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Coding  Schemes for  Reduction  of  Intersymbol 
Interference  in  Data  Transmission  Systems 

Abstract: Various  coding  schemes  and  their effects on intersymbol  interference  in  pulse  amplitude  modulation  systems are discussed. 
First, the relation between  imperfections  in  the  baseband-equivalent  channel  and  intersymbol  interference  is  clarified  and  applied to 
explain the effect of correlative  level  coding and  Gorog's  frequency  concept  codes  in  reducing  intersymbol  interference.  Another 
coding  scheme  is then  introduced:  construction of  codes  in the time  domain  with  intersymbol  interference  directly  in  mind. A decimal 
code of length 4 and an  alphanumeric  code of length 6 are  proposed  as  practical codes and  their  properties  are  discussed.  Simulation 
results are presented to give quantitative  comparison of these coding  techniques.  Curves of the  vertical  eye-opening vs transmission 
rate have  been  produced and we show that codes  designed in the time  domain  achieve  better  performance than both the frequency 
concept codes and the conventional  codes  for a wide  class of channel  characteristics. 

Introduction 
Intersymbol interference is one of the most severe limita- 
tions  encountered in high-speed data transmission sys- 

This  paper reports an investigation of the rela- 
tion between channel imperfections and intersymbol 
interference in a baseband pulse amplitude  modulation 
(PAM) system to determine the effects of various coding 
schemes on  the reduction of intersymbol interference. 
When the  input binary (or  in general multilevel) sequences 
are completely random, i.e., when there is no restriction 
on  the level of the successive digits, equalization of the 
channels is crucial and one cannot send sequences faster 
than  the Nyquist rate. However, this is not the case when 
some  restriction is imposed on  the values that successive 
digits can take. 

In this  paper we assume that  the channel is at baseband. 
In a real  communication system this is seldom the case; 
some  type of modulation is adopted to transport  the signal 
energy to  the frequency band best suited to  the trans- 
mission medium and,  at the receiver, the corresponding 
demodulation process translates the signal energy back 
to baseband. It  is known that linear  modulation techniques 
are well suited for high-speed data transmission because 
of their efficient use of available bandwidth, and  the effect 
of linear  modulation  can  be considered as a portion of 
the baseband channel.' The communication model we 
use is illustrated in Fig. 1; the message sequence to  the 
signal generator is represented by a sequence of amplitude- 
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Figure 1 Baseband  pulse  amplitude  modulation (PAM) 
system. 

modulated impulses. This PAM system is characterized 
by a transfer  function Hu), which summarizes the overall 
frequency characteristics of the signal generator, the base- 
band  channel and  the receiving filter (including the equal- 
izer). 

Let h(f) be the inverse Fourier transform of the system 
transfer  function H(f)  and let T be the interval in seconds 
between successive symbols. The discrete impulse response 
function at  the sampler output is 

h*(t)  = h(nT) 8(t - nT), (1) 

where an asterisk is used to denote a sampled function; 
the  Fourier spectrum of Eq. (1) is 

m 

n=-m 

m 

H * ( f )  == T" H ( f  - nzT"). ( 2 )  
m = " m  

It is clear from Eq. (2) that H*(f)  is periodic with period 
T-'. Figure 2(a) is an example of H(f) and  the corre- 343 

REDUCTION OF INTERSYMBOL INTERFERENCE JULY 1970 



I f  

4 1  I 

I f  (c) 
Figure 2 (a) The system transfer  function H ( f )  and the 
sampled  function H * ( f ) ;  (b)  the equivalent components 
H o ( f ) ,  Hl(f) and H 2 ( f )  of H ( f ) ;  (c) the low-pass equiv- 
alent G(f )  of H ( f ) .  

sponding H*(f). If H*Cf) were to take on a constant  value 
A for the entire frequency  region - w < f  < w ,  then 

h*(nT) = A6,,o (3) 

and no  intersymbol  interference  would  occur. 
In most  practical cases  heavy distortion exists at the 

high  frequency  end of the channel. Distortion also  exists 
near the zero  frequency  end of the (equivalent  baseband) 
channel when  single  sideband modulation is  used.  Even 
when  vestigial  sideband modulation is adopted, a pilot 
carrier  tone is  usually added in quadrature so that  the 
carrier  frequency and its phase  can be  recovered at the 
receiving end and, for satisfactory  recovery, the data 
spectrum near the carrier frequency  must  be  suppressed. 
These operations result in distortion at the zero  frequency 
end of the corresponding  baseband  channel. It is con- 
venient to introduce the following transfer functions, 

344 which are shown in Fig.  2(b): 
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elsewhere; 
and 

0 ,  elsewhere. 
Here HOU) is an ideal  low-pass  filter and Hlcf) and Hz(j) 
represent the channel  imperfection at the lower and upper 
frequency  ends,  respectively. We note that 

m 

H*(f )  = T" [H,(f - m T-') 
m=-m 

-I- H l ( f  - mT") -I- H d f  - mT')1 .  (7) 

This equation implies that the given channel Hcf) is equiv- 
alent to the channel Hocf) + Hlcf) f Hz@), as far as the 
sampled output is  concerned. 

The function H&) is  representable in terms of its low- 
pass  equivalent  shown in Fig. 2(c): 

Hz(f) = $G(f + 3T-l)  + $G(f - $T") 

with 

G(") = QU), (9) 

where the tilde  denotes the complex conjugate.  One  can 
infer from Eq. (8) that 

hz(t) = g(t) COS (rtT-'), 

and therefore the sampled  response  is given  by 

h,(nT) = (- l)"g(BT). 

An important practical situation is one in which the 
deviation from a perfectly  equalized  channel  occurs in 
a narrow  region at the high  frequency  end. In this  case 
the function g(t)  is  slowly  varying  compared  with the 
sampling rate T-l  and therefore hz(nT) is an alternating 
sequence  except for pairs of values  adjoining the zeros 
of g(t). Similarly, in the case in which the width of Hlcf) 
is small  compared  with the value of $T", hl(nT) changes 
sign infrequently. 

Coding  schemes  for  reduction  of  intersymbol 
interference 
In this section the relation established in  the previous 
section between channel  imperfections and the channel 
response function is  used to evaluate the effects  of various 
coding  schemes in reducing  intersymbol  interference. The 
schemes  we discuss  include the correlative level coding 
devised by Lender,3 van Gerwen4 and Kretzmer';  Gorog's 
frequency  concept  codes'; and time-domain-designed  al- 
phabets of the present a ~ t h o r . ~  
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Correlative level coding 
Let us assume that we are given a low-pass channel whose 
distortion exists at the high frequency end only. Then  the 
sequence describing the intersymbol interference associated 
with this  channel is h,(nT) of Eq. (11). Hence, the sequence 

3 {hz(nT) + h d n  - 1)Tl I ,  (12) 

which is the arithmetic mean of adjacent  intersymbol 
interference, is a sequence with a small magnitude.  This 
new sequence of reduced intersymbol interference can  be 
obtained by  use  of correlative level coding3 or  the  partial 
response channeL5 Consider a linear filter with the impulse 
response function 

W ( t )  + s(t - a .  (1 3) 

A binary impulse sequence of +l’s  and - 1’s is trans- 
formed by this filter into a three-level sequence of +l’s, 
0’s and - 1’s and correlation is introduced among  output 
digits. Let us denote the transformation, Eq. (13), of a 
two-level sequence into a three-level sequence [in general, 
an rn-level sequence into a (2m - 1)-level sequence] by 
“correlative level coding,  type I.” To recover the original 
binary sequence from  the received three-level signal with- 
out  error propagation, a precoding operation is performed 
at  the transmitter  side on  the  input ~equence .~ -~  

Two successive +l’s (or - 1’s) always have an even 
number of intervening zeros and successive + 1 and - 1 
(or - 1 and 4-1) always have an  odd number of inter- 
vening zeros. Thus direct transition between top  and 
bottom levels never occurs and,  in fact,  this is a well- 
known  explanation3 of  why little intersymbol interference 
is observed with this  type of correlative level coding. 
Another way  of  viewing the effect  of correlative level 
coding on intersymbol interference is in  the frequency 
domain. Since the transfer function of the correlative 
level coder (13) is cos (afT) exp (-jafT),  the frequency 
characteristic which contributes to intersymbol  inter- 
ference, 

HAf) cos ( n f q  exp (--MT), (14) 

is much smaller in magnitude than  the original H2(j). 
Now let us assume that we are given a  channel like 

that shown in Fig. 2(a), i.e., a channel  containing imperfec- 
tions at both  ends of the given bandwidth. In this case 
we are faced with the  two types of intersymbol  inter- 
ference h,(t) and h,(t) discussed in  the introduction. A 
simple method that can reduce both types of interference 
simultaneously is the one which takes the difference 
between digits that  are separated by one digit; that is, 
a linear filter with the response function 

&yt) - 6( t  - 2T)J (15) 

Binary sequences are again  transformed into three-level 
sequences and we call this  transformation “correlative 
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level coding, type 11.” Reference 7 contains a more detailed 
analysis of intersymbol interference in  the correlative level 
coding scheme. The disadvantage of this  method comes 
from  the increased number of signal levels, which results 
in a  reduction of the signal-to-noise ratio  in those applica- 
tions in which the peak power or  the average power of 
the transmitted signal is fixed in magnitude. 

Codes designed in the frequency domain 
In a recent paper‘ Gorog proposed a group of codes 
called “frequency concept codes” that  are designed to 
allow an efficient transmission of digital data. Let al, 

spectrum of this  finite sequence is 

S(f) = a, exp [-j2af(n - 1)Tl. (1 6 )  

Clearly Scf) is a  periodic  function of frequency f with 
period T-‘. 

If an  input sequence is chosen so that it contains rela- 
tively little energy in  the imperfect regions of the channel 
frequency characteristic, the  amount of distortion to  the 
sequence will not be  great.  This is the basis for  the con- 
struction of the codes. Since the spectrum S(f) is a con- 
tinuous  function, a sequence with the conditions 

S ( O )  = o or a, = o (1 7) 

and 

s(+T-’) = o or ( - I ) ~ ” U ,  = o (1 8) 

provides the desired property. By specifying the possible 
amplitude levels and  the length N, we can determine a 
class of sequences that satisfy the conditions (17) and (18). 

If the channel  characteristic  contains imperfections 
just  in  the upper frequency region, only the property (18) 
is required of the  input sequence. For  the case in which N 
is an  odd number and {a,) is a binary sequence, the 
condition (18) should  be modified to 

az, * - .  , aN be a sequence of length N.  The frequency 

N 

n = l  

N 

n=1  

N 

n= 1 

N 

( - ~ ) ~ “ a ,  = -1 (or + I ) .  (1 9)  

Then a composite sequence of length 2N, which consists 
of two such sequences of length N ,  satisfies the original 
condition (18). An interesting class of such sequences 
is Gorog’s decimal code of length 5, which is designed 
to replace the conventional decimal codes. This class 
of codes is given in Table 1. Note  that  the binary rep- 
resentation of 1 and 0 is adopted  in  the  table instead of 
+1  and -1. 

Now consider the performance of these codes from 
the viewpoint of intersymbol interference. Let us assume 
that H,(f), the distortion  characteristic in  the high fre- 

n i l  
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Table 1 Gorog’s  decimal  code of length 5. 

Decimal numeral Binary code* 

0 
1 
2 
3 

0 0 0 0 0  
0 0 0 1 1  
0 0 1 1 0  
0 1 0 0 1  
0 1 1 0 0  
0 1 1 1 1  
1 0 0 1 0  
1 1 0 0 0  
1 1 0 1 1  
1 1 1 1 0  

analysis. 
8 The 1’s and 0’s correspond to  the +l’s and -l’s, respectively, of the 

Table 2 Gorog’s alphanumeric code of length 8. 

Alpha- 
~ i Alpha- 1 numeric j Binary code’ numeric Binary codea 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 
G 
H 

1 1 0 0 1 1 0 0  

0 0 1 1 0 0 1 1  
1 0 0 1 1 0 0 1  
1 1 1 0 0 1 0 0  
0 1 1 1 0 0 1 0  
0 0 1 1 1 0 0 1  
1 0 0 1   1 1 0 0  
0 1 0 0 1 1 1 0  
0 0 1 0 0 1 1 1  
1 0 0 1 0 0 1 1  
1 0 1 0 0 1 0 1  
1 1 0 1 0 0 1 0  
1 1 0 0 1 0 0 1  
0 0 0 1 1 0 1 1  
0 1 1 0 1 0 0 1  
1 0 1 1 0 1 0 0  
1 0 0 0 1 1 0 1  

~ 0 1 1 0 0 1 1 0  
I 
J 
K 
L 
M 
N 
0 
P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 
2 

1 1 0 0 0 1 1 0  
0 1 0 1 1 0 1 0  
0 0 1 0 1 1 0 1  
1 0 0 1 0 1 1 0  
0 1 0 0 1 0 1 1  
0 1 1 0 0 0 1 1  
1 0 1 1 0 0 0 1  
1 1 1 0 0 0 0 1  
1 1 0 0 0 0 1  1 
1 1  0 1 1  0 0 0  
0 1 1 0 1 1 0 0  
0 0 1 1 0 1 1 0  
1 0 0 0 0 1 1 1  
0 0 0 0 1   1 1  1 
0 0 0 1 1 1 1 0  
0 0 1   1 1   1 0 0  
0 1   1 1   1 0 0 0  
1 1   1 1 0 0 0 0  

analysis. 
*The 1’s and 0’s correspond to the f l ’ s  and -l’s, respectively, of the 

quency region, has a width that is small compared with 
the value of (AT)-’, which is the frequency of occurrence 
of every codeword. Then h,(nT) is an alternating sequence 
whose magnitude changes slowly over the length of a 
codeword, and  the intersymbol interference is effectively 
canceled because of condition (18). 

If the channel  characteristic  contains imperfections 
at both the lower and upper frequency ends, sequences 
satisfying Eqs. (17) and (18), or equivalently 

and 

yield reduced intersymbol interference. For example, 
in the case of N = 8, there are 36 binary codewords 
that satisfy the two conditions.  This code is given in 
Table  2 and  has been suggested by Gorog‘ for use as 
an alphanumeric code. 

On examining this class of codes, we note  the following 
shortcomings: When H2(f) and Hl(f) are  not narrow 
compared with (AT)-’, the reduction of intersymbolinter- 
ference is  not significant because the interference from 
neighboring digits dominates that  from remote digits. 
Furthermore,  the effect on intersymbol interference of the 
outer digits is not  taken  into account in codes that  are 
selected using the conditions (20) and (21). These short- 
comings are discussed further  in subsequent sections. 

Codes  designed in the  time  domain 
In designing codes in  the time domain, restrictions are 
placed in  the following way on the sequence allowed for 
transmission. Consider a number of possible states. In 
each state only  certain symbols (1 or 0 in  the binary 
case) can be generated. When one of these symbols 
has been generated, the  state changes to a new state 
depending on  both  the old state  and  the symbol generated. 
For example, consider the generation of binary data  to 
be sent over a channel which has  an imperfection at  the 
high frequency end. Sequences containing 0 and 1 
alternatively over many consecutive digits should be 
avoided because these sequences match the distortion 
sequence of Eq. (11) and yield heavy intersymbol  inter- 
ference at  the channel output.  The system which generates 
sequences under such constraints  can be called the 
“discrete noiseless channel” according to Shannon’s 
terminology’ and  the constraint  can be indicated best 
in a linear  graph as shown in Fig. 3, where the circles 
represent the possible states. The constraint in Fig. 3(a) 
requires that alternation of 1 and 0 does  not occur over 
more than four consecutive digits. The maximum infor- 
mation rate generated is given by the channel capacity 

C = lim L” log, N ( L )  (in  bits/sec), (22) 
L-CC 

where N(L) is the number of allowed codewords of length 
L (sec). Using the computation  formula given by Shannon,’ 
we calculate the capacity of the sequence generator with 
the  constraint of Fig. 3(a) as C = 0.9469T-I bits/sec, 
where T i s  the  duration in seconds of one digit. 

We are primarily interested in codes of relatively short 
length and if, for example, we limit ourselves to block 
codes of length 4, then  the set of 10 codewords listed 
in Table  3 satisfies the constraint of Fig. 3(a). Since the 
information rate of this  code is R = log,  [(10/4)T-’] = 

0.8305T1 bits/sec, this  code achieves 87.6% of the 
maximum capacity of the sequence generator. An im- 
mediate  application of this  code is as  a replacement for 
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(b )  

Figure 3 Graphic representation of constraints on binary 
sequences. 

the  natural binary-coded decimal (NBCD) code. The 
code digits in Table 3, incidentally, can be assigned weights 
of 5 , 2 ,  1 and 1 fromleft  to right, respectively. Comparison 
of the performance of this 5211-weighted decimal code 
with the performance of the NBCD code and Gorog’s 
decimal code is made in  the section on simulation results. 

If the transfer  function of the channel has imperfections 
in  both the high and low frequency ends, sequences 
containing large runs of 1’s or 0’s and sequences con- 
taining 1 and 0 alternatively over many consecutive 
digits yield a large amount of intersymbol interference. 
However, the interference functions Q(t) and h2(f) cancel 
each other  to some extent at the sampling  points t = 
(2n + l )T  while adding together at t = 2nT, where n 
is an integer; therefore, the most undesirable sequences 
are those that contain  long runs of 1 (or 0) at every second 
digit. For example, the sequence 1 . . , 1, xl, 1, xz, 1, x3, 
1, x4, I ,  xb, . . . is undesirable regardless of the values 
of x,. Codes that avoid  this  situation may be found as 
follows: Divide a sequence into two subsequences of 
odd-number digits and even-number digits, respectively; 
each subsequence is required to satisfy the constraint 
illustrated in Fig. 3(b),  Le., the  run lengths of 1’s or 0’s 

Table 3 The 5211-weighted decimal code of length 4. 

Decimal numeral  Binary codea 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0 0 0 0  
0 0 0 1  
0 0 1  1 
0 1 1 0  
0 1 1 1  
1 0 0 0  
1 0 0 1  
1 1 0 0  
1 1 1 0  
1 1 1 1  

analysis. 
The 1’s and 0’s correspond to the f l ’ s  and -l’s, respectively, of the 

Table 4 A selected alphanumeric code,a that is, 36 code- 
words of length 6 that satisfy the binary-sequence constraint 
shown in Fig. 3(b). 

0 0 0 0 1 1  0 1 0 0 1 0  1 0 0 0 0 1  1 1 0 0 0 0  
0 0 0 1 1 0  0 1 0 0 1 1  1 0 0 0 1 1  1 1 0 0 0 1  
0 0 0 1 1 1  0 1 0 1 1 0  1 0 0 1 0 0  1 1 0 0 1 0  
0 0 1 0 0 1  0 1 1 0 0 0  1 0 0 1 0 1  1 1 0 0 1 1  
0 0 1 0 1 1  0 1 1 0 0 1  1 0 0 1 1 0  1 1 0 1 0 0  
0 0 1 1 0 0  0 1 1 0 1 0  1 0 0 1 1 1  1 1 0 1 1 0  
0 0 1 1 0 1  0 1 1 0 1 1  1 0 1 0 0 1  1 1 1 0 0 0  
0 0 1 1 1 0  0 1 1 1 0 0  1 0 1 1 0 0  1 1 1 0 0 1  
0 0 1 1 1 1  0 1 1 1 1 0  1 0 1 1 0 1  1 1 1 1 0 0  

analysis. 
=The  1’s and 0’s correspond to the +I’s and -l’s, respectively, of the 

in  the subsequences may not be more than 4. The capacity 
of the sequence generator  under  this  constraint is the 
same as that of Fig. 3(a), i.e., C = 0.9469T-’ bits/sec. 

If we restrict ourselves to a class of block codes of 
length 6, the constraint is equivalent to elimination of 
codewords such as { u ~ ,  u2, u3, u4, u ,~ ,  u6j in which a, = 

u3 = a, or u2 = u4 = a,. There  are 36 codewords listed 
in Table 4. This class of codes of length 6 has  the following 
properties: 1) The  run lengths of 1’s and 0’s in any 
sequence of codewords are less than 8; 2) the alternating 
sequences of 1’s and 0’s in any sequence of the codewords 
have lengths less than 8; and 3) if a, = f 1 in a code- 
word of length 6, where + 1 and - 1 correspond to 1 
and 0 respectively in  Table 4, then 

u,  = ”2, 0 or + 2  and 

5 = - 2 , o  or + 2 .  

Note  that this property i s  similar to that of the frequency 
concept codes [see Eqs. (17) and (18)]. The information 
rate of this  code is R = log, [(36/6)T1] = 0.8616T-’ 
bits/sec; its efficiency is 91 .O%. 347 

6 

z = 1  

i - 1  

REDUCTION OF INTERSYMBOL INTERFERENCE JULY 1970 



% 0 1 1  
/ i  I I I  

0 0  20 1-CY 1 I f a  

f- 

I 

Figure 4 Frequency characteristic of the baseband  channel. 

Simulation  results 
In  this section we present the results of simulating the 
performance of the coding schemes discussed in  the 
previous section and  make a quantitative  comparison 
of these schemes from  the viewpoint of the reduction 
in intersymbol interference. It is impractical to study 
all channels; the channels which we treat  are assumed 
to be band-limited with sinusoidal roll-off  (see Fig. 4); i.e., 

" 111 
2a _I ' 

1 - - a <  [ f I  < 1 f a ;  

1 + a I I f l .  
As can be seen from Eq. (231, we assume that  the phase 
characteristic of the channel is completely linear. If a 
phase  nonlinearity exists, Hl(f) of Eq. ( 5 )  and G(f) of 
Eq. (8) are  not real  functions and therefore hl(t) and g(t) 
are  not even functions; hence the intersymbol interference 
from  the preceding digits and  that  from  the following 
digits are  not always equal. However, the general property 
still holds  that h,(t) and g(t) are slowly changing functions 
when H,(f) and H2(f) have narrow bandwidths and  the 
results in this section are applicable to the general case. 
Thus, by carrying out extensive simulation experiments 
for  the limited class of channels given by Eq. (23), our 
objective was achieved efficiently. 

The impulse response function of the channel (23) is 

sin 2at cos 2 ~ a t  
h( t ;  a ,  p)  = ___ " 

2at 1 - (4at)" 

-~ sin 2apt cos 2 4 ' t  
2?rt I - (4ptj3 

If = 0, H(f;  a, 0) is  the transfer  function of a low-pass 
channel with sinusoidal roll-off and 

348 win; a, 0) = 6,*0, (25) 
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where n = 0, f 1, and 0 5 5 1. Therefore we can 
send an impulse sequence over the channel H(f;  a, 0) 
with no intersymbol interference at the  rate R = T-' = 2 
bits/sec. [In Fig. 4 the channel  bandwidth is normalized 
to (1 + a). If the channel  characteristic is scaled by a 
factor of W on the frequency axis, i.e., if the channel 
bandwidth is W(l + a), the distortion-free transmission 
rate  is R = 2W bits/sec.] However, when the  trans- 
mission rate is not 2 bits/sec, intersymbol interference 
occurs. An  appropriate quantitative measure of inter- 
symbol interference is  the eye opening in  the usual eye 
pattern (Ref. 1, p. 61) and,  in particular, if the timing 
of the sampling at  the receiver is assumed to be perfect, 
the vertical eye opening represents the degradation caused 
by the intersymbol interference. 

Let us consider a  binary input sequence in a finite 
time  interval "T,,,,, 5 t 5 T,,,,,, where the value of 
T,,, is chosen so that  the impulse response virtually 
dies out beyond It1 = T,,,,,. In  the following calculation 
T,,, = 10; it is sufFicient to consider the finite-length 
input sequences a-N, a-N+l, . . , a,,, . . . , aN-l, aN, where 
N is  the integer such that T,,,R 5 N < T,,,,,R $- 1, 
and R is the digit rate of the binary sequence. The  input 
signal to  the signal generator (see Fig. 1) is 

N 

x ( t )  = a, s(t - nR"). 
n-"N 

The signal received at the sampler in  the absence of 
noise is 

N 

y ( t )  = a,h(t - nR-'; a ,  P ) .  
.L"N 

Then  for a  binary input,  the vertical eye opening at time 
t = 0 is determined by the following two quantities: 

e+@) = min y(O) 
lan;ao=ll 

and 

e-@) = max y(O) = "e+(R) ,  
Ia.;a.-- l l  

where the prime on the summation sign indicates deletion 
of the  term  for n = 0. 

The curves in Fig. 5(a) indicate how the vertical eye 
opening varies as a function of the transmission rate R.  
The shaded  areas  indicate the regions in which e+@)  < 
e-@) (i.e., the eye is closed). Note  that when = 0 
the eye is completely open  for rates R = 2/n, n = 1 ,2 ,  . . . . 
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(a )  ( b )  (C) 

Figure 5 Vertical  eye  opening  as a function of transmission rate for  binary  input data: (a) without  correlative  level  coding; (b) with 
correlative level  coding,  type I; (c) with  correlative  level  coding,  type 11. The  abscissa  scales  begin at 0 and the scale  marks  indicate 
R = 1, 2 and 3 bitslsec. 

When @ # 0, i.e., when the transmission channel excludes 
the zero frequency component, the eye is completely 
closed unless the transmission rate is very slow. It  can 
be  shown7 that  the transmission rate must  be less than 
(1 + a) bits/sec for  the eye to be  open. 

The curves of Figs. 5(b) and 5(c) correspond to  the 
cases in which correlative level coding, type I [Eq. (13)] 
and type I1 [Eq. (1511 respectively, is used. There  are 
two eyes because of the three-level signals. The vertical 
eye opening of the upper eye at the sampling instant 
is determined7 by the quantities el@) and ez(R), and 
that of the lower eye by e3(R) and e,(@: 

Type Z coding 

el@) = h(0; a ,  P )  + NR-';  a ,  P )  
m 

- lh(nR"; a ,  P )  + h[(n + 1)R-l; a ,  P I ( ;  
n-1  

(30) 
m 

e 2 ( R )  = Ih(nR"; a ,  0) + h ~ n  + IF'; a ,  PII; 
n- 1 

(31)  

e d R )  = -e2(R>; (32)  

e 4 W  = -el(R); (33) 

Type I1 coding 

e , (R)  = h ( ~ ;  a ,  0) - h ( 2 ~ - l ;  a ,  0) 
m 

- lh(nR"; a ,  p)  - h[(n  + 2)R"; a ,  PI!;  
n= I 

(34) 
m 

e,(R) = ~ h ( n ~ " ;  a ,  P )  - h[ (n  + 2 ) ~ " ;  a ,  011; 
7 1 = 1  

( 3 5 )  

e , (R)  = -e2(R); (36) 

e,(R) = -el@). (37) 

When el@) < ez(R) [which implies e3(R) < e4(R)], 
both  the upper and  the lower eye are closed; the shaded 
areas in Figs. 5(b) and 5(c) correspond to this  situation. 
Comparing  these curves with Fig. 5(a),  we recognize a 
notable  improvement in allowable transmission rate,  par- 
ticularly in  the channels with @ # 0, where the eye was 
originally closed for R x 2 and only allowed transmission 
at less than half the Nyquist rate. The eye opening is 
not sensitive to deviation of the transmission rate R from 
its  optimum value; the reason for this is discussed later. 

We  now show how the binary codes in Tables 1 through 
4 perform over the low-pass channel @ = 0). The 
vertical eye openings are illustrated in Fig. 6 as functions 349 
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NBCD code 
521 I-weighted decmal code 

(Table 3)  
Gorog’s decimal code 

(Table 1) NBCD code 
521 1-weighted decimal code 

(Table 3) 
Gorog’s decimal code 

(Table 1 ) 

Figure 6 Vertical eye opening as a function of transmission  rate  over the low-pass channel ( p  = 0) for  binary  codes of lengths 4 
and 5 ;  (a) 01 = 0.1; (b) 01 = 0.2. The abscissa  scales  begin at 0 and  the  scale marks indicate R = 1, 2 and 3 digits/sec. 

of the transmission rate R for the  NBCD code, the 5211- 
weighted code (Table 3) and Gorog’s decimal code (Table 
1) as transmitted over channels with sinusoidal roll-off 
parameters a = 0.1 [Fig. 6(a)] and a = 0.2 [Fig. 6(b)]. 
Note  that  the interference pattern  for a code of length 
N is represented by N different eye diagrams, since code- 
word synchronization is assumed. 

The curves for  the sharper cut-off (a = 0.1) channel in 
Fig. 6 appear to indicate that  the frequency concept code 
allows a faster transmission rate  than  the  other codes. 
A careful observation, however, shows that this is not 
the case. Since we are comparing codes of different lengths, 
an  appropriate measure is the  ratio of the codeword 
transmission rate to the  bandwidth, J R,,,/[N(l + a)], 
where N is the length of the codeword and R,,, is the 
maximum symbol rate  at which the binary  code  can be 
transmitted while maintaining all N eye openings larger 
than a given amount. Figure 7 shows the relation between 

J and  the parameter CY with p fixed at 0. For  the 5211- 
weighted decimal code and Gorog’s decimal code, the 
four curves correspond to  the cases in which the eye is 
closed, 2570, 50% and 100% open, respectively. 

In Fig. 8 are shown the vertical eye openings for three 
alphanumeric codes: 1) a conventional  binary decimal 
code of length 6 developed without taking intersymbol 
interference into account; 2) the selected code of length 
6 (Table 4); and 3) Gorog’s code of length 8 (Table 
2). Comparison of these curves shows clearly that selec- 
tion of an  appropriate code can significantly reduce the 
intersymbol interference. Gorog’s  alphanumeric  code  per- 
forms better than  the code of length 6 if the two are com- 
pared  at  the same symbol rate R; however, under the 
performance measure J ,  the selected alphanumeric  code 
of length 6 is superior when the roll-off parameter of 
the channel is small. For channels with heavy distortion, 
e.g., a = 0.5 and @ > 0.1, an eye opening even 50% as 
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large as that of the interference-free case cannot  be  ob- 
tained for  the code of length 6. Similarly, a 25%-open eye 
is not possible7 for  the 6 digit code for channels with 
p 2 0.15. Therefore  Gorog's  alphanumeric  code is pref- 
erable to the  others when the channel is heavily distorted 
at  the low frequency end. 

The vertical eye openings of the correlative level coding 
signal (Fig. 5) and of Gorog's decimal code (Fig. 6) are 
less sensitive to a  change in  the transmission rate  around 
R = 2 than  are  the eye openings of the  other codes. This 
fact can be explained as follows. The two functions el(R) 
and e,(R) that determine the vertical eye opening of the 
correlative level coding signal are defined by Eqs. (30) 
and (31) for type I, and by Eqs. (34) and (35) for type 11, 
respectively. Let us assume /3 = 0 and use the  shorter 
notation h(r) in place of h(t; a,  0). On taking the derivative 
of h(nR") with respect to its  argument and setting R = 2 ,  
we obtain 

for tz = 0; 
h'(*n) = o:-l (38) 

1(-') gn, otherwise; 
I h n  

where 

cos tma 
g, = 1 - (2ncu)5' 

It follows that 

" d [&)I = "tZh'(+?), 
d R  

(39) 

and also 

(41 1 
Since the sequence ( g , ]  is  slowly changing for small 
values of a,  the difference (gn - g,,+l) is quite small for 
all values of n. Similarly, the differences ofg's appearing  in 

(42) 

have small values. Although the derivatives of e,(R) and 
e,(R) are, in general, discontinuous at R = 2, the left 
and right derivatives of each exist; these derivatives take 
on only small values, through  their dependence on Eqs. 
(41) and (42). 

The two  functions e+(R) and e-(@, which determine 
the vertical eye opening of Gorog's decimal code, are 
defined  by 
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(43) 

- 5211-weighteddecin1nl code ( N = 4 )  
--- Gorog'sdecimal  code ( N = 5 )  

ci 

- 0  I l l  I I I I I I  
ai 

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

N 

Figure 7 Codeword  transmission-rate-to-bandwidth ratio as 
a function of the channel-shape parameter. 

and 

e- (R)  = max 2 anh(-;) .  (44) 

[For computer simulation, the limits were  given in Eqs. (28) 
and (29) as A N ,  where N is a large but finite integer.] 
The maximum and  the minimum are to be  taken  under 
the constraint of the particular code. Thus 

l o . ; a . = - l )  n = - m  

1 "  
8?r n=-m 

= - x' (- lyang,. 

The expression (45) has a small value when the sequence 
{a,] satisfies Eq. (18), since the weighting factor g ,  is 
changing slowly compared with the  alternating sequence 
{ (- 1)"). Thus  the left and right derivatives of e+(R) and 
e-(R) at R = 2 are small in magnitude, and  the vertical 
eye opening changes little for transmission  rates  near 
R = 2. 

Summary and remarks 
The relation between imperfections of a data transmission 
channel and intersymbol interference of baseband PAM 
systems was clarified for situations in which the principal 
distortions (in phase as well as in amplitude) are near the 
lower and upper frequency ends of the channel. This 
result was used to explain the effect  of correlative level 
coding in reducing intersymbol interference from a new 351 
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Conventional code Selected code (Table 4) Conventional code Selected code (Table 4) 

Figure 8 Vertical  eye opening as a function of transmission rate for three alphanumeric codes of lengths 6 and 8: (a) 01 = 0.05, 
352 = 0.05; (b) 01 = 0.1, p = 0.1. The abscissa scales  begin at 0 and the scale marks indicate R = 1, 2 and 3 digits/sec. 
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point of  view. Gorog’s frequency concept codes were 
evaluated from a similar viewpoint and some shortcomings 
associated with the codes were pointed out. Another 
coding scheme for reduction of intersymbol interference 
was introduced: Codes that eliminate the worst intersymbol 
interference patterns were constructed under  constraints 
in  the time  domain. Specifically, the decimal code of 
length 4 (5211-weighted  code) and  the alphanumeric code 
of length 6 were proposed and  their properties discussed. 

A quantitative comparison of these coding schemes 
was made by presenting the simulation results. The  for- 
mulas for  the vertical eye openings were obtained; the 
vertical eye openings were plotted vs the symbol transmis- 
sion rate  for various channel-shape parameters. It was 
shown that codes designed in  the time domain achieve 
better performance than both frequency concept codes 
and conventional codes for a wide class of channel  char- 
acteristics. The criterion adopted was the codeword trans- 
mission-rate-to-bandwidth ratio for a given eye opening. 

We were concerned primarily with detection based on 
digits. However, the frequency concept codes proposed 
by Gorog have the  additional  property that  the Hamming 
distanceg is two and this property should be taken into 
account to make the best  use of these codes. Reference 7 
discusses the reception of the sequence using the matched 
filters for codewords and some simulation results are 
presented. 

The design of codes with a time-domain constraint or 
with a frequency constraint can be extended to multilevel 
codes; Franaszek” recently developed an algorithm for 
constructing constrained codes of variable Iength, as well 
as of  fixed length, and  Tang”  has discussed  extensively 
the run-length-limited codes, which are  also a class of 
codes with constraints. 
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