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Abstract: The  man-machine  interface at any  terminal  in a computer system  is a likely  source of error  and  can be  regarded  as a noisy 
channel.  Certain data, such  as ID numbers,  can  be  precoded to protect  against  most-likely errors, including  transposition of adjacent 
symbols  and  substitutions,  as well  as  deletions and insertions.  This  paper  first  considers  certain  basic  requirements  for  error  detection 
with  minimum  redundancy.  An  efficient  special  coding  scheme  designed for decimal terminals  is  described  next.  Finally,  certain  cyclic 
codes are shown to be adaptable to transposition  error  control when appropriate  decoding  schemes  are  implemented. 

1. Introduction 
Man-machine  communication plays an  important role in 
today’s large-scale time-sharing computer systems. When 
data  are entered at a remote  keyboard or dial-up  terminal, 
the man-machine interface becomes a likely source of 
error. Since any  error control coding’ introduced at the 
terminal clearly cannot protect against errors made by 
the  operator  in keying or dialing, certain data, such as 
I D  numbers, must be precoded to  guard against errors 
introduced in this “noisy channel”-the man-machine 
interface. 

A coding scheme is most effective when it protects the 
data transmission against the most-likely errors resulting 
from  the noise. When a man-machine interface exists in 
a transmission system, the most  common types of errors 
are transpositions of adjacent symbols, substitutions and 
occasional insertions and deletions of symbols. 

The first part of this  paper deals with the detection 
capability of coding schemes with minimum redundancy, 
i.e., with one or two check symbols. A special coding 
scheme designed for decimal terminals is then described. 
The second part of this  paper is concerned with cyclic 
coding schemes adapted  for transposition error control. 

2. Coding  schemes  with  permutation  mappings 
Consider the problem of detecting single-transposition 
errors  in  addition  to single-substitution errors  in a variable 
length message. We shall derive conditions  under which 
the desired detection capability can be achieved with only 
one check symbol. 
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Let us consider a check equation  in  the general form 

f l (al)  + fi(az) + . ‘ * f f k ( U k )  + f k + l ( C )  E 0 mod 4, (1) 

where fi(x) are functions mapping the set of code symbols 
to itself; ai E A = IO,  1, . . . , q - 1 1 is  the information 
symbol in  the ith digit; c the check symbol; and q the 
radix of the system (number of code symbols). Hereafter, 
in this section, a congruence sign, when used alone, will 
be understood to imply a modulo q operation. 

If a single check equation is to detect all single errors, 
fi(ai) must not be the same as f i (ak)  for any ai # ak, 
where ai, a k  E A.  Hence, f i (a)  must be a permutation 
function. Equation (1) can  now be written as 

Pl(al)  f PZ(a2) + * * f P!dak) + P k + l ( C )  0, (2) 

where the p i  are permutation functions. 
So far,  no detection of transposition errors  has been 

considered. To detect transposition  errors, p,(a) must not 
be the same as ~ ~ + ~ ( a ) .  This is a necessary condition but 
not a sufficient one. Before we go on  to derive the necessary 
and sufficient condition of single-transposition error detec- 
tion, we need the following definition. 

Definition: A permutation p(a) = p(a) is a “perfect- 
difference permutation”  (PDP) if p(ai) - ai # p(ak) - 
for any ai # ak, where ai, ah E A.  

It  is easy to see that if p(a) is a PDP, so are [p(a)]” 
and p(a) f m, where [p(a)]” is the inverse mapping of 
p(a), and rn E A is a constant. 

Permutations and PDP’s  have  corresponding graphs’ 
with interesting properties.  Let each of the symbols in A 
represent a node. Then a directed edge can  be drawn 
from ai to ai if p(ai )  = ai. Since p is a permutation, 
each  node will be incident to two edges, one directed 
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[?(a)]" 0 3 1 4 2 ? ( a ) + 2  2 4 1 3 0 

Conversely, if p,+,b,(a)l" for i = I ,  2, 
PDP's, then Eqs. (6) and (5) follow, and, 
single-transposition errors will be detected. 

1R 

Figure 1 Some PDP's and their corresponding  graphs for 
q = 5 .  

toward  and  one directed away from  the node. An imme- 
diate result is that this  graph, to be called G,, the per- 
mutation  graph of p(a), is a disjoint union of  cycles. Let 
us denote these cycles by Cl, C,, . . . , C,, and define the 
distance of an edge bk from ai to ai to be dii  = ai - ai. 
Alternatively, the distance of an edge bk can  be  written 
as d(b,). Clearly, in a PDP graph, distinct edges must 
have distinct distances. When the distances of all the edges 
in a cycle are summed,  each  node  number ai on  the cycle 
will appear twice in  the  summation with opposite signs, 
thus cancelling each  other. That is, 

for each Ci, and  thus 

for every permutation  graph G,. 

graphs. 

using PDP mappings. 

Figure 1 shows some PDP's and their  corresponding 

The following theorem  states the capability of a code 

Theorem 1: A code with check equation  as  in  Eq. (2) 
will detect single-transposition errors if and only if the 
mappings between permutation  on adjacent positions, i.e., 
pi+Jpt(u)]-', i = 1, 2, . . . , k,  are all PDP's. 

Proof: Let two adjacent symbols ai ,  aiel beinterchanged. 
To detect this error,  the check equation  must not be zero 
after the interchange; that is, 

P&i) + Pi+l(ai+l) f- Pibi+l )  + Pi+l(ai). ( 5 )  

Substituting bi = pi(ai), we obtain 

bi + Pt+lbi@i+l)l-l f bi+1 + Pi+lbi(bi)r1.  (6) 

By definition, ~ ~ + ~ b ~ ( b ) ] - '  is a PDP. 

... , k are 
therefore, all 

One may think  that it would be generally difficult to 
find enough  permutations that satisfy the conditions of 
Theorem 1. However, simple observation reveals that  the 
existence of a single PDP, p(a), is sufficient. To show  this, 
let pi(ai) = ai, for all odd i ,  and let pi(ai)  = p(ui) for 
all even i. The check equation becomes 

al + p(a2) + a3 + . . . + ab + p(cJ = 0 for k odd 

a, + p(aJ + a3 + . + p(ak)  + c1 = 0 for k even. (7) 

The existence of PDP's is considered in  the following 
theorems. 

Theorem 2: No PDP exists for q even. 
Proof: We have noted  earlier that  in a PDP graph, 

distinct edges must  have distinct distances. Since there 
are exactly q edges, we must have 

= o +  1 + . * .  + (q - 1) = 0 (8) 

from  Eq. (4), which requires [q(q - 1)]/2 be divisible by 
q. It is easy to see that, if q is even, and  thus q - 1 is  odd, 
this condition  cannot be satisfied. 

4 4  - 1 )  
2 

Theorem 3: PDP exists for q odd. 
Proof: Although  Eq. (8) is satisfied for q odd,  it  is 

only a necessary but  not a sufficient condition. To show 
that PDP exists for q odd, we shall rely on a constructive 
proof. 

Consider the permutation  graph of p(i)  = q - i for 
i E A.  The edge directed from i to q - i has a distance 
q - i - i E " 2 '  1. 

For two edges to have the same distance, 

-2i+ 2 j =  2 ( j -  i) = 0. (9)  

Since 2 is relatively prime with the  odd q,  Eq. (9) is 
satisfied if and only if i = j .  Thus, all distances are dis- 
tinct and  the  permutation so defined is a PDP. 

Let us now define a linear permutation p to be one 
which satisfies p(a) = ma, where a, m E A.  Linear  per- 
mutations are easy to implement since only one simple 
arithmetic  operation is needed. 

Theorem 4 :  Ifp(a) = ma is a PDP, thenp'(a) = (m - 1)a 
is a permutation  function. Conversely, if p(a) = ma and 
p'(a) = (m - 1)a are permutations, then p is a PDP. 

Proof: If p(a) is a PDP, then 

p(ai) - ai # p(ai) - ai, for i # j .  

For p(a) = ma, Eq. (10) becomes 
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mai - ai # mai - ai (1 1) 

or 

(m - l )a,  # (m - I)a,. (1 2) 

It follows that p’(a) = (m - 1)a is a  permutation. 
Conversely, i fp’(a)  = (m - 1)a is a  permutation,  then 

Eq. (12) holds for ai # ai.  Equations (11) and (10) then 
follow and, therefore, p(a) = ma is a PDP. 

It follows from Theorem 4 that  the function f(a) = 
ma is a PDP if and only if q,  m and (m - 1) are pair- 
wise relatively prime. Thus, if q > 3 and  odd,  and if 
m = 2, ( m  - 1) = 1, then p(a) = 2a is a PDP. Similarly, 
p(a) = (q - 1)a is another PDP which is described in 
the constructive proof of Theorem 3. Thus, for q > 3 
and  odd, there are  at least two distinct PDP’s. 

For q an  odd prime, all linear permutations except the 
identity are PDP’s. The converse of this  statement is not 
true. Figure 2 illustrates  a  nonlinear PDP for q = 7. 

For q even, Theorem 2 states that no PDP exists. 
However, one may still be interested in finding a scheme 
that will detect as many single-transposition errors as 
possible. Indeed, for q even, there exists a check scheme 
in the  form of Eq. (7) such that all single-transposition 
errors  are detected except when the transposition is be- 
tween a specific pair a, and a2. This means that there 
exists a permutation p(a) such that  the condition p(ai) - 
a ,  f p(a,)  - ai is satisfied for all ai ,  ai E A except for 
a specific pair al and a,. To show this, we see that first 
of all, for q = 2,  the only confusion pair is (0, 1). For 
q > 2 and even, we consider the following two cases. 

If q = 4m, let the permutation p be given by 

l a ,  for u = 0, - 
4 
4 

q - a ,  for 0 < a < - and - < a < q 

q + l - a a ,  for g < a < - - .  

4 3q 
4 4 

39 
4 4 (1 3) 

If q = 4m + 2, let p be  given by 

4 + 2  a ,  for u = 0, - 
4 

q - a ,  for O < a < -  4 + 2  
4 

P(a> = (14) 
3q - 2 1 and ___ 4 < a < q  

The graphs of these permutations are illustrated  for 
the cases q = 8 and q = 10 in Fig. 3. It is clear from  the 
graphs that  the edges all have distinct distances except 
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for  the  pair 0 and q/4 if q = 4m, or 0 and (q + 2)/4 
if q = 4m + 2. These pairs  constitute the only undetect- 
able single-transposition errors. 

It should  be  pointed out  that since often  there exist 
more  than  one such permutation, one can choose a per- 
mutation in which the undetectable  transposition error 
corresponds to  the pair of symbols least likely to be con- 
fused. In  the case of q = 10, the only undetectable  trans- 
position may be made to occur to any prescribed pair 
of symbols. Note  that  the permutations  here are always 
nonlinear. 

3. Detection of deletion and  insertion errors 
Suppose that we wish to detect single-deletion and single- 
insertion errors  in  addition  to  the single-substitution and 
single-transposition errors with two check digits c1 and 
c2, where c1 is defined by Eq. (7) and cz is to be added at 
the  end of the code word after c,. If cz is deleted, then c1 
will be taken  as cz and ak as cl. The first check will be 
satisfied if and only if c1 = 0 for k even or p(cl) = 0 for 
k odd.  On  the  other  hand, if a digit is inserted  after cz, 
then cz will be taken  as c,. Here again, the first check will 
be satisfied if cz = 0 for k odd,  or p(cz) = 0 for k even. 

# 4 2 

Figure 2 A nonlinear PDP for q = 7. 

Figure 3 Scheme for detection of most single-transposition 
errors when q is even. ( a )  q = 8; (b) q = 10. 

6 a . 0  1 
L. 4 

6 
8 
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/ai  1, decimal message sequence 

Shift 1 I Shift 
register 

adder 7 counter 

registers 

adder 

Shift 
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Received 
coded 
sequence 

Switches S are in position 

Error signal 
Compare 

symbols 
check S 

I 0 for the  duration of received sequence 
I for additional  two symbol periods 

(b )  
Figure 4 Scheme for detecting single-substitution, single- 
transposition, single-insertion or single-deletion errors in a 
decimal message. (a)  The encoder; (b) the decoder. 

In light of the above observations, let us choose the 
PDP in Eq. (7) to be one such that p(0) = 0. Let c2 be 
nonzero and  take different values for k even and  odd. 
Since single substitutions, single transpositions, single 
deletions not involving cz, or single insertions before cz 
will clearly be detectable, the only cases left consist of 
a deletion of c2 or  an insertion after cz. The latter case is 
detectable since c2 # 0 and p(cz) # 0, implying that  the 
first check must fail. In  the former case, where c2 is deleted, 
the first check  will  be  satisfied only if c1 = 0. Therefore, 
either this check  will fail, thus indicating an  error,  or 
we must have c1 = p(cJ = 0. But c1 is taken  as c2 and 
both c2 and p(c2) are  not zero. The error is, therefore, 
also detectable. 

We observe that, for single-deletion and single-insertion 
detection as described above, c2 must take different non- 
zero values for even and  odd k.  This implies that q 2 3. 
For q > 3, special schemes can be  used to obtain  addi- 
tional detection capability. This is demonstrated for  the 
decimal case in the next section. 

The detection of deletion and insertion errors by an 
additional symbol as described above  appears to be  very 
practical. Furthermore, such a check can always be used 
in conjunction with any other  nonbinary checking scheme 
in which the last check equation  takes the general form 
of Eq. (1). 

4. A coding  scheme  for decimal terminals 
We now describe a special coding scheme for decimal 
message sequences of arbitrary length. With two check 
symbols the scheme is capable of detecting either a single- 
substitution, a single-transposition, a single-deletion or a 
single-insertion error. 

Let the message sequence al, a2, . . , ak be followed by 
two check symbols c1 and c2. The first check c, satisfies 
the following equation, 

(- l)k-’al + (-l)k-2u2 + * . f - ab-1 + al, - c, = 0 
mod 10.  (15) 

To obtain c2, we first determine bl and bz as follows: 

bl = k mod 2, and (1 6) 

. . f akP4 - ak-2 + ak - bz = 0 mod 4, (17) 

where b, = 0 or 1 and b2 = 0,1,2 or 3. The second check 
cz is determined by the equation 

CZ = 2 - bl + 262. (1 8) 

Note  that cz never equals zero. 
A sequential encoder and a sequential decoder of the 

above scheme are shown in Figs. 4(a) and 4(b), respec- 
tively. At the receiving end,  the  last two received symbols 
are taken  as c{ and ci, and  are compared with check 
symbols c:’ and ci’ regenerated with the received  message 
sequence according to Eqs. (15)-(18). Detection of errors 
as claimed works as follows: 

(A)  Single substitutions 
(1) A substitution in  the first k + 1 symbols implies 

(2) A substitution at the (k + 2)th symbol implies Eq. (18) 
Eq. (15) fails. 

fails. 

(B) Single transpositions 
(1) A transposition between a, and a,+l such that ai - 

a,+, # 5 mod 10 implies Eq. (15) fails. 
(2) A transposition between ai and such that ai - 

at+, = 5 mod 10 implies Eqs. (17) and (18) fail. 
(3) A transposition between ak and c1 implies Eq. (17) 

fails. 
(4) A transposition between c1 and c2 implies Eqs. (17) 

and (1 8) fail. 

(C) Single deletions 
(1) A deletion in the first k + 1 symbols implies Eqs. (16) 

and (1 8) fail. 

D. T. TANG AND V. Y. LUM IBM J. RES. DEVELOP. 



(2) The deletion of the (k  + 2)th symbol implies either: 
ak (taken  as cl’) fails to satisfy Eq. (15 ) ;  or uk satisfies 
Eq. ( 1 5 )  implying c1 = 0, which in  turn implies c1 
(taken  as c l )  fails to satisfy Eq. (18). 

(0) Single insertions 
( 1 )  An insertion anywhere before the (k + 2)th symbol 

(2) An insertion after  the (k  + 2)th symbol implies cz # 
implies Eqs. (16) and (18) fail. 

0 (taken  as c;) ,  and therefore Eq. (15)  fails. 

It  can be shown that,  in addition to single errors of the 
above  four types, more than 95 percent of all double- 
substitution and double-transposition errors are also de- 
tected. 

5. Polynomial codes 
In this section, several types of polynomial codes’ are 
examined for  their effectiveness in transposition-error con- 
trol. We assume that the symbols of transmitted and 
received sequences are identified as elements of a finite 
field, GF(q). A code generated by the polynomial g(x) 
of degree r consists of polynomials of degree no more 
than n - 1 that  are multiples of g(x). The code length n 
is the smallest integer such that g(x) divides xn - 1 .  
Note  that we no longer deal with  messages of arbitrary 
length as  in  the previous sections. 

A  transposition can always be regarded as a burst  error 
of length two. However, the  property that  the values of 
the error  in these adjacent positions must be equal  but 
with the opposite signs enables one to obtain, in nonbinary 
cases, more efficient coding schemes than those  obtained 
by considering that transpositions  are bursts of length two. 

Correction of all single-transposition errors 
Consider a full-length single-error correcting code gener- 
ated by an irreducible polynomial g(x)  which has ,8 = 

as  one of its  roots, a! being a primitive element in 
GF(q). If the degree of g(x) is r ,  then  the length is n = 
(qr - l ) / ( q  - 1 ) .  Since the code is a full-length code, 
every r-tuple in  the base field GF(q‘) can be written as 
a multiple of one of the column vectors of the code’s 
check matrix. Hence, there exists a unique element c in 
GF(q) and a unique positive integer b < n such that 

x - 1 = cxb mod g(x)  (1 9) 

or 

aQ- 1 

x- 1 - mod g(x) .  
n- b 

-- 
c x - 1  

A transposition error takes  the form of e i (x  - l )x i ,  with 
the corresponding syndrome equal to 

S(x)  = e,(x - l)x* mod g(x). (21) 

Since (x - 1 )  is relatively prime with g(x), it introduces a 

one-to-one mapping between the set of syndromes of 
single transpositions and  the set of syndromes of single 
(substitution) errors. In order to use the same syndrome- 
recognition circuit as in single-error correction, the de- 
sired syndrome to be recognized should be 

X ? +  

x - 1  
= - S(X) 

n - b + r t l  
- -x - S ( x )  mod g(x) .  (22) 

Therefore, S’(x) can be obtained by premultiplying the 
received  message, S(x), by f (x) ,  where 

C 

f ( x >  = fT-1xr-l + . . . + f1x + fo 
n-b+r+l 

- -x - mod g(x) .  (2 3) 

The corresponding decoder is shown in Fig. 5. Note  that 
the switch W is open  (at position 0) until the leftmost 
r - 1 register stages are all zero during the second n- 
digit decoding cycle. 

Correction of all single-substitution and some single- 
transposition errors 
Consider a single-error correcting code with generator 
polynomial g(x) = (x - l )p(x) ,  where p(x)  is a primitive 
polynomial of degree r - 1 .  The code length in this case 
is n = qr-’ - 1 .  This code will not correct all single- 
transposition errors since 

e,(x - l )xi  + e j (x  - l )xi  = 0 mod ( x  - l )p(x)  (24) 

does have solutions. To show this, we write Eq. (24) as 
x i ’  - = -.,/ei mod p(x), (25) 

where j’ = j - i. Now if Q! is  any root of p(x) ,  it can be 
shown that an’ is a unique primitive element /3 E GF(q), 
where n’ = (qrP1 - l ) / ( q  - 1 ) .  (aJ’ = (a2)*’ = ,8 for 
any al, aZ that  are roots of p(x) .  Therefore, Eq. (25) and, 
hence, Eq. (24)  may  be  satisfied if j ’  is a multiple of n’. 

A scheme that will correct a certain percentage of 
single-transposition errors and all single-substitution errors 
works as follows. With a given p(x) ,  the unique ,8 = an’ 
can be determined. At each i, 0 5 i < n, determine 
whether Eq. (25) is satisfied for j’ = j - i being q - 1 
nonzero multiples of n’. If Eq. (25) is satisfied, no correc- 
tion is attempted. If not, we check to see if the message 
becomes a code polynomial when symbols at positions 
i and i + 1 are transposed. If no code polynomial results, 
no correction takes place and  the original received  message 
is then investigated for next i. If a code polynomial results, 
the transposition between symbols at positions i and i + 
1 is assumed to be a successful correction. 

The above partial correction of single-transposition 
errors is an extension to  the code’s original capability 
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Figure 5 Decoder for single-transposition error correction  using a full-length  single-error  correction  code. 
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of single-substitution correction. For if the received mes- 
sage is not divisible by (x  - l), a substitution error may 
be assumed; while if the received message is divisible by 
(x  - 1) but  not by g(x), a transposition error may be 
assumed. One may also choose to correct single-substitu- 
tion  errors, but merely detect a possible transposition 
error in the meanwhile. This may indeed be an excellent 
strategy when errors  are mostly single substitutions mixed 
with occasional transpositions. 

Correction of multiple-transposition errors: ( x  - I )  is 
not factor of g(x)  
Consider a multiple-error correcting code with a generator 
polynomial g(x) that does not contain ( x  - 1) as a 
factor.  With  minimum  distance equal to 2t + 1, the code 
can  be used to correct t transposition  errors.*  This  can 
be  shown by writing the syndrome of any  combination 
of 2t transposition errors as 

s , , (x)  = (x  - l ) (e lx i l  + elxi" + . . . + e Z 1 x i * * )  

mod g(x) .  (26) 

It is easily seen that Szt (x)  cannot be zero mod g(x) since 
if it were, S,,(x)/(x - 1) must also be  zero  mod g(x), 
as g(x) does not contain ( x  - 1) as  a  factor. This would, 
in  turn, imply that  the code has a minimum distance at 
most 2t, which contradicts the original assumption. To 
correct t transposition  errors, we see that 

* In this paper we are concerned only with disjoint transposition errors 
because they are the kind most likely to occur. 

S(x) = (x  - l ) (e lxi l  + . * . + e t x t f )  mod g ( x ) .  

(27) 

If we obtain  the transformed  syndrome 

x(elxi l  + . . . + e l x i ' )  mod g ( x ) ,  (28) 

then the  ordinary multiple-error syndrome recognition 
procedure  can be carried out sequentially in time to make 
corrections. Let 

g(x) = + g7-1x7-l + . . . + g1x + go, (29) 

xS(x) = s,-1x7-1 + + . . . + S I X  + so 
mod g(x), (30) 

and 

mod 

It follows that 

XS(X) = ( x  - 

- I  7 = s,-1x 
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The above transformation  is performed by the logic circuit 
augmented to  the division circuit of g(x), as shown in 
Fig. 6. Note  that all the switches are  thrown from position 
0 to 1 after  the n-digit received message is in. The syndrome 
transformation is completed after  a single additional shift. 
Switches are then  thrown back to position 0 and the 
ordinary syndrome recognition logic takes over. A pre- 
multiplication of x to  the received  message is applied to 
obtain the syndrome corresponding to xS(x). An extra 
stage in buffer storage is used to compensate for  the time 
needed for  the syndrome transformation. 

Correction of multiple-transposition errors: (x - I )  is 
factor of g(x) 
Consider a multiple-error correcting code with a generator 
polynomial g(x) = (x - l)g'(x). If the minimum dis- 
tance of the subcode generated by g'(x) is 2t + 1 ,  then 
the original code can be used to correct t  transposition 
errors  and to detect, in addition, a single-substitution 
error.  Instead of using a single division circuit correspond- 
ing to g(x) to generate syndromes, we may cascade two 
division circuits corresponding to (x - 1) and g'(x) as 
shown in Fig. 7. The multiple-transposition errors,  after 
passing through the division circuit of (x - l), will appear 
as multiple-substitution errors to the division circuit of 

g'(x). In terms of syndromes, we have 

mod g'(x). (37)  

It follows that  the same syndrome recognition circuit used 
for t-error correction with the code generated by g'(x) 
can be used here. There are several minor modifications: 
1) Multiple-transposition-error correction is carried out 
only if the division of the received  message by (x - 1) 
results in a zero syndrome. 2) If this syndrome is  not 
zero, a  substitution error is detected. 3) A premultiplica- 
tion of x is used so that the correction of high-order digits 
can be done in time sequentially. 

In describing the above correction schemes we have, in 
essence, demonstrated the validity of the following the- 
orems: 

Theorem 5 :  Let g(x) be the generator polynomial of a 
code with minimum distance D. If g(x) does not contain 
(x - 1) as  a  factor,  then  the code can detect up to (D - 1) 
transposition  errors as well as up  to ( D  - 1) substitution 
errors. It can also be  used to correct t 5 [(D - 1)/2] 
transposition  errors and meanwhile detect ( D  - 1 - t )  
transposition  errors. 

Theorem 6: Let g(x) = (x - I)g'(x) be the generator 
polynomial of a code with minimum distance D. Also, 
let the subcode generated by g'(x) be  of minimum dis- 
tance (D - 1). Then  this code can detect up  to ( D  - 2) 
transposition errors as well as  up  to ( D  - 1) substitution 
errors.  This code can be  used to correct t 5 [(D - 2)/2] 
transposition errors  and meanwhile detect ( D  - 2 - t )  
transposition  errors. It also detects a single-substitution 
error  in  the presence of any number of transposition  errors. 

6. Concluding remarks 
We have studied certain basic problems related to the 
detectability of most common types of errors encountered 
when digital data  are entered at terminals by human 
operators. Several coding schemes  with different degrees 
of control  can be used in a detection-and-retransmission 
mode or,  for some of them, in a correction mode. 

Credit  card systems with decimal key-punch terminals 
using one check symbol to detect single-substitution and 
most single-transposition errors have been in existence. 
Detection of all single transpositions in a decimal system 
with one digit has been suggested by Freeman.3 Since 
many single-substitution errors  cannot be detected by 
Freeman's scheme, it is effective only when transpositions 
are predominant among  errors. The special decimal coding 41 5 
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Figure 6 Decoder for multiple-transposition error correction, where the generator polynomial g(x) does not contain the factor (x - 1). 

Figure 7 Decoder for multiple-transposition error correction, where the generator polynomial g(x) contains the factor (x - 1). 
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scheme  described in Section 4 of this paper may  be  used 
if detection of both single substitutions and transpositions 
as well as single  insertions and deletions  is  desired. 

Polynomial  codes  described in the last section  can  be 
used in a variable  length  mode. The message length  can 
be shorter than the natural code  length n either where the 
information about the actual length  is  included in the 
message, or when the end of the message is identified by 
a special character or signal.  Single  deletions and inser- 

41 6 tions, originally  detectable by the fixed code  length,  can 

now  be  detected if an extra check  symbol  is  used as de- 
scribed in Section 3. 
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