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Maximal Group Codes with Specified Minimum Distance*

Abstract: All n-digit maximal block codes with a specified minimum distance d such that 24 > n can be constructed {from the Hada-
mard matrices. These codes meet the Plotkin bound. In this paper we construct all maximal group codes in the region 2d > n, where
d is a specified minimum distance and # is the number of digits per code word. Unlike the case of block codes, the Plotkin upper limit,
in general, fails to determine the number of code words B(x, d) in a maximal group code in the region 2d > »n. We show that the value
of B(n, d) largely depends on the binary structure of the number d. An alogrithm is developed that determines B(n, d), the maximum
number of code words for given d and n < 2d. The maximal code is, then, given by its modular representation, explicitly in terms of
certain binary coefficients and constants related to n and d. As a side result, we obtain a new upper bound on the number of code
words in the region 2d < » which is, in general, stronger than Plotkin’s extended bound.

1. Introduction
All maximal block codes in the region 2d > n can be
constructed from Hadamard matrices.’ It has been shown
that these codes meet the Plotkin® upper limit. In the
present paper, we consider maximal group codes in the
region 2d > n.

The set C, of all n-digit sequences in zEro and ONE is
an Abelian group. The group operation (P between its
elements « and B is defined as

a@® B = [a(l) +; B(1), (2) +5 BQ), - -, a(n) +2 B®)],

where +, denotes addition modulo 2. The unity element
of C, is

¢= [0,09 30]-

If M is a subgroup of C,, M forms a group code that
possesses the group property that ¢ is a code word in
M and, if w; and w; are code words in M, then w; P w;
is also a code word in M. It is easy to show that the num-
ber of code words in a binary group code is equal to
2*, where k is a positive integer.t If d is the minimum
Hamming distance® between the code words, the group
code M may be denoted by M(n, d; 2°).

Let B(n, d) denote the number of code words in a
maximal z-digit group code with minimum distance d.
Since group codes are a subclass of block codes, it is
clear that

B(n, d) < 2" < A(n, d) < 2", 1)
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where A(n, d) denotes the number of code words in the
corresponding maximal block code.
One might be tempted to conjecture* that

B(n,d) = 2 < A(n, d) < 2¥*1.

This would be false, in general, because it can be shown
by exhaustive search that a 16-word group code does
not exist for n = 19 and d = 10 in spite of the fact that
A(n, dy = 20. Indeed, there exists no general method of
obtaining maximal group codes from the corresponding
maximal block codes, or vice versa. The Hamming® codes,
Golay codes,® MacDonald codes® and Solomon-Stiffler
codes’ (which are a generalization of the MacDonald
codes) are examples of maximal group codes. The attain-
ment of maximal group codes satisfying 2d > n has been
studied before, most notably by Griesmer.® He gave a
bound on the minimum value of #n, given k& and d, while
the present paper considers the maximum k, given »n and
d. The new results provide necessary and sufficient con-
ditions, whereas the Griesmer Bound is a necessary con-
dition. In the present paper we construct @// the maximal
group codes in the region 2d > n, and provide a new bound
for maximal codes in the region 2d < n. In the process,
we show that B(n, d) is strongly related to the binary
structure of the number d.

2. Preliminaries

Here, we introduce some notation and pertinent theory
regarding group codes. It can be easily verified that the
group set C, of all n-digit sequences in zZErRoO and ONE
forms an n-dimensional vector space over the field GF(2),
and a group code M is a k-dimensional subspace of C,.
Any set of basis vectors for the subspace M can be con-
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sidered as rows of a matrix G, called the generator of
M. Clearly, the number of rows in G must be k. Hence,
the columns of G are elements of the set of k-tuples in
zerO and oNEe. The column of all zERos may be ruled
out as useless since it does not contribute to the distance
between code words. Thus, there are 2* — 1 different
types of columns possible. If rearrangement of columns
is unimportant, a group code can be specified by a list
of the number of columns of each type in the generator
matrix G. This is known as the modular representation®
of the group code.

In a group code, because of its group property, the
distance between any two code words is the weight of
some non-¢ code word, and vice versa. A list of weights
of the non-¢ code words, called the weight vector, com-
pletely specifies the distance properties of the group code.
The minimum distance of a group code is the minimum
of the nonzero weights of its code words.

The weight vector and the modular representation of
a group code are related to each other by a simple matrix
equation.>® The results concerning this relationship are
stated below.

Let G, be a k X (2* — 1) matrix in which the jth
column is a binary k-tuple that represents the binary
number j, j = 1,2, - -+, 2° — 1. Then G, has one column
of each type other than the column of all zeros. The
Jjth column of G, can be considered as the column of
type j. The modular representation of a k-dimensional
group code is, then, a vector

N =[n,n, -, nn_]

in which #; is the number of columns of type i. If G is
the generator matrix of a group code, then it is clear
that the 2* — 1) X » matrix

B = GIG, @

where T signifies the transpose of a matrix, has as rows
all possible non-¢ linear combinations of rows of G, and
thus has all non-¢ code words as rows. Similarly, the
matrix

C = G3G, 3

has as rows all non-¢ code words of the code generated
by Go. It is clear that the matrix C is symmetric and con-
tains exactly one column of each type that may appear in
a k-dimensional group code matrix. If W is the vector
resulting from multiplying, as matrices of real numbers,
the modular representation vector of a group code by
the matrix C, then the 2* — 1 components of the vector
W represent the weights of the 2 — 1 non-¢ code words.

W = NC. 4

It can be shown® that each column of the matrix C
has (2°™") ones and (2" — 1) zEros and that the inverse
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of the matrix C exists and is given by

o =221, )
2
where J denotes a matrix of all oNEs.

Any column in a group code matrix, with the row ¢
deleted, must be identical to one of the columns of the
matrix C. Therefore, all columns in a group code matrix
have (2*~') onEs and the total number of ONEs in a group
code matrix is equal to n(2*"").

The above material on the structure of group codes is
needed in the proofs of the various theorems in this paper.
The following material is a review of some known™**
results concerning B(n, d) that are used later in the paper.

Let m and u be positive integers such that u < m.
Then,

B(n,d) < 2B(n — 1, d); (6)
m 2d m+1
Bn,d)y < 2" < — < 2m, 2 >0, (T)
2d — n
B, d) < 2" < 442" < 27, 2d < n; (8)
B(n,2m) = B(n — 1,2m — 1); ©)
BQ" — 1,27 = 2" (10)
B@™ — 2%, 2"t — 2y = 27, an

The results given by Egs. (6), (7) and (8) are derived from
Plotkin’s paper,” the result given by Eg. (9) is due to
Hamming® and the results given by Egs. (10) and (11)
are due to MacDonald.® In addition, we make the fol-
lowing assertions:

B(n, d) Z B(n, d + my); (12)
B(n, d) > B(n — m, d); 13)
B, + ny, di + dy)

> minimum of [B(ny, d,), B(n,, d>)]. 14)
The truth of assertion (12) is clear since a code M'(n, d; 2'°)
can be obtained from a code M(n, d + m; 2%) simply by
replacing m columns that contain a ONE in the position
corresponding to a row of nonzero minimum weight in
M, by m columns of all zeros. If columns of all zeros
must be avoided, one may use columns of the type that
contains a ZERO in the position corresponding to the row
under consideration. Assertion (13) is obvious. The gen-
erator matrix of the code M(n, + n,, d'; 2°), with &’ >
d, + d,, may be obtained by concatenating the rows of
the generator matrices of the codes M(n,, d); 2") and
M(n,, dy; 2%). This proves assertion (14).

Here we summarize the results developed in this paper.
In Theorem 1 we obtain all of the group codes in which
B(n, d) meets the Plotkin upper limit given by Eq. (7)
with an equality sign. These codes are called maximum
uniform distance codes (MUDC’s)." In Theorem 2 we
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show that an MUDC can be separated from any group
code in which 2d > n. Theorem 3 then establishes a
connection between the maximal codes in the region 2d >
n and the maximal codes on the line 2d = . In fact, it
shows that one can be obtained from the other by either
separating or concatenating an appropriate MUDC. In
Theorem 4, we prove an auxiliary result regarding maximal
codes on the line 2d = n, which is used in Theorem 5
where we uncover the strong dependance of B(2d, d)
on the binary structure of the number d. The main result
of the paper is Theorem 6, where we combine the results
of Theorems 3 and 5 and develop an algorithm for ob-
taining B(n, d) for all pairs of n and d such that 2d > n.
The modular representation of any maximal code in the
region 2d > n is obtained explicitly in terms of certain
binary coefficients and constants related to #» and d. We
show that in the case of group codes the Plotkin upper
limit is not met in an infinite number of cases. As a
result, Theorem 7 furnishes a new upper bound on B(n, d)
in the region 2d < n, which is, in general, stronger than
Plotkin’s result, Eq. (8).

3. Maximal codes in the region 2d > n

A maximum uniform distance code (MUDC) is defined
as a code M(n, d; g) in which g = 2d/(2d — n). The
basic property of the MUDC is that the distance between
any two of its code words is equal to its minimum distance.
In the case of maximal group codes in the region 2d >
n, MUDC’s play an important role. In the following
theorem we construct all group MUDC’s.

Theorem 1: Given n and d such that 2d > nand d/(2d —
n) is a positive integral power of 2, then

2d

= k=—‘ .
B(n, d) = 2" = -

Proof: Let t = 2d — n, where ¢ is a positive integer.
Then,
2d = #2"), and
n=12"— 1.
From Eq. (10) we have
B2* — 1,21 = 2~

1t is easily recognized that a r-fold concatenation of the
code M(2* — 1, 2""; 2%) gives us a code M(n, d; 2°);
see Eq. (14). This, in conjunction with Eq. (7), implies
that

2d

B(n, d) = 2" = —/——.
(n, d) M — 7

Note that all the codes of Theorem 1 are MUDC’s.
In view of Eq. (7) it is clear that these are the only MUDC’s
in the case of group codes.
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MacDonald*® has shown that the modular represen-

tation of the maximal code M(2* — 1, 27'; 2%) [see
Eq. (10)] is
N=1[1,--,1L (15)

That is, the code matrix M contains one and only one
column of each type. In Theorem 1, we showed that an
MUDC with 2d — n = ¢t > 0 is a t-fold concatenation
of the code M(2* — 1, 2*7'; 2%). Consequently, its code
matrix contains exactly ¢ columns of each type. Using
the results of Theorem 2, which follows, we can deduce
that this is also a necessary condition for the code matrix
of an MUDC. In the MUDC the distance between any
two of its code words is equal to the code’s minimum
distance. This implies that the weight of any non-¢ code
word in an MUDC is equal to d. Note that in a k-dimen-
sional ¢-fold MUDC

n= 12" — 1), and
d= 12" M.

It is interesting to note that the Maximum Length
Shift Register Codes® are MUDC’s and that all MUDC’s
can be constructed to be cyclic by concatenation of the
Maximum Length Shift Register Codes.

In the following theorem we prove that every group
code with 2d > n contains an MUDC.

Theorem 2: In a group code if 2d — n = ¢ > 0, then
the code contains a ¢-fold MUDC; that is, the generator
matrix contains at least ¢ columns of each type.

Proof: The modular representation of a k-dimensional
code is the vector

N= [nls Hyy ="y n2k—l]

in which n, is the number of columns of type i. We show
that when 2d — n = ¢ > 0, n; is greater than or equal
to 7 for all i. This is done by using the relationship between
the modular representation vector and the weight vector
of the code.

One can obtain the weight vector of the code from
Eq. (4) using matrix C of Eq. (3).

s Wzk—-l]y (1 6)

in which w; is the weight of the ith code word. In a group
code the constraint of minimum distance requires that
w; > d for all i. Let

w, = d—+ x,,

W = NC = [wy, ws, -

i=1,2,--,2"—1. an

Then the x;’s are nonnegative integers. Another con-
straint on the values of x; comes from the fact that the
sum of all w;’s is equal to the total number of ONES in
a code matrix, which is equal to n2*"'. Hence,
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1 2k—3

Sowi= @ = Dd+ X x = n@,

jm]
which can be rewritten as

Doxi=d— (2" ). (18)

Now, substituting for the w;’s in Eq. (16) and then
postmultiplying both sides by €', we get the modular
representation vector

N=[d+ x,d+ x, - ,d+ xxJ[C"] 19

Substituting for C™* from Egq. (5) and denoting the matrix
[2C — J] by D, one can rewrite Eq. (19) as

N = b, dtx, o, d+ DL Q0)

From the properties of C it is clear that D is a sym-
metric matrix with all its elements either 4~ ONE or —ONE
and that D has exactly 2*"') 4ones and "' — 1)
—ONES in each column. Let #;; denote the element in
the jth row and ith column of D. Then, in view of the
properties of D, one can deduce from Eq. (20) that the
ith element of vector N is

1 2k—1
n; = FT <d+ Z; hixi) s

i=1,2,--,2° —1. @21

Using Eq. (18), one can rewrite this as

2k—1
1

neo=t 4 o= 2 (U hixgs
i=1

i=1,2,---,2" — 1. (22)

Since x; is nonnegative and #;; is either +-ONE or —ONE
for all { and j, it is clear that all the terms in the summa-
tion in Eq. (22) are nonnegative. Thus, n;, > ¢, which
completes the proof.

Theorem 2 shows that an MUDC can always be
separated from a group code in which 2d > ». In Theorem
3, this fact is used to relate maximal codes in the region
2d > n, with the maximal codes on the line 2d = n.

Theorem 3: Given n and d such that 2d — n = t > 0,
then for any positive integer k,

’
B(n, d) > 2* if and only if B(n’, g—) > 2k,
where
n = 2d — 2"

Proof: Suppose B(n, d) > 2*. Then there exists a group
code M(n, d; 2%). Since 2d — n = t > 0, Theorem 2

JuLy 1970

implies that the code matrix M can be separated into
two parts X and Y, where X consists of ¢ columns of
each type and Y consists of the remaining columns in
M. Clearly, X is a k-dimensional t-fold MUDC. Con-
sequently, the distance between any two code words in
X is equal to 7(2*""). Since the minimum distance in M
is d, it is clear that the distance between any two rows in
Y is at least d — #(2°""). This means that 2* rows in Y
are distinct and the minimum distance in Y is d — #2*™").
The length of rows in X is equal to #(2* — 1). The length
of rows in Y is the difference n — #2° — 1), which is
2d — t(2"). Thus, Y is the group code Y(«', n'/2; 2).
This proves that B/, n'/2) > 2%

In order to prove the converse, suppose B(n’, n'/2) >
2%, Then there exists a group code Y(n', n'/2; 2%). We
can obtain a group code M(n, d; 2*) by concatenating Y
to a k-dimensional 7-fold MUDC. This implies that B(n, d)
> 2*, which completes the proof.

Corollary 3-1: Given nand dsuch that2d — n= ¢t > 0,
then

B(n, d) = B(n,, 121'_,) »

where n’ = 2d — tB(n, d).
The proof follows directly from Theorem 3.

Corollary 3-1 establishes a connection between maximal
codes in the region 2d > n and the maximal codes on
the line 2d = n. In fact, one may be obtained from another
by either separating or concatenating an appropriate
MUDC.

Some known maximal codes on the line 2d = n are
the codes M(2* — 2% 25! — 2*7'; 2%) given by Mac-
Donald® [see Eq. (11)]. These codes can be constructed
by taking one column of each type j such that j > 2"
Thus the modular representation vector of these codes is
given by the vector

N=1[00--,01,1---,1] (23)

composed of (2“ — 1) zeros followed by (2* — 2“) ONEs.

In the following two theorems we deal with B(n, d)
on the line 2d = n and show that all maximal codes are
substantially related to the codes M(2* — 2%, 2¥*' —
2*7': 2%y and the MUDC’s, which we call the parent codes.

Theorem 4: If n is a positive integer divisible by 4,
then

nony 3 n.
B<2’4> 23("’2)

Proof: Suppose B(n, n/2) = 2* and M is the code
matrix for the corresponding code M(n, n/2; 2. Let .,
be a row in M with weight equal to n/2. There is at
least one such row in M since the minimum distance is
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n/2. Clearly, 3, consists of n/2 ones and n/2 zEROS.
Rearrange the columns of the matrix M so that the first
n/2 columns have a zero in the place corresponding to
the row B,. The new matrix, denoted by M,, is a code
My(n, n/2; 2). Let w,, be the row in M, corresponding
to the row 8, in M. Select k& rows, one of which is w,,,
from M, to form an independent set G. This is possible
because M, is a k-dimensional code. Let M, be the code
generated by the £ — 1 rows of G, other than w,,. Clearly,
M, is a subspace of M,,, and, hence, it is a code M,(n, n/2;
2*7Y). Partition the matrix M, into two parts X and Y,
where X consists of first n/2 columns of M, and Y con-
sists of the remaining n/2 columns of M,. We show next
that X has minimum distance of at least n/4.

Ifa,i=1,2 +---,2 —1,isa non-¢ row in M,,
then o; @ w,, is a non-¢ row in M,,. Since the minimum
distance in M, and M, is n/2, we have

‘ai( 2

and (24)

oIS

i @ wnl > g (25)

Denote the partitions of «; in X and Y by «} and o/,
respectively. Similar partitions of w,, are denoted by w,
and w!/. Then,

lei] = lof| 4 |af’] and (26)
o @ wa| = ot D ol + lai P wl]. (27)

Since, by construction, w/ is a sequence of all zEros
and w!/ is a sequence of all ONEs, we have

let D wl] = o], (28)
o P | = g —_—ay (29)

From Egs. (24) through (29) it can be shown that

|a;|2%, i=1,2,--,2" —1.

This implies that X represents a code X(n/2, d,; 2°”") in
which

n
> .
dl pa 4

Then from Eq. (12) we obtain

n on n b1 n
L I I > =1 ny.
B<2’4>~B<2’d’>—2 2B(”’z)

Now we give the converse in order to complete the

proof of the theorem. Suppose B(n/2, n/4) = 2°. Let G

be the generator matrix of the group code M(n/2, n/4; 2.

438 Let G, be the matrix obtained by concatenating each
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row of G to itself. Clearly, the code M, generated by
G, is My(n, n/2; 2). Let G, be the matrix obtained by
adding a row of n/2 zeros and n/2 oNes to the matrix
G,. Obviously the £ + 1 rows of G, form an independent
set. Let M, be the code generated by G,. Then M, is a
subspace of M,. We show next that the minimum dis-
tance in M, is equal to n/2.

If w is any non-¢ row in M,, then either it is in M;,
and is thus a concatenation of some non-¢ row « in M
to itself, or it is a concatenation of some non-¢ row
in M to 8P ¥, where ¥ is a sequence of n/2 oNEs. We
observe that in one case

o] = la, @] = laf + |a| 2 3

and in the other case

o] = 18, 8D Y| = 18] + 5 — 18] =

o M

This implies that M, is a code My(n, n/2; 2°'"). That is,

n k+1 h n
=] > = = =}
B(”’ 2) 2 2 2B<2 ’ 4)
This completes the proof of the theorem.

Theorem 5: If n is a positive integer divisible by 4, and
k is any positive integer, n may be expressed as

where x is a positive integer dependent on k£ and a,, = 0
or 1 for all m. Then,

k—1
B<n, g) > 2* ifand only if x > Z a.,.

Proof: Suppose

Let

k-1
t=x— 2 G
m=2

¢t is a nonnegative integer. Then n can be partitioned
as n, + h,, where

n, = t2’°,
k—1

ny, = Z a,(2" — 27).
m=2

From Eq. (13) and Theorem 1, it is clear that

B(nl,%> > B(nl -1, %) = 2",
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Also, by applying Eq. (14) repeatedly to Eq. (11), we
obtain

o &
0y ) = 2",
B("' 2) =

Applying Eq. (14) once again, we obtain

B(n, g) >  minimum of B<nl, z—1> and

B<n2, %> > 2",

We prove the remaining part of the theorem by proving
the contrapositive. That is, we show that if

k—1
B(n,%) > 2" when x < Z (7

then a known result is contradicted. We assume that
k > 2, since the other cases are not applicable here.
For the proof we need the following two lemmas.

Lemma I1: If n < 2°7', then B(n, n/2) < 2.

Proof: If n < 277, from Eq. (7) it is clear that
B<n — 1,%) < <2

Then from Eq. (6) we get

n n

i < . V) Ic.
B(n, 2) 2B<n 1, 5 < 2

Lemma 2: Given

k—1
n=2"— a,2"
m=2
If
k—1
n &
a, > 1, then B(n, ‘> < 27,
me2 2
Proof: W a,_, = 1, clearly n < 2°! and Lemma 1
completes the proof. In general, say
Ay = Ay = -+ = a;_; = 0 and a;,;, = 1.
Then
k~ji—1 kE—i—1 k-1
n=2"— Z a,2” and Z a, = Zam> 1.
m=2 m=2 m=2

Suppose B(n, n/2) > 2" then, applying Eq. (6), one
obtains

n
B(" - 1’2)

v

(M1

Xy
PN
=~

vV

N

T
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Note that Theorem 3 may be applied. Separating an
MUDC, we get

B<”1» 121_1> Z zkﬂ,

where
k-1 k—~1
n o= n—2 = 2" — Z a,2”.

Repeating the above procedure an appropriate number
of times, we can deduce that

B</12, &> > 2F

2
where
k—7-1
k-
n, =271 — > g,2m.
m=2
Since
E-i—1
a4, ;1 =1 and Z a, > 1,
m=2

we have n, < 2777, This contradicts the resuit of Lemma
1.

Proof of Theorem 5 (cont.): In the case where
k-1

x < Z Ao s
m=2

suppose B(n, n/2) > 2" If x = 1, Lemma 2 is contradicted.
Suppose x > 1. In general, ifq,, = Oform = 2,3, --- , j
and a;,, = 1, then applying Theorem 4 j times, we obtain

B<I11, ﬂ) > ¢

2
where
I s
i .
=7 =x2"7 — > @27
2 m=741
Note that
k—1 k—1
Z a, = Z am > X.
m=7+1 m=2

Since a;,, = 1, it is clear that n,/2 is an odd integer.
Hence, using Eq. (9) we deduce that

? —;
B(m + 1,%‘ + 1> = B(nl,;~'> > 2k

Note that 2(n,/2 4+ 1) — (n, + 1) = 1. Hence, according

to Theorem 3, we can separate an MUDC and obtain

B(”z» %) Z 2k4j’

where
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ny = 2(% + 1) — 2+

k—1

(x— 12" — > g,2" + 2.

m=7+1

Il

Substituting x, for x — 1, k, for k — j and a/ for a,,_;
and rearranging the expression, we can rewrite n, as

ki—1
k
n, = x2° — Z al,2™,

m=2

It can be verified that

(5 o] o [$e] -

By repeating the above procedure an appropriate number
of times we can show that

ng k
28 5 ks
B(n:;, 2 > =~ 2 N

where
ka—1
k
ng = 270 — Za,’,,’2"'
m=2

and k, and 4// are the numbers obtained in the process
such that

ka—1 k—1
[Za’,,’,] - 1= [Zam] — x> 0.
m=2 m=2

But this contradicts Lemma 2, which completes the proof
of the theorem.

Corollary 5-1: If n is an even integer and k is any
positive integer, » may be expressed as

where x is a positive integer dependent on k and a,, = 0
or 1 for all m. Then

k-1
B(n, g) > 2* ifandonly if x > E a,,.
m=1

Proof: Note that 2»n is divisible by 4 and

k-1
k+1 2
2n = x2""' — 3 g,2m"

m=1

According to Theorems 4 and 5,

B<n, %) = 1BQn, n) > 2*
k—1

ifand only if x > D a,.

=1

In the following theorem we extend the results of
Corollary 5-1 to the entire region 2d > n by using the
relation obtained in Theorem 3 between maximal codes
in the region 2d > n and maximal codes on the line
2d = n.

Theorem 6: Given n and d such that 2d — n = ¢t > 0,
for any positive integer k, 2d can be expressed as

k-1
2d = x2* — 3 a,2",

m=1

where x is a positive integer dependent on k£ and a,, = 0
or 1 for all m. Then

k—1
B(n,d) > 2* ifandonly if x >t -+ E .
m=1

Proof: The case t = 0 is proved in Theorem 5. We
assume here that ¢ > 0. Suppose

k=1
x>t E 7

m=1
Let

k—1
no=2d, = (x — N2 — Z a,2”.
m=1

Then, applying Corollary 5-1, we obtain
B(n,, d)) > 2.

Let

m o= 2" — 1) and 24, = 12*.

Then, according to Theorem 1,

B(ny, ;) = 2",

Note that n, + n, = n and d, + d, = d. Thus, applying
Eq. (14) we obtain

B(n, d) > 2.

In order to prove the converse, suppose B(n, d) > 2k,
Since 2d — n = ¢t > 0, Theorem 3 implies that

Hy k
=) >
B(nl, 2) > 2",
where
k-1
no=2d— 12" = (x — 2 — D a.2"™.
m=1

Then Corollary 5-1 implies that

£

x—1 2> G

m

[

I
-

This completes the proof.
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4. An algorithm for constructing maximal codes
Theorem 6 suggests the following algorithm to obtain
B(n, d) for given n and d in the region 2d > n:

Givennand d,2d — n = t > 0, 2d may be expressed as
i—1

2 = x2' — 3 a. 2", j=1,2,---, (30)
m=1

where x; is a positive integer dependent on j and a,, =
0 or 1 for all m. If

yi= 2 an, (31)

then x; and y; may be obtained from the iterative formulas

X; . .
Py if x;, 1iseven

Xiy = (32)
L '; L if x, isodd, and

Prer = {yi if x; 1is even (33)
yi +1 if x; isodd,

where x; = dand y, = 0.

Note that in all codes #» is greater than or equal to d.
Hence d > 2d — n = 1; that is, x, > y; + t. Moreover,
x; is a strictly decreasing function of j and y; is a non-
decreasing function of j. Therefore, it is clear that there
exists a unique positive integer k that satisfies the in-
equalities

X, 2 v+t and xpiq < yro F 1. 34)
Then, Theorem 6 implies that
Bn,d) = 2", (35)

Example 1: Suppose n = 762 and d = 386. Then
2d — n = ¢t = 10. We tabulate x; and y; + 1

J 1 2 3 4 5 6
X; 386 193 97 49 25 13
yi+t 10 10 11 12 13 14

Thus, j = 5 is the largest value of j for which x; > y; + ¢.
This implies that B(762, 386) = 2°

The algorithm can also be used to find minimum » for
given d and k = j such that x; > y;. In this case one finds
t; = x; — y; from d and k = j. Then the minimum n
for a 2"-word group code with minimum distance d is
equal to n,;, = 2d — t;. With specified d = 386 we
find n,;, for each k = j as follows:

JuLy 1970

k=j 1 2 3 4 5 6 71 8
x; 386 193 97 49 25 13 7 4
;i 0 0 1 2 3 4 5 6
4 386 193 9% 47 22 9 2 —
Manin 386 579 676 725 750 763 770 —

Now we are in a position to give the modular repre-
sentations of the maximal codes in the region 2d > n.
The reader may note that the modular representation of
a code is, in general, not unique, since permutations of
rows in a generator matrix give rise to a different modular
representation for the same code. Using Egs. (30) to (35)
of the algorithm and denoting (x, — y:) by ¢, we may
express n and d as

k—1
2d = 42" + D a.(2* — 2™) and (36)

m=1

k—1
=52 — 1D+ 2 a2 =2+ (6 — 1. 37
m=1
Note that (1, — 1) is a positive integer. If »’ denotes
n— (& — 1), then

k-1

no= 0" — 1)+ mz; a,(2* — 2™ and (38)
B, d) = B(n, d) = 2~

It is easy to recognize from Egs. (36) and (38) that the
code M(@’, d; 2¥) can be obtained by concatenating the
parent codes given by the modular representations of
Eqgs. (15) and (23). Thus the modular representation of

the code M(»', d; 2") is given by the vector
N = [n, ns, 13, -+, Bora]

where n;, may be given by

n, =1
ny = ng =t + a
Ny = 1y = ng = 1y = b -+ a + a,
Ny =Ng *** =N = 8 + a1+ a + as
* )
nw:...:n?”,_l:tk—l—Zam, s < k—1,
m=1
or, written differently,
k—1
oo == *++ = Hgat1_] = X — Ay
m=s3

The code M'(n, d; 2) may be obtained from M(x', d; 2)
trivially by adding (¢, — ¢) columns of all zeros. It can
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easily be shown that adding any number of columns of
even type, say type 2, to any of the parent codes does
not increase the minimum distance. In fact, if d is even,
adding any number of columns of any one type does not
increase the minimum distance of the parent codes. So
if columns of all zEros must be avoided, they may be
replaced by columns of any even type.

We pointed out previously that in case of n = 19,
d = 10 the Plotkin limit Eq. (7) is not met. Using the
algorithm and the Plotkin limit, one can easily verify
that

B(19, 10) = 8
A(19, 10) = 20.

Here we show that indeed there exists an infinite number
of pairs (n, d), even when d is even, for which B(n, d)
does not meet the Plotkin upper limit. Consider the
following example: Let

p—1
2d =2+ 4 =22 — 2 a,2",
m=2

wherea,, = 1 form=2,3,--- ,p— landn = 2" 4 3.
Thent = 1,x, = 2and y, = p — 2.

Clearly, B(n, d) < 2° for all p > 3, whereas according
to Eq. (7) the Plotkin upper limit is 2°. In the following
theorem we obtain a new bound on B(n, d) in the region
2d < n, which is, in general, stronger than Plotkin’s
extended bound, Eq. (8).

Theorem 7: Given n and d such that # > 2d. For any
positive integer j, 2d may be expressed as

i—1
2d = x2' — > a,2",
m=1

where x; is a positive integer dependent on j and a,, =
0 or 1 for all m. If k is the largest value of j such that

£

-1
X 2 Am s

m=

f

then B(n, d) is bounded above by
B(n, d) < gftn—2d
Proof: BQ2d, d) = 2* by the algorithm of Theorem 6.
Applying Eq. (1) n — 2d times, we obtain
B(n, d)S 2k+n—2d‘

To illustrate the bound of Theorem 7, consider B(n, d)
for d = 66. According to Plotkin’s extended bound,

Eq. (8),

B(n, d) < 256(2"7%%),

A. M. PATEL

Table 1 Dependence of 4(2d, d) and B(2d, d) on binary
value of d.

d A(2d, d) B(2d, d) d AQ2d, d) B(2d, d)
32 128 128 49 100 32
33 68 16 50 200 32
34 136 32 51 104 32
35 72 32 52 208 64
36 144 32 53 108 32
37 76 32 54 216 64
38 152 32 55 112 64
39 80 32 56 224 128
40 160 64 57 116 32
41 84 32 58 232 64
42 168 32 59 120 64
43 88 32 60 240 128
44 176 64 61 124 64
45 92 32 62 248 128
46 184 64 63 128 128
47 96 64 64 256 256
48 192 128

However, 2d = 5(32) — 16 — 8 — 4 and B(2d, d) = 32.
Hence, Theorem 7 gives a closer bound

B(n, d) < 322",

5. Conclusions

The main contribution of this paper is that the problem
of obtaining maximal group codes in the region 2d > n
is completely solved. Furthermore, a strengthened bound
is obtained for B(n, d) in the region 2d < n. However,
the strong dependence of the value of B(2d, d), and hence
of B(n, d) on the binary structure of the number ¢ should
not go unnoticed. To illustrate the effect of this, we give
the values of 4(2d, d) and B(2d, d) for 2° < d < 2° in
Table 1.

As shown in Theorems 3 and 7, B(n, d) substantially
depends on B(2d, d). Hence, if one has a choice, d should
be chosen to have the simplest binary structure possible;
that is, to have a minimal number of terms in y, of Eq. (33).
The simple binary structure for d means the B(n, d) is
large and hence the resulting code yields a relatively high
rate of transmission of information.
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