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Maximal  Group  Codes  with  Specified  Minimum  Distance* 

Abstract: All n-digit  maximal  block  codes  with a specified  minimum  distance d such that 2d 2 n can  be constructed  from  the  Hada- 
mard  matrices.  These  codes  meet the Plotkin  bound. In this  paper we construct all maximal group  codes  in  the  region 2d 2 n, where 
d is a specified  minimum  distance and n is the number  of  digits  per code  word.  Unlike  the  case of block  codes, the Plotkin  upper  limit, 
in  general,  fails to determine the number of code  words B(n, d) in a maximal group  code  in the region 2d 2 n. We  show that the value 
of B(n, d )  largely  depends on the binary structure of the number d. An alogrithm is  developed that determines B(n, d), the maximum 
number of code  words  for  given d and n 5 2d. The maximal  code is,  then, given  by its  modular  representation, explicitly  in  terms of 
certain  binary  coefficients  and  constants  related to n and d.  As a side  result, we obtain a new  upper bound on the number of code 
words in the  region 2d < n which  is,  in  general,  stronger than Plotkin's  extended  bound. 

1. Introduction 
All maximal block codes in  the region 2d 2. n can be 
constructed from  Hadamard matrices.' It  has been shown 
that these codes meet the Plotkin' upper limit. In  the 
present paper, we consider maximal group codes in the 
region 2d 2 n. 

The set C, of all n-digit sequences in ZERO and ONE is 
an Abelian  group. The  group  operation 0 between its 
elements a and p is defined as 

a 0 p = +z N ) ,  a@) +' P(2), . . . , a(n) +z 

where +' denotes addition  modulo 2. The unity element 
of C, is 

r#l = [O,O,  . . .  , O ] .  

If M is a subgroup of C,, M forms a group  code that 
possesses the  group property that r#l is a code word in 
M and, if wi and wi are code  words in M ,  then wi @ w j  
is also a code word in M. It is easy to show that  the num- 
ber of code  words in a binary group code is  equal to 
2k, where k is a positive integer.? If d is the minimum 
Hamming  distance3 between the code words, the  group 
code M may be denoted by M(n, d; 2k). 

Let B(n, d) denote the number of code words in a 
maximal n-digit group code with minimum distance d.  
Since group codes are a subclass of block codes, it is 
clear that 

B(n, d) 5 2k 5 A(n, d) < 2"", (1) 
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where A(n, d) denotes the number of code words in  the 
corresponding maximal block code. 

One mjght be tempted to conjecture4 that 

B(n, d) = 2k 5 A(n, d) < 2kc'. 
This would be false, in general, because it can be shown 
by exhaustive search that a 16-word group  code  does 
not exist for n = 19 and d = 10 in spite of the fact that 
A(n, d) = 20. Indeed,  there exists no general method of 
obtaining maximal group codes from  the corresponding 
maximal block codes, or vice versa. The Hamming3 codes, 
Golay codes,5 MacDonald codes' and Solomon-Stifller 
codes'  (which are a generalization of the MacDonald 
codes) are examples of maximal group codes. The  attain- 
ment of maximal group codes satisfying 2d 2 n has been 
studied before, most  notably by Griesmer.' He gave a 
bound on  the minimum value of n, given k and d, while 
the present paper considers the maximum k, given n and 
d. The new results provide necessary and sufficient con- 
ditions, whereas the Griesmer  Bound is a necessary con- 
dition. In the present paper we construct all the maximal 
group codes in  the region 2d 2 n, and provide a new bound 
for maximal codes in  the region 2d < n. In  the process, 
we show that B(n, d) is strongly related to  the binary 
structure of the number d.  

2. Preliminaries 
Here, we introduce  some notation  and pertinent  theory 
regarding group codes. It can  be easily verified that  the 
group set C, of all n-digit sequences in ZERO and ONE 

forms an n-dimensional vector space over the field GF(2), 
and a group code M is a k-dimensional subspace of C,. 
Any set of basis vectors for the subspace M can be con- 
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sidered as rows of a matrix G ,  called the generator of 
M. Clearly, the number of rows in G must be k. Hence, 
the columns of G are elements of the set of k-tuples in 
ZERO and ONE. The column of all ZEROS may be ruled 
out  as useless since it does not contribute to the distance 
between code words. Thus,  there are 2k - 1 different 
types of columns possible. If rearrangement of columns 
is  unimportant,  a  group code can be  specified  by a list 
of the number of columns of each type in  the generator 
matrix G .  This is known as  the modular repre~entation~"'~ 
of the group code. 

In a group code, because of its  group property, the 
distance between any two code words is the weight of 
some non+ code word, and vice versa. A list of weights 
of the  non+ code words, called the weight vector, com- 
pletely  specifies the distance properties of the group code. 
The minimum distance of a group code is the minimum 
of the nonzero weights of its code words. 

The weight vector and  the modular representation of 
a group code are related to each other by a simple matrix 

The results concerning this relationship are 
stated below. 

Let Go be a k X (2k - 1) matrix in which the jth 
column is a binary k-tuple that represents the binary 
number j ,  j = 1,2,  . . . , 2k - 1. Then Go has one column 
of each type other  than the column of all ZEROS. The 
jth column of Go can be considered as the column of 
type j .  The modular representation of a k-dimensional 
group code is, then,  a vector 

N = [nl, nz, . . . , ~ ~ - 1 1  

in which ni is the number of columns of type i. If G is 
the generator matrix of a  group code, then  it is clear 
that  the (2k - 1) X n matrix 

B = G;G , (2) 

where T signifies the  transpose of a matrix, has as rows 
all possible non-4 linear combinations of rows of G ,  and 
thus  has all non-4 code words as rows. Similarly, the 
matrix 

c = G ; G ~  (3) 

has as rows all non-4 code words of the code generated 
by Go. It is clear that  the matrix C is symmetric and con- 
tains exactly one column of each type that may appear in 
a k-dimensional group code matrix. If W is the vector 
resulting from multiplying, as matrices of real numbers, 
the  modular representation vector of a  group code by 
the matrix C, then the 2k - 1 components of the vector 
W represent the weights of the 2k - 1 non+ code words. 

W = NC. (4) 

It can be shown4 that each column of the matrix C 
has (2'") ONES and (2k" - 1) ZEROS and  that the inverse 

of the matrix C exists and is given by 

2 C -  J c-1 = ~- 

2k-1 ' ( 5 )  

where J denotes a matrix of all ONES. 

Any column in a group code matrix, with the row 4 
deleted, must be identical to one of the columns of the 
matrix C. Therefore, all columns in a group code matrix 
have (2k") ONES and  the  total number of ONES in a  group 
code matrix is equal to  r~(2~"). 

The above  material on the  structure of group codes is 
needed in the  proofs of the various theorems in this  paper. 
The following material is a review  of some 
results concerning B(n, d) that  are used later in the  paper. 

Let m and u be positive integers such that u < m. 
Then, 

B(n, 4 5 2B(n - 1 ,  4; (6) 

B(n,  d) 5 2" 5 ~~ 2d > 1 2 ;  (7) 2d < 2 m t l ,  

2d - M 

B(n, d) 5 2" 5 4d(2''-2d) < 2"", 2d 5 n ;  (8) 

B(n, 2m) = B(n - 1 ,  2m - 1); (9) 

B(2" - 1, 2"-9 = 2"; (1 0) 

B(2" - 2",  2"" - 2u-1) = 2". (11) 
The results given  by Eqs. (6), (7) and (8) are derived from 
Plotkin's paper,' the result given  by Eq. (9) is due  to 
Hamming3 and  the results given  by Eqs. (10) and (11) 
are due to MacDonald.' In addition, we make the fol- 
lowing assertions: 

B(n, 4 2 B(n, d + 4; (12) 

B(n, 4 2 B(n - m, 4 ;  (1 3) 

B(n1 + n2, dl + dz) 

2 minimum of [B(nl, dl), B(n2, 4 1 .  (14) 
The  truth of assertion (12) is clear since a code M'(n, d; 2k) 
can be obtained from a code M(n, d + m; 2') simply by 
replacing m columns that contain  a ONE in the position 
corresponding to a row of nonzero minimum weight in 
M ,  by m columns of all ZEROS. If columns of all ZEROS 

must be avoided, one may use columns of the type that 
contains a ZERO in the position corresponding to the row 
under consideration. Assertion (13) is obvious. The gen- 
erator matrix of the code M(nl + n,, d'; 2'), with d' 2 
dl + d,, may be obtained by concatenating the rows of 
the generator matrices of the codes M(nl, dl; 2k)  and 
M(nz, d,; 2k). This proves assertion (14). 

Here we summarize the results developed in this paper. 
In Theorem 1 we obtain all of the  group codes in which 
B(n, d) meets the  Plotkin  upper limit given  by Eq. (7) 
with an equality sign. These codes are called maximum 
uniform distance codes (MUDCk).' In Theorem 2 we 435 
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show that  an  MUDC can be separated from any group 
code  in which 2d > n. Theorem 3 then establishes a 
connection between the maximal codes in  the region 2d > 
n and  the maximal codes on  the line 2d = n. In  fact, it 
shows that one  can be obtained from  the  other by either 
separating or concatenating an  appropriate  MUDC.  In 
Theorem 4, we prove an auxiliary result regarding maximal 
codes on  the line 2d = n, which is used in Theorem 5 
where we uncover the  strong dependance of B(2d, d) 
on  the binary structure of the number d. The main result 
of the paper is Theorem 6, where we combine the results 
of Theorems 3 and 5 and develop an algorithm for  ob- 
taining B(n, d )  for all  pairs of n and d such that 2d > n. 
The modular  representation of any maximal code in  the 
region 2d 2 n is obtained explicitly in terms of certain 
binary coefficients and constants  related to n and d. We 
show that  in  the case of group codes the Plotkin  upper 
limit is not met in  an infinite number of cases. As a 
result,  Theorem 7 furnishes a new upper bound  on B(n, d) 
in  the region 2d < n, which is, in general, stronger than 
Plotkin’s result, Eq. (8). 

3. Maximal codes in the region 2d 2 n 
A maximum uniform distance code (MUDC) is defined 
as a code M(n, d; g) in which g = 2d/(2d - n). The 
basic property of the  MUDC is that  the distance between 
any two of its  code words is equal  to its minimum distance. 
In  the case of maximal group codes in  the region 2d 2 
n, MUDC’s play an  important role. In  the following 
theorem we construct all group MUDC’s. 

Theorem I : Given n and d such that 2d > n and d/(2d - 
n) is a positive integral power of 2, then 

2d 
2d - n 

B(n, d)  = 2k = -. 

Proof: Let  t = 2d - n, where t is a positive integer. 
Then, 

2d = t(2’)), and 

n = r(2k - 1). 

From Eq. (10) we have 

B(2k - 1, 2k-1) = 2k.  

It is easily recognized that a t-fold concatenation of the 
code M(2k - 1, 2k”; 2 k )  gives us a code M(n, d; 2k); 
see Eq. (14). This, in conjunction with Eq. (7), implies 
that 

B(n ,  d )  = 2k = -- 
2d 

2d - n 

Note  that all the codes of Theorem  1 are MUDC’s. 
In view  of Eq. (7) it is clear that these are  the only MUDC’s 
in  the case of group codes. 

M a ~ D o n a l d ~ ’ ~  has shown that  the modular represen- 
tation of the maximal code M(2’ - 1, 2k”; 2k)  [see 
Eq. (lo)] is 

N = [l,  1, . . .  , 11. 

That is, the code matrix M contains one  and only one 
column of each type. In Theorem  1, we showed that  an 
MUDC with 2d - n = t > 0 is a t-fold concatenation 
of the code M(2k - 1, 2k-1 ;  2k). Consequently, its code 
matrix contains exactly t columns of each type. Using 
the results of Theorem 2, which follows, we can deduce 
that this is also a necessary condition for the code matrix 
of an  MUDC.  In  the  MUDC  the distance between any 
two of its code words is equal to  the code’s minimum 
distance. This implies that  the weight of any non-4 code 
word in  an  MUDC is equal to d. Note  that  in a k-dimen- 
sional t-fold MUDC 

n = t(2k - l),  and 

d = t(2k”). 

(1 5 )  

It is interesting to note that  the Maximum  Length 
Shift Register Codes’ are MUDC’s and  that all MUDC’s 
can be constructed to be cyclic  by concatenation of the 
Maximum Length Shift Register Codes. 

In  the following theorem we prove that every group 
code with 2d > n contains an  MUDC. 

Theorem 2:  In a group code if 2d - n = t > 0, then 
the code  contains  a t-fold MUDC;  that is, the generator 
matrix  contains at least t columns of each type. 

Proof: The modular  representation of a k-dimensional 
code is the vector 

N = [ q ,  n2, * .  . , n 2 k - J  

in which ni is the number of columns of type i. We show 
that when 2d - n = t > 0, ni is greater than or equal 
to t for all i. This is done by using the relationship between 
the modular  representation vector and the weight vector 
of the code. 

One  can obtain  the weight vector of the code from 
Eq. (4) using matrix C of Eq. (3). 

W NC = [wl, w Z ,  . . . , ~ 2 k - 1 1 ,  (1 6 )  

in which wi is the weight of the ith code word. In a group 
code the constraint of minimum distance requires that 
wi 2 d for all i. Let 

wi = d+  X,, i =  1, 2, . . .  ) 2k - 1. (17) 

Then  the xi’s are nonnegative integers. Another  con- 
straint  on  the values of xi comes from  the fact that  the 
sum of all wi7s is equal to  the  total number of ONES in 
a code matrix, which is equal to r ~ 2 ~ ” .  Hence, 
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which can be rewritten as 

x i  = d - t(2k"). 
2 k - 1  

i - 1  

Now, substituting for the wi's in Eq. (16) and then 
postmultiplying both sides by C-l ,  we get the modular 
representation vector 

N = [d + X I ,  d + x ~ ,  * * . , d + x ~ ~ - J [ C " ] .  (19) 

Substituting for C" from Eq. (5) and denoting the matrix 
[2C - J] by D ,  one  can rewrite Eq. (19) as 

1 N = ~ [d  + X I ,  d + x2,  * , d + x ~ E - ~ ] [ D ] .   ( 2 0 )  

From the properties of C it is clear that D is a sym- 
metric matrix with all its elements either +ONE or -ONE 

and  that D has exactly (2k") +ONES and (2k-1 - 1) 
-ONES in each column. Let hi; denote the element in 
the jth row and ith column of D .  Then, in view  of the 
properties of D ,  one  can deduce from  Eq. (20) that the 
ith element of vector N is 

2k-1  

Using Eq. (18), one can rewrite this  as 

2 k - 1  

ni  = t + (1 + h i i ) x i ;  2k-' i - 1  

Since xi  is nonnegative and hii is either +ONE or -ONE 

for all i and j ,  it is clear that all the terms in the summa- 
tion  in  Eq. (22) are nonnegative. Thus, n, > t, which 
completes the proof. 

Theorem 2 shows that  an  MUDC can always be 
separated  from a group code in which 2d > n. In Theorem 
3, this fact is used to relate maximal codes in  the region 
2d > n, with the maximal codes on  the line 2d = n. 

Theorem 3: Given n and d such that 2d - n = t > 0, 
then for any positive integer k, 

B(n, d )  2 2k if and  only if B ( d ,  5) 2 2k,  

where 

n' = 2d - t2k. 

Proof: Suppose B(n, d) 2 2k.  Then  there exists a group 
code M(n, d; 2k). Since 2d - n = t > 0, Theorem 2 
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implies that  the code matrix M can be separated into 
two parts X and Y, where X consists of t columns of 
each type and Y consists of the remaining columns in 
M. Clearly, X is a k-dimensional t-fold MUDC. Con- 
sequently, the distance between any two code words in 
X is equal to t(2k"). Since the minimum distance in M 
is d, it is clear that  the distance between any two rows in 
Y is at least d - t(2k-1). This means that 2k rows in Y 
are distinct and  the minimum distance in Y is d - t(2k-1). 
The length of rows in X is equal to t(2k - 1). The length 
of rows in Y is the difference n - t(2' - l), which is 
2d - t(2k). Thus, Y is the  group code Y(n', n'/2;  2k). 
This proves that B(n', n'/2) > 2k. 

In order to prove the converse, suppose B(n', n'/2) 2 
2k. Then there exists a group code Y(n', n'/2;  2k). We 
can  obtain  a  group code M(n, d; 2k)  by concatenating Y 
to a k-dimensional t-fold MUDC. This implies that B(n, d) 
> 2k, which completes the  proof. 

Corollary 3-1: Given n and d such that 2d - n = t > 0, 
then 

B(n, d) = B ( n f ,  5) , 
where n' = 2d - tB(n, d). 
The proof follows directly from Theorem 3. 

Corollary 3-1 establishes a connection between maximal 
codes in  the region 2d > n and  the maximal codes on 
the line 2d = n. In fact, one may be obtained from another 
by either separating or concatenating an appropriate 
MUDC. 

Some known maximal codes on  the line 2d = n are 
the codes M(2k - 2", 2k" - 2"-l; 2k)  given  by Mac- 
Donald' [see Eq. (ll)]. These codes can be constructed 
by taking  one column of each type j such that j > 2". 
Thus the  modular representation vector of these codes is 
given by the vector 

N = [O,O,  ... , O ,  1 ,   1 ,  . . .  , 11 (23) 

composed of (2" - 1) ZEROS followed by (2k - 2") ONES. 

In the following two theorems we deal with B(n, d) 
on  the line 2d = n and show that all maximal codes are 
substantially related to the codes M(2k - 2",  2k" - 
2"-l;  2k) and  the  MUDC's, which we call the parent codes. 

Theorem 4 :  If n is a positive integer divisible by 4, 
then 

Proof: Suppose B(n, n/2) = 2k and M is the code 
matrix for  the corresponding code M(n,  n/2;  2k). Let Dm 
be a row in M with weight equal to n/2. There is at 
least one such row in M since the minimum distance is 437 
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n/2. Clearly, Pm consists of n/2  ONES and n/2 ZEROS. 

Rearrange the columns of the matrix M so that  the first 
n/2  columns have a ZERO in the place corresponding to 
the row pm. The new matrix, denoted by M,, is  a code 
M,(n, n/2;  2k). Let w, be the row in M, corresponding 
to  the row ,Bm in M. Select k rows, one of which is om, 
from M, to  form  an independent set G .  This is possible 
because M, is a k-dimensional code. Let M, be the code 
generated by the k - 1 rows of G ,  other than 0,. Clearly, 
M, is a subspace of M,, and, hence, it is a code M,(n, n/2;  
2“”). Partition the matrix M, into two parts X and Y, 
where X consists of first n / 2  columns of M, and Y con- 
sists of the remaining n/2  columns of M,. We show next 
that X has minimum distance of at least n/4 .  

If a$, i = 1 ,  2 ,  .. . , 2k - 1 ,  is a  non-4 row in M,, 
then ai 0 w, is a non-4  row in M,. Since the minimum 
distance in M, and M, is n/2 ,  we have 

Denote  the  partitions of ai in X and Y by CY: and a;’, 
respectively. Similar partitions of w, are denoted by w; 
and WE. Then, 

Since, by construction, w; is a sequence of all ZEROS 

and WE is a sequence of all ONES, we have 

From Eqs. (24) through (29) it can be shown that 

n 
4 ’  1.111 2. - i = 1, 2 ,  . . .  , 2k - I .  

This implies that X represents a code X(n/2, d,; 2k”1) in 
which 

d, 2. 
4 

Then from Eq. (12) we obtain 

Now we  give the converse in order to complete the 
proof of the theorem. Suppose B(n/2, n/4) = 2k. Let G 
be the generator matrix of the group code M(n/2,   n/4;  2k).  
Let G ,  be the matrix obtained by concatenating each 

row of G to itself. Clearly, the code M1 generated by 
G ,  is Ml(n, n/2;  2k) .  Let G,  be the matrix obtained by 
adding a row of n/2 ZEROS and n/2  ONES to the matrix 
G,.  Obviously the k + 1 rows of G, form  an independent 
set. Let M, be the code generated by G,. Then M1 is a 
subspace of M,. We show next that  the minimum dis- 
tance in M, is equal to n/2. 

If w is any n o n 4  row in M,, then either it is in MI,  
and is thus  a concatenation of some non+ row a in M 
to itself, or it is a concatenation of some non-4 row p 
in M to p 0 9, where !& is a sequence of n/2  ONES. We 
observe that  in one case 

and in the  other case 

I W I  = IP, PO91 = 1 / 3 1  + ; - IPI = ; 
This implies that M, is a code M2(n, n/2; 2ki  I). That is, 

This completes the proof of the theorem. 

Theorem 5 :  If n is a positive integer divisible by 4 ,  and 
k is any positive integer, n may  be  expressed as 

where x is a positive integer dependent on k and a,  = 0 
or 1 for all m. Then, 

k - 1  

2. 2k if andonly if x 2. E a,. 
m = L  

Proof: Suppose 
k - 1  

m=2 

Let 
k - 1  

t = x - E a , ;  
m=2 

t is a nonnegative integer. Then n can be partitioned 
as nl f n2, where 

n, = t P ,  

n 2  = a,(2k - 2“). 
k - 1  

m = 2  

From Eq. (13) and Theorem 1 ,  it is clear that 
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Also, by applying Eq. (14) repeatedly to Eq. (ll), we 
obtain 

Applying Eq. (14) once again, we obtain 

We prove the remaining part of the theorem by proving 
the contrapositive. That is, we show that if 

then a known result is contradicted. We assume that 
k > 2 ,  since the other cases are  not applicable here. 
For the proof we need the following two lemmas. 

Lemnzu I :  If n < 2"", then B(n, n/2) < 2k 

Proof: If n < 2'-', from Eq. (7) it is clear that 

Then  from Eq. (6) we get 

Lemma 2 :  Given 

111 = 2 \ L/ 

Proof: If uk-l  = 1, clearly n < 2k-1 and Lemma 1 
completes the  proof. In general, say 

ak-,  = a,c-2 = .. . = ah-i = 0 and ajo-i-l = 1. 

Then 

IC-i-1 k - i - 1  k - 1  

n = 2 k -  a,n2m and a, = a ,  > 1. 
m = 2  m=2 n = 2  

Suppose B(n, n/2) 2 2k; then, applying Eq. (6), one 
obtains 

Note  that Theorem 3 may be applied. Separating an 
MUDC, we get 

where 
k - i - 1  

1 7 ,  = / I  - 2"" z p-1 - um2"6. 
m - 2  

Repeating the above  procedure an  appropriate number 
of times, we can deduce that 

where 
k - i - 1  

I 7 2  = 2 k - '  - ~ ~ 2 ' ~ .  
",1 = 2 

Since 
k - , - 1  

a m - i - l  = 1 and a, > 1 ,  

we have n, < 2k-i". This contradicts the result of Lemma 
1. 

,=2 

Proof of Theorem 5 (cont.): In  the case where 
I _ _  1 

x < 2 a,, 
m=2 

suppose B(n, n /2 )  2 2k. If x = 1, Lemma 2 is contradicted. 
Suppose x > 1. In general, if a ,  = 0 for m = 2 ,  3, . . . , j 
and aj  = 1 ,  then applying Theorem 4 j times, we obtain 

where 

Note  that 
k - 1  

u, = a, > x. 
12-1 

m = 1  I 1  "11 = 2 

Since = 1, it is clear that n 1 / 2  is an  odd integer. 
Hence, using Eq. (9) we deduce that 

Note  that 2(n, /2  + 1) - (n, + 1) = 1. Hence, according 
to Theorem 3, we can separate an  MUDC  and  obtain 

where 439 
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k - 1  

am2m-i + 2.  
m = i + l  

Substituting x1 for x - 1, kl for k - j and a: for a,,,+ 
and rearranging the expression, we can rewrite n2 as 

n2 = ~ ~ 2 ~ '  - a ~ 2 " .  

It can be  verified that 

rg a:] - x 1  = [ am] - x .  

By repeating the above procedure an appropriate number 
of  times we can show that 

k r - 1  

m - 2  

m-2 m - 2  

B(n,, F) 2 2k', 

where 

and k2 and a: are the numbers obtained in the process 
such that 

rg a;] - 1 = [E am] - x > 0. 
m = 2  

But this contradicts Lemma 2, which  completes the proof 
of the theorem. 

Corollary 5-1: If n is an even integer and k is any 
positive integer, n may  be  expressed as 

n = ~2~ - am2m, 

where x is a positive integer dependent on k and a, = 0 
or 1 for all m. Then 

k - 1  

m=l 

2 2k if and  only if x 2 am.  
k - 1  

m=l 

Proof: Note that 2n is  divisible by 4 and 
k-1  

2n = X2k+1 - am2m+2. 
m-1 

According to Theorems 4 and 5, 

B n ,  - = 3B(2n, n )  2 2k ( 3 
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if and  only if x 2 a,. 
k -1  

m=l 

In the following theorem we extend the results of 
Corollary 5-1 to the entire region 2d 2 n by using the 
relation obtained in Theorem 3 between  maximal  codes 
in the region 2d > n and maximal  codes on the line 
2d = n. 

Theorem 6: Given n and d such that 2d - n = t > 0, 
for any  positive integer k ,  2d can be  expressed as 

2d = ~2~ - am2", 

where x is a positive integer dependent on k and a, = 0 
or 1 for all m. Then 

k - 1  

m=l 

B(n,  d) 2 2k if and  only if x 2 t + a,. 
k - 1  

m = l  

Proof: The case t = 0 is proved in Theorem 5. We 
assume here that t > 0. Suppose 

x >  t +  Cam. 
Let 

n, = 2d1 = (x  - t)2k - ~ , , , 2 ~ .  

Then, applying Corollary 5-1, we obtain 

B(nl,  dl) 2 2k. 

Let 

n2 = t(2k - 1) and 2d, = t2& . 
Then, according to Theorem 1, 

B(n2,  d2) = 2k. 

Note that nl + n2 = n and dl + d2 = d. Thus, applying 
Eq. (14) we obtain 

B(n, d) 2 2k. 

k-1  

m=l 

k - 1  

m=l 

In order to prove the converse, suppose B(n, d) 2 2k. 
Since 2d - n = t > 0,  Theorem 3 implies that 

B(n l ,  T) 2 2k,  

where 

k - 1  

nl = 2d - t2k = ( x  - t)2k - am2'". 
m=l 

Then Corollary 5-1 implies that 

( x  - t> 2 C a,. 

This completes the proof. 

k - 1  

m=l 
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4. An algorithm for constructing  maximal  codes 
I 

~ Theorem 6 suggests the following algorithm to  obtain 
I B(n, d) for given n and d in the region 2d 2 n: 

Given n and  d, 2d - n = t 2 0,2d  may be expressed as 

2d = xi2' - a,2"', j = 1,  2, - * , (30) 

where xi is a positive integer dependent on j and a, = 
0 or 1 for all m. If 

i-1 

m = l  

I then xi and yi may be obtained from  the iterative formulas 

if xi is even 
X i + l  = (32) 

I 

l Y i + l  = ei (33) 

x i  + if xi is odd,  and 

if xi is even 

1 y i  + 1 if xi is odd, 
i 

where x, = d and y ,  = 0. 
Note  that in all codes n is greater than  or equal to d. 

Hence d 2 2d - n = t ;  that is, x 1  2 y ,  + t .  Moreover, 
xi  is a strictly decreasing function of j and y i  is a non- 
decreasing function of j .  Therefore, it is clear that there 
exists a unique positive integer k that satisfies the in- 
equalities 

x k  2 Y k  + t and xk+i  < Y k + l  + t .  (34) 

Then, Theorem 6 implies that 

B(n, d> = zk. (35) 

Example I: Suppose n = 762 and d = 386. Then 
2d - n = t = 10. We tabulate xi and yi + t; 

j 1 2 3 4 5 6  

xi 386 193 97 49 25 13 
Y i  + t 10 10 11 12 13 14 

Thus, j = 5 is the largest value of j for which xi 2 yi + t .  
This implies that B(762,  386) = 25. 

The algorithm  can  also be used to find minimum n for 
given d and k = j such that xi 2 yi. In this case one finds 
ti = xi - y i  from d and k = j .  Then  the minimum n 
for a 2k-word group code with minimum distance d is 
equal to nmin = 2d - ti. With specified d = 386 we 
find nmin for each k = j as follows: 

k =  j 1 2 3 4 5 6 7 8  

X i  386 193 97  49 25 13 7  4 
Y i  0 0 1 2 3 4 5 6  
ti 386 193 96  47 22 9  2 - 
&in 386  579  676  725  750  763  770 - 

Now we are in a position to give the  modular repre- 
sentations of the maximal codes in  the region 2d 2 n. 
The reader may note  that  the  modular representation of 
a code is, in general, not unique, since permutations of 
rows in a generator  matrix give rise to a different modular 
representation for  the same code. Using Eqs. (30) to (35) 
of the algorithm and denoting (xk - yk) by tk ,  we may 
express n and d as 

2d = tk(2k) f ~ ~ ( 2 ~  - 2") and 
k - 1  

(36) 
m = 1  

12 = tk(2k - 1) + a,(2k - 2") + ( t k  - t ) .  (37) 
k - I  

Wl-1 

Note  that (fk - t )  is a positive integer. If n' denotes 
n - (tk - t ) ,  then 

k - 1  

n' = tk(2k - 1) + ~ ~ ( 2 ~  - 2") and 
m = l  (38) 

It is easy to recognize from Eqs. (36) and (38) that  the 
code M(n', d; 2k) can  be  obtained  by  concatenating the 
parent codes given by the  modular representations of 
Eqs. (15) and (23). Thus  the modular  representation of 
the code M(n', d; 2k) is given by the vector 

N = [nl, n2,  n3, . . . , n z k - l l  , 
where n, may be given  by 

n1 t k  

n, = n3 = tk + a1 
n4 = n5 = n6 = n7 = tk + a, + a, 

ns = n, * * ' = n15 = tk + a1 + a2 + a3 

m = a  

The code M'(n, d; 2k) may be  obtained from M(n', d; 2k) 
trivially by adding ( tk  - t )  columns of all ZEROS. It can 441 
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easily be shown that adding  any  number of columns of 
even type, say type 2, to any of the parent codes does 
not increase the minimum distance. In fact, if d is even, 
adding  any  number of columns of any one type does not 
increase the minimum distance of the parent codes. So 
if columns of all ZEROS must be avoided, they may be 
replaced by columns of any even type. 

We pointed out previously that  in case of n = 19, 
d = 10 the  Plotkin limit Eq. (7) is not met. Using the 
algorithm and  the Plotkin  limit,  one can easily verify 
that 

B(19, 10) = 8 

A(19, 10) = 20. 

Here we show that indeed there exists an infinite number 
of pairs (n, d), even when d is even, for which B(n, d )  
does not meet the Plotkin  upper limit. Consider the 
following example: Let 

n- 1 

2d = 2’ + 4 = 2(2’) - ~ , 2 ~ ,  
m = 2  

where a, = 1 for m = 2, 3 ,  . , p - 1 and n = 2” + 3 .  
Then t = 1, x, = 2 and y,  = p - 2. 

Clearly, B(n, d )  < 2” for all p > 3 ,  whereas according 
to Eq. (7) the  Plotkin upper limit is 2’. In  the following 
theorem we obtain a new bound  on B(n, d)  in  the region 
2d < n, which is, in general, stronger than Plotkin’s 
extended bound, Eq. (8). 

Theorem 7: Given n and d such that n > 2d. For any 
positive integer j ,  2d may be expressed as 

j - 1  

2d = xj2’ - 1 2 ~ 2 ~ ,  
m = l  

where xi is a positive integer dependent on j and a, = 
0 or 1 for all m. If k is the largest value of . j  such that 

x k  2 a,, 

then B(n, d) is bounded  above by 

B(n, d )  5 2k+“-2d. 

k-1 

m = l  

Proof: B(2d, d) = 2h by the  algorithm of Theorem 6.  
Applying Eq. ( 1 )  n - 2d times, we obtain 

B(n, d )  5 2k+n-2d.  

To illustrate the  bound of Theorem 7, consider B(n, d) 
for d = 66. According to Plotkin’s extended bound, 
Eq. (81, 

B(n, d )  5 256(2n-2d). 

Table 1 Dependence of A (2d, d )  and B(2d, d )  on binary 
value of d. 

d A(2d, d) B(2d, d) 

32 128 128 
33 68 16 
34  136 32 
35 12 32 
36 144 32 
31 16 32 
38 152 32 
39 80 32 
40 160 64 
41  84 32 
42  168 32 
43 88 32 
44  116 64 
45 92 32 
46 184 64 
41 96 64 
48 192 128 

-1- 
49  100 32 
50 200 32 
51 104 32 
52  208 64 
53 108 32 
54  216 64 
55 112 64 
56  224 128 
51 116 32 
58 232 64 
59 120 64 
60 240 128 
61 124 64 
62  248 128 
63  128 128 
64  256 256 

However, 2d = 5(32) - 16 - 8 - 4 and B(24 d )  = 32. 
Hence,  Theorem 7 gives a closer bound 

B(n, d )  5 32(2”-’”). 

5. Conclusions 
The main  contribution of this  paper is that  the problem 
of obtaining maximal group codes in  the region 2d 2 n 
is completely solved. Furthermore,  a  strengthened bound 
is obtained for B(n, d )  in  the region 2d < n. However, 
the  strong dependence of the value of B(2d, d), and hence 
of B(n, d )  on  the binary  structure of the number d should 
not  go unnoticed. To illustrate the effect  of this, we  give 
the values of A(2d, d) and B(2d, d) for 25 5 d 5 2G in 
Table 1. 

As  shown in Theorems 3 and 7, B(n, d )  substantially 
depends on B(2d, d). Hence, if one  has a choice, d should 
be chosen to have the simplest binary  structure possible; 
that is, to have  a minimal number of terms in y ,  of Eq. (33 ) .  
The simple binary  structure for d means the B(n, d) is 
large and hence the resulting code yields a relatively high 
rate of transmission of information. 
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