; and ¢, implies Egs. (17)
and (18) fail.

(C) Single deletions
(1) A deletion in the first £ -+ 1 symbols implies Egs. (16)
and (18) fail.

IBM J. RES. DEVELOP.




(2) The deletion of the (k -+ 2)th symbol implies either:
a,, (taken as ¢,’) fails to satisfy Eq. (15); or a, satisfies
Eq. (15) implying ¢; = 0, which in turn implies ¢,
(taken as ¢f) fails to satisfy Eq. (18).

(D) Single insertions

(1) An insertion anywhere before the (k 4+ 2)th symbol
implies Egs. (16) and (18) fail.

(2) An insertion after the (k + 2)th symbol implies ¢, 7
0 (taken as c}), and therefore Eq. (15) fails.

It can be shown that, in addition to single errors of the
above four types, more than 95 percent of all double-
substitution and double-transposition errors are also de-
tected.

5. Polynomial codes

In this section, several types of polynomial codes® are
examined for their effectiveness in transposition-error con-
trol. We assume that the symbols of transmitted and
received sequences are identified as elements of a finite
field, GF(g). A code generated by the polynomial g(x)
of degree r consists of polynomials of degree no more
than n — 1 that are multiples of g(x). The code length n
is the smallest integer such that g(x) divides x™ — 1.
Note that we no longer deal with messages of arbitrary
length as in the previous sections.

A transposition can always be regarded as a burst error
of length two. However, the property that the values of
the error in these adjacent positions must be equal but
with the opposite signs enables one to obtain, in nonbinary
cases, more efficient coding schemes than those obtained
by considering that transpositions are bursts of length two.

o Correction of all single-transposition errors

Consider a full-length single-error correcting code gener-
ated by an irreducible polynomial g(x) which has 8 =
a® ' as one of its roots, « being a primitive element in
GF(g). If the degree of g(x) is r, then the length is n =
(¢" — 1)/(g — 1). Since the code is a full-length code,
every r-tuple in the base field GF(g") can be written as
a multiple of one of the column vectors of the code’s
check matrix. Hence, there exists a unique element ¢ in

GF(g) and a unique positive integer 4 < » such that

x—1=cx* mod g(x) 19)
or
xn—b
= mod g(x). (20)
¢ x—1

A transposition error takes the form of e;(x — 1)x°, with
the corresponding syndrome equal to

S(x) = e,(x — 1)x* mod g(x). @D

Since (x — 1) is relatively prime with g(x), it introduces a

JuLy 1970

one-to-one mapping between the set of syndromes of
single transpositions and the set of syndromes of single
(substitution) errors. In order to use the same syndrome-
recognition circuit as in single-error correction, the de-
sired syndrome to be recognized should be

r+1

Sl(x) = eixi+r+1 = X S(x)
x—1

n—b+tr+l

’—‘—c——— S(x) mod g(x). (22)

fl

Therefore, S/(x) can be obtained by premultiplying the
received message, S(x), by f(x), where

) = fr~1xr_1 + -+ fx+

n—b+r+1

i

mod g(x). (23)

The corresponding decoder is shown in Fig. 5. Note that
the switch W is open (at position 0) until the leftmost
r — 1 register stages are all zero during the second n-
digit decoding cycle.

e Correction of all single-substitution and some single-
transposition errors

Consider a single-error correcting code with generator
polynomial g(x) = (x — 1)p(x), where p(x) is a primitive
polynomial of degree r — 1. The code length in this case
is n = ¢! — 1. This code will not correct all single-
transposition errors since

elx— DX+ e(x— D=0 mod(x— px) (24
does have solutions. To show this, we write Eq. (24) as
x'" = —e;/e; mod p(x), (25

where j' = j — i. Now if « is any root of p(x), it can be
shown that o™ is a unique primitive element 8 € GF(q),
where n’ = (¢ — 1)/(g — D. ()" = (a)" = g for
any a;, a, that are roots of p(x). Therefore, Eq. (25) and,
hence, Eq. (24) may be satisfied if j’ is a multiple of »’.

A scheme that will correct a certain percentage of
single-transposition errors and all single-substitution errors
works as follows. With a given p(x), the unique 3 = o
can be determined. At each i, 0 < [ < n, determine
whether Eq. (25) is satisfied for j' = j — i being g — 1
nonzero multiples of »’. If Eq. (25) is satisfied, no correc-
tion is attempted. If not, we check to see if the message
becomes a code polynomial when symbols at positions
iand i -+ 1 are transposed. If no code polynomial results,
no correction takes place and the original received message
is then investigated for next ;. If a code polynomial results,
the transposition between symbols at positions i and i
1 is assumed to be a successful correction.

The above partial correction of single-transposition
errors is an extension to the code’s original capability

413

ERROR CONTROL FOR TERMINALS




414

Input

n-stage buffer storage

X )iy X ) h fy
Mod ¢
adder + +
~& X )78 —&

Output
X fr—l
-1
do
_»‘ +
w ] 1
X )7 &-1

Test for all zeros

L

® X Multiply by x
I_—_l One-position shift register
@ Modulo g adder

Figure 5 Decoder for single-transposition error correction using a full-length single-error correction code.

of single-substitution correction. For if the received mes-
sage is not divisible by (x — 1), a substitution error may
be assumed; while if the received message is divisible by
(x — 1) but not by g(x), a transposition error may be
assumed. One may also choose to correct single-substitu-
tion errors, but merely detect a possible transposition
error in the meanwhile. This may indeed be an excellent
strategy when errors are mostly single substitutions mixed
with occasional transpositions.

o Correction of multiple-transposition errors: (x — 1) is
not factor of g(x)

Consider a multiple-error correcting code with a generator
polynomial g(x) that does not contain (x — 1) as a
factor. With minimum distance equal to 2¢ + 1, the code
can be used to correct ¢ transposition errors.* This can
be shown by writing the syndrome of any combination
of 2¢ transposition errors as

S(0) = (x — Dlex” +ex’™ + -+ + enx™)
mod g(x). (26)

It is easily seen that S,,(x) cannot be zero mod g(x) since
if it were, Sy, (x)/(x — 1) must also be zero mod g(x),
as g(x) does not contain (x — 1) as a factor. This would,
in turn, imply that the code has a minimum distance at
most 2¢, which contradicts the original assumption. To
correct t transposition errors, we see that

* In this paper we are concerned only with disjoint transposition errors
because they are the kind most likely to occur.

D. T. TANG AND V. Y. LUM

Sx) = (x — Diex™ + -+ +ex*) mod gx).
27)

If we obtain the transformed syndrome

xS(x)

(x—1)
x@x" 4 - +ex’) mod gx), (238)

then the ordinary multiple-error syndrome recognition
procedure can be carried out sequentially in time to make
corrections. Let

gx)=x"+ g_x"'+ - + gix + go, 29
xS(x) = s, A s,x T 4 oo+ six s
mod g(x),  (30)

S'(x) =

(i

and

xS0 siox h A sl TR e Foslx oSS
x—1

mod g(x). (31)

It follows that

x8@x) = (x — 1)(s;x"" A+ -+ six + sb)
= sl A (Shey — sl 4 -
+ (6 — s1)x — 5o mod  g(x), (32)
or,

IBM J. RES. DEVELOP.




s,_lx"l + .-

+ sx + 5o = 5]y — sl + o)l

+ Isios — (5 + slag )X 7 4 oo

+ [—(s5 + s7-180)] (33)
Equating coefficients and summing, we obtain
See1 = Sioy — Siaafi,

Sy S0 = §]og — S:—1f29

Sy F Sy o Fs =55 — S:—lfr—-l,
Sy—1 + Sr—2 + ttt + o = _s:-—ljr9 (34)

i
where f; = 2 g-..
i=0

Therefore,
sl = (_I/f)(sr—l + s, o+ S0),

S;-p = S,y + 8141,

sy = (s,-, + $,—3) + s:—lea

S = (81 + 8Srmp + -0 Fo51) +osTf (33)

The above transformation is performed by the logic circuit
augmented to the division circuit of g(x), as shown in
Fig. 6. Note that all the switches are thrown from position
0 to 1 after the n-digit received message is in. The syndrome
transformation is completed after a single additional shift.
Switches are then thrown back to position 0 and the
ordinary syndrome recognition logic takes over. A pre-
multiplication of x to the received message is applied to
obtain the syndrome corresponding to xS(x). An extra
stage in buffer storage is used to compensate for the time
needed for the syndrome transformation.

o Correction of multiple-transposition errors: (x — 1) is
Jactor of g(x)

Consider a multiple-error correcting code with a generator
polynomial g(x) = (x — 1)g’(x). If the minimum dis-
tance of the subcode generated by g'(x) is 2 4+ 1, then
the original code can be used to correct ¢ transposition
errors and to detect, in addition, a single-substitution
error. Instead of using a single division circuit correspond-
ing to g(x) to generate syndromes, we may cascade two
division circuits corresponding to (x — 1) and g'(x) as
shown in Fig. 7. The multiple-transposition errors, after
passing through the division circuit of (x — 1), will appear
as multiple-substitution errors to the division circuit of

JuULy 1970

g'(x). In terms of syndromes, we have

Sx) = (x — 1)(e1xi‘ + ezx“ + -+ (’txit)

mod g(x) (36)
S'(x) = é‘_S_(Li) = x(ex" +ex” + - +oex”
mod g’(x). 37

1t follows that the same syndrome recognition circuit used
for z-error correction with the code generated by g'(x)
can be used here. There are several minor modifications:
1) Multiple-transposition-error correction is carried out
only if the division of the received message by (x — 1)
results in a zero syndrome. 2) If this syndrome is not
zero, a substitution error is detected. 3) A premultiplica-
tion of x is used so that the correction of high-order digits
can be done in time sequentially.

In describing the above correction schemes we have, in
essence, demonstrated the validity of the following the-
orems:

Theorem 5. Let g(x) be the generator polynomial of a
code with minimum distance D. If g(x) does not contain
(x — 1) as a factor, then the code can detect up to (D — 1)
transposition errors as well as up to (D — 1) substitution
errors. It can also be used to correct t+ < [(D — 1)/2]
transposition errors and meanwhile detect (D — 1 — ¢)
transposition errors.

Theorem 6: Let g(x) = (x — 1)g’(x) be the generator
polynomial of a code with minimum distance D. Also,
let the subcode generated by g'(x) be of minimum dis-
tance (D — 1). Then this code can detect up to (D — 2)
transposition errors as well as up to (D — 1) substitution
errors. This code can be used to correct ¢t < [(D — 2)/2]
transposition errors and meanwhile detect (D — 2 — 1)
transposition errors. It also detects a single-substitution
error in the presence of any number of transposition errors.

6. Concluding remarks
We have studied certain basic problems related to the
detectability of most common types of errors encountered
when digital data are entered at terminals by human
operators. Several coding schemes with different degrees
of control can be used in a detection-and-retransmission
mode or, for some of them, in a correction mode.
Credit card systems with decimal key-punch terminals
using one check symbol to detect single-substitution and
most single-transposition errors have been in existence.
Detection of all single transpositions in a decimal system
with one digit has been suggested by Freeman.® Since
many single-substitution errors cannot be detected by
Freeman'’s scheme, it is effective only when transpositions
are predominant among errors. The special decimal coding

415

ERROR CONTROL FOR TERMINALS




416

Input

(n+1)- stage buffer storage
* Output
+
f r=2 f r=3 f 1

X )-1

+ +

() ) ()
+ + +
+
1 1
+ F——0— o_]—>
0 0
X )& —& ~8-2
Syndrome recognition logic

@ x  Multiply by x
D One-position shift register
@ Modulo ¢ adder

Figure 6 Decoder for multiple-transposition error correction, where the generator polynomial g(x) does not contain the factor (x — 1).

Figure 7 Decoder for multiple-transposition error correction, where the generator polynomial g(x) contains the factor (x — 1).

Input

n-stage buffer storage

Output

Syndrome recognition logic

® x  Multiply by x
D One-position shift register
(® Modulo g adder

scheme described in Section 4 of this paper may be used
if detection of both single substitutions and transpositions
as well as single insertions and deletions is desired.
Polynomial codes described in the last section can be
used in a variable length mode. The message length can
be shorter than the natural code length # either where the
information about the actual length is included in the
message, or when the end of the message is identified by
a special character or signal. Single deletions and inser-
tions, originally detectable by the fixed code length, can

D. T. TANG AND V. Y. LUM

now be detected if an extra check symbol is used as de-
scribed in Section 3.

References

1. W. W. Peterson, Error Correcting Codes, MIT Press,
Cambridge, Mass. 1961.

2. O. Ore, Theory of Graphs, American Mathematical
Society, Providence, R. 1. 1962.

3. H. Freeman, “Detection of transposition errors in decimal
numbers,” Proc. IEEE 55, No. 8, 1500 (1967).

Received October 30, 1969

IBM J. RES. DEVELOP.




