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Abstract: A comparison  is  made of the  performance of  pure  retransmission,  forward error  correction  and  hybrid  (error  detecting/ 
correcting)  schemes  for data transmission in a noisy (probability of error, P > 10-4) binary  symmetric  channel.  The  performance 
calculations are based  on the use  of BCH codes  for  error  detection  and  correction  up to the full correction  capability of the  code. 
It is  shown that a probability  of  undetected error of  less than 10-9 error/bit, can be  achieved  by  correcting  only a few errors while 
retaining a reasonable  throughput  and a very  low  retransmission rate. The  best  codes  in the  class  considered are specified  and the 
complexity  of instrumentation is  estimated.  Finally,  various  combinations of  possible  systems  employing  half  duplex and reverse 
channel  operation  are  used  in a comparison  of the  transmission  schemes. For line error  rate worse than error /bit, a hybrid  system 
operating  with a reverse  channel  is  superior to the  other  possibilities. 

Introduction 
In most of the applications of data transmission for com- 
puter to computer or computer to terminal communica- 
tion, a very high reliability is needed; i.e., the probability 
of information-bit error must be less than lo-'. Depending 
upon the channel error  rate, two basic approaches,  both 
using a feedback channel, allow the achievement of this 
high reliability. The first approach uses error detection 
combined with retransmission on request.  This  method 
has been used for many years with different error detec- 
tion schemes (e.g., horizontal  redundancy checking, 
horizontal and vertical redundancy checking, and  the 
use  of a cyclic code) and with different retransmission 
procedures. l S 2  Retransmission is attractive because it 
requires only a minimum of hardware, but  it is efficient 
only for channel error rates less than  as  in low-speed 
voice channels. 

The second approach is the hybrid  transmission scheme, 
which  uses retransmission combined with partial error 
correction to reduce the number of retransmission re- 
quests. This  method requires a larger amount of hard- 
ware for performing the  error correction; it will be  shown 
that it becomes attractive when the channel error  rate 
becomes large to lo-'), as happens, for example, 
on a voice channel when the number of levels is increased 
in  order  to transmit at higher In  that case, the 
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error correcting scheme has  to be carefully chosen in 
order to have a code rate high enough to take  advantage 
of the improvement in the  data rate. 

Three  approaches are possible for designing an  error 
correction scheme. They all suppose a good knowledge 
of the burst error characteristic of the channel. The first 
two approaches consist of using a random  error cor- 
recting code after  proper  randomization of the  errors 
(by interleaving, for example). The first method uses block 
codes, the second, convolutional codes and  the  third, 
burst error correcting codes. 

We will limit the paper to a detailed study of the first 
approach, i.e., the use of block codes for  error correc- 
tion on channels with high error rates, and we assume 
that  an efficient randomizing device has been designed. 
Answers will be given to  the  four basic questions: 

1) What is the maximum transmission rate compatible 
with a maximum probability lo-' of undetected infor- 
mation-bit error? 
2) What is the influence of partial error correction on 
the retransmission rate? 
3) What is the influence of the channel error  rate  on  the 
probability of undetected error  and  on  the transmission 
rate? 
4) What is the influence of the channel error  rate  on  the 
probability of undetected error when using forward error 
correction  (no retransmission)? 
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Basic assumptions 
The technique used for evaluating transmission schemes 
in this paper consists of grouping the possible error 
patterns into four subsets according to their effect on 
the decoding: no error, correct decoding, decoding failure 
(retransmit) and undetected decoding error. To evaluate 
the various probabilities, it is assumed that 

1) the bit errors  are caused by a memoryless, binary 
symmetric channel (BSC), and 
2) the  standard  array of the codes has  a homogeneous 
distribution of n-tuple Hamming weights among the rows 
in which such weights can occur. 

Classification of the error  patterns 
A linear, systematic, binary block code can be  specified 
by its parity check matrix H: 

H = r p ] ,  
LIn-kl 

where P is an  arbitrary k X (n - k )  matrix defining the 
code and where I n - k  is the identity matrix of order (n - 
k).  When an n-tuple is received, represented by an n- 
place row vector r, the first step of the decoding is to 
determine the syndrome vector s: 

s = rH. 

The vector s is an (n - k)-place row vector, so that 
there are 2"-k possible syndromes, one of which  is the 
all-0 syndrome; the corresponding n-tuples are  the 2k 
code words. Given an n-tuple that is not  a code word, 
all  the n-tuples corresponding to the same syndrome are 
obtained by adding  a codeword to the n-tuple. In  that 
manner, given a linear code of block length n, the set of 
the 2" possible n-tuples can be broken down into 2n-k 
disjoint subsets corresponding to the 2"-k possible syn- 
dromes. The set can be represented as a rectangular array, 
the  standard  array, with 2n-k rows and 2 k  columns. Each 
row contains all the n-tuples corresponding to one  par- 
ticular syndrome. The first row contains the 2k  code 
words. The leftmost column contains the "coset leader," 
i.e., the minimum weight n-tuple of the row. If the code 
can correct up to t errors,  all  the n-tuples with  weight 
less than  or equal to t  are coset leaders. 

Taking  another  point of  view, one may consider the 
standard  array as representing all the possible error pat- 
terns. Then it may  be divided into four subsets (Fig. 1): 

1) Subset I contains the all-0 n-tuple only. It corresponds 
to an error-free  transmission. 
2) Subset I1 contains  all  the coset leaders of  weight less 
than  or equal to  the maximum error correcting capability 
0 used for the code: 0 5 0 5 t; i.e., the code could correct 
up to t errors but is used to correct only up  to 0 errors. 

I 
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"_ 
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Figure 1 Error pattern array. 

The only error  patterns corrected by the code are  those 
of subset 11. Each time such an error  pattern occurs there 
is a correct decoding. 
3) Subset I11 contains all the n-tuples (except the coset 
leaders) whose coset leaders are  in Subsets I and 11. Each 
time such an error  pattern occurs there is a decoding 
error,  for  the decoding algorithm  takes  as an error  pattern 
corresponding to a given syndrome the most likely n- 
tuple of the coset, i.e., the coset leader (minimum weight). 
When a decoding error occurs, the number of undetected 
errors in the block after decoding may  be equal to  the 
number of errors  introduced during transmission increased 
by the weight  of the coset leader; Le., the minimum 
number of undetected errors per  block is, in most cases, 
2t + 1 independently of 0. 
4) Subset IV contains all the  other cosets. Each time an 
error  pattern of Subset IV occurs, there is a decoding 
failure; we  will assume that  in  that case retransmission 
is requested. For a "close-packed" or "perfect" code, 
Subset IV is empty when 0 = t .  

Weight distribution 
Since the code is supposed capable of correcting up to 
t errors,  the minimum weight of the code words is 2t + 1. 
In the cosets in which the coset leader has weight ml ,  
the minimum weight  of the n-tuple is at least 2t + 1 - 
ml ,  for each n-tuple of the coset is the sum of the coset 
leader and of the code words. 

We make the following hypothesis concerning the 
weight distribution of the n-tuples: The n-tuples of weight 
m are uniformly distributed in the standard array within 
the  rows in  which  they can exist. In  the particular case 
of interest here, i.e., making an estimate of the  proba- 
bility of decoding error, this hypothesis is a good approxi- 
mation for two reasons: 

1) As is well known,' given a certain bit position in  the 
code word, the bit in this position is a ONE for 2k" of 427 
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the code words and a ZERO for the other 2k". This  also 
applies within each coset. Thus, the average weight  of 
all cosets is the same, arguing for  a  horizontal and vertical 
homogeneity of the weight distribution. As a consequence 
of this hypothesis, the weight distribution of the code 
words is a binomial distribution, since the total number 
of n-tuples of  weight rn is (2). In fact, it has been verified 
that the  actual  distribution for BCH codes is very  close 
to the binomial distribution.6* 
2 )  The number of coset leaders of weight rn, is (z,); 
i.e., the number increases rapidly when the number of 
errors that can be corrected increases and  at  the same time 
the minimum weight (2t + 1 - r n l )  of the n-tuple in 
the corresponding coset decreases. Since the most likely 
error patterns are those with lower weight,? the most 
important  contribution to the probability of decoding 
error is that of the cosets containing high-weight coset 
leaders. Due  to the relatively large number of these cosets, 
the hypothesis of uniform weight distribution becomes 
more accurate. 

8 Error characteristics after  decoding 
The decoding after  one transmission of a block of n bits 
can.  be characterized by the following probabilities: 

Po = probability of no error  (error  pattern of Subset I) 
PC = probability of correct decoding (Subset 11) 
Pu = probability of undetected error (Subset 111) 
PD = probability of decoding failure (Subset IV); this 

equals the probability of requesting a retransmis- 
sion in a hybrid system (both error correction and 
retransmission). 

These probabilities can be expressed as a function of 
the probability P(rn, n) of having exactly rn errors in 
a block of n bits. For a memoryless, binary symmetric 
channel with error rate P: 

Hence, for a (n, k; t ,  0) block codel, (see Appendix A), 

Po = P ( 0 ,  n).  (3) 

428 

7 Since, to reach Pi < 10-9, f > nP must hold. 
* Compare with the weight enumerators given in Ref. 7. 

information bits (where n - k is the number of check bits); the maximum 
i The  notation (n, k ;  f ,  0) specifies the block length n; the number k of 

number f of errors  that  can be corrected; and the effective number a of errors 
that will  be corrected by the decoder. 

PD M 1 - Po - PC: - P". ( 6 )  

In a hybrid system, the interesting parameter is the 
probability of undetected block error PI:B including re- 
transmissions: 

Knowing the probability of undetected block error PUB, 
we can compute the probability of undetected bit error 
Pb, and  the probability of undetected information-bit 
error Pi from the following (see Appendix B): 

Finally, the  throughput  rate of a hybrid transmission 
scheme  is  given  by 

number of information bits 

R r  transmitted in a block 
total number of bits transmitted 
before accepting the block 

k 
n 

= - (1 - P,), (10) 

where an ideal retransmission scheme is assumed; i.e., 
there is assumed to be no retransmission delay (line delay, 
modem turn-around time). As  will  be  discussed in  the 
last section, this rate can be reached with a full duplex 
low-speed return channel if confirmation and retransmis- 
sion requests are to be transmitted  after each block. 
When only a half duplex channel is available, it  can be 
attained by transmitting the confirmation and retrans- 
mission requests for a large number of blocks at a time. 
When this logic cannot be implemented, n has to be re- 
placed by n + d + s in relation (lo), where dis the retrans- 
mission delay and s the length of the  return message: 

Furthermore,  it is assumed that transmission in  the feed- 
back channel is error free. This is a reasonable hypothesis 
since the feedback information rate is generally very low. 

Results 
The relations in  the preceding section permit a precise 
and practical evaluation of a hybrid retransmission scheme 
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(error  correction plus transmission) that uses block codes. 
Values of these relations have been computed for actual 
codes. The numerical application covers two  particular 
cyclic codes: the primitive BCH  code^,^'' which are the 
most powerful random-error correcting codes known, and 
the  Golay code,1° a nonprimitive BCH code, which is 
one of the  rare "perfect" binary codes known. Both codes 
are quite close to  the Hamming-Plotkin-Elias bound;" 
i.e., they almost reach the maximum efficiency that can 
be attained with block codes for  the block lengths con- 
sidered here. Computations cover the range of block 
length from 15 to 511 bits and  the range of  BSC error 
rate  from 10" to 

Maximum transmission rate  with BCH codes 
It is interesting to compare  the normalized capacity C 
of the memoryless BSC channel, 

c = 1 + P log, P 

+ (1 - P )  log, (1 - P )  bits/channel use, (11) 

with the maximum transmission rate  that can be reached 
with BCH codes. (In  doing  this, we neglect the complexity 
of the decoding.) In Fig. 2, a probability of undetected 
information-bit error, Pi 1. lo-', is assumed. For a 
given P, the maximum rate increases slowly with the block 
length n,  but remains far  from  the channel capacity; 
indeed, the higher the error rate,  the further from capacity 
it remains. Each point  on the  diagram represents the coding 
schemes giving the largest throughput  rate  for a given 
block length. The first number associated with each point 
gives the number 8 of errors effectively corrected; the 
second number t gives the  maximum error correcting 
capability of the code. It is interesting to  note  that  in 
most of the cases in which P > the higher rates are 
obtained with a  hybrid transmission scheme. For P 5 

error detection with retransmission is the best scheme. 
Practically, the complexity of the l2  limits 

the number of different values of 8 to three or  four; 
Table 1 shows the corresponding  maximum throughput 
rate of a  hybrid transmission scheme for several values 
of channel  probability of error P, such that  the probability 
Pi  of undetected information-bit error is less than  or 
equal to io-'. 

Probability of retransmission 
In a  hybrid transmission scheme the role of error correc- 
tion is to improve the transmission rate by reducing the 
number of retransmission requests. Figures 3(a)-(d) show 
how the probability of retransmission varies as a func- 
tion of channel error  rate where the number 8 of errors 
corrected is a parameter. For a given block length and 
a given number of corrected errors, the curves obtained 
are roughly  independent of the code, for  in  the expression 
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Figure 2 Maximum transmission rate vs block length for 
codes with a  feedback  channel,  where  probability of infor- 
mation-bit error  after decoding Pi 5 lo-'. Curves  corre- 
spond to channel error probability P = lo", lo", lo-" 
and 

Figure 3 Probability of retransmission PU vs error proba- 
bility P of the memoryless binary symmetric  channel for 
several block lengths n. ( a )  I I  = 31; (b) n = 63; (c) n = 
127; and (d) n = 255. 
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Figure 4 Performance of several linear block codes. (a) (31, 11; 5) BCH code; (b) (63,45; 3) BCH code; (c) (127, 106; 3) BCH code; 
(d) (255,231; 3) BCH code; (e) (255, 215; 5) BCH code; (f) (23, 12; 3) Golay code. The solid curves correspond to a given number B 
of errors effectively corrected and  the dashed curves correspond to a given channel probability of error P. The vertical arrows give 
the probability of undetected block error PUB for  the corresponding value of P in the absence of retransmission. The legend showing 
the value of e for the various shapes of data points is given in (a), but is the same for all other  parts of the figure. The negative num- 
bers on the figure are log,,  of P 

of PD the only term depending on the code is Pu, which bits are used for the one-error  correction. The other 12 
is  generally  much  smaller than 1 - Po and PC. Taking, are used for error detection to achieve,  with  retransmission, 
for example, the (63, 45; 3, 1) code for P = lo-*, we see a probability of undetected error of lo-'. 
in Fig.  3(a) that 13 percent of the blocks contain errors These  curves  can  be  used for another purpose: to give 
after correction of one error; in fact, only 6 out of 18 check the order of magnitude of the probability of undetected 



Table 1 Maximum throughput rate for hybrid  transmission. 

Typical code 
P Rute (n,  k ;  t ,  8) 

10” 0.13 (31, 6; 7, 3) 
10-2 0.62 (63, 45; 3, 1) 
10-3 0.92 (511,  475;  4, 3) 
10-4 0.96 (511, 493; 2, 1) 

error  in  a  forward-error-correction  (FEC) transmission 
scheme using no retransmission. In  that case the maxi- 
mum error correcting capability of the code has  to be 
used. For example, with the (63, 45; 3, 3) code in Table 1, 
the  error  rate  at P = lo-’ without retransmission is 
p i  w 7.9 x 

Performance of a code as a function of the channel 
error rate 
When a hybrid transmission scheme is used on a channel 
with large error rate, P,  the transmission rate depends 
drastically on  the channel error  rate. Figures 4(a)-(f) show 
how the  rate  and  the block probability of undetected error 
vary with P for different codes capable of correcting from 
0 (pure retransmission) up to t errors.  Taking, for example, 
the (63, 45; 3, 1) code, we can see in Fig. 4(b) that,  for 
single-error correction, the  rate  drops very rapidly as P goes 
from lo-’ to  For P less than  the transmis- 
sion rate becomes close to k/n  and is thus independent 
of the channel error  rate because the percentage of re- 
transmission requests can be neglected. The vertical dashed 
line in  the middle of the figures indicates an information 
bit probability of undetected error Pi = lo-’. Finally, 
a series of vertical arrows indicates the block error  rate 
when the full error correcting capability of the code (0  = t )  
is used without retransmission (i.e., when forward error 
correction is used). For codes correcting 0 = t = 3 or 
more  errors, retransmission does not improve the block 
error probability very much (only one  order of magnitude). 
Obviously, no improvement is observed with the Golay 
code [Fig. 4(f)], since Subset IV is empty. 

The above performance evaluation of block random 
error correcting codes indicates that,  for  the range of 
channel probability of error greater than (as in a 
high-data-rate modem on a voice-grade line), a  hybrid 
transmission scheme, which incorporates both some error 
correction and  error detection with retransmission, is 
superior to both pure error detection with retransmission 
and forward error correction. 

An  important practical result is that only a few errors 
need to be corrected to reach very high reliability while 
still retaining a reasonable throughput.  That is, even for 
a large block length, only a small portion of the  error 

correcting capability of the code needs to be used. In 
fact, the  error correction is used to bring the channel 
reliability up  to  the  point where the  throughput  rate is 
not degraded by successive retransmissions. 

Discussion 
To compare the performance of the hybrid transmission 
scheme with that of the two  other schemes, pure retrans- 
mission and forward error correction, a numerical example 
is  given. The following system parameters are assumed: 

transmission bit rate = 4800 bit/sec, 
average transmission delay + turn  around = 300 msec 

binary symmetric channel error  rate = * 
The practical  implementation of retransmission depends 
1) on  the  nature of the feedback channel available (half 
duplex, reverse channel), and 2 )  on  the retransmission 
algorithm. Three typical cases of retransmission (A, B 
and C) are considered as  indicated in Table 2. In Case  A 
each block of data is acknowledged separately before 
retransmission or transmission of the next block. In 
Case B the blocks are grouped into superblocks; i.e., 
after transmission of a  superblock, the transmitter is noti- 
fied which blocks are  in  error. Two  hybrid schemes are 
considered: Case D, with half duplex and superblocks 
and Case E, with a reverse channel. Finally, in Case F, 
forward error correction is assumed and  the same code is 
used as in  the hybrid schemes, Cases D and E. 

Table 2 gives a general comparison of the six different 
schemes. In each case but Case F, the designed proba- 
bility of information-bit errors is Pi 5 lo-’. The codes 
chosen are those having the highest information-bit rate 
R consistent with an  error  rate better than lo-’. 

For  the constraints of this example, the system of Case 
E (hybrid + reverse channel) is superior to  the others. 
Comparison of E with C (retransmission + reverse chan- 
nel) shows a rate improvement of 15 percent with a  drastic 
reduction in  the retransmission rate.  Comparison of E 
with F (forward error correction) shows a reliability im- 
provement of four orders of magnitude  though it is 
necessary to consider the cost of a reverse channel versus 
that of a  more complex decoder. 

The results are based on  the assumption that  the channel 
errors  are randomly  distributed.  This is not normally a 
good  assumption for a telephone channel unless, as pre- 
viously mentioned, sufficient error randomization has been 
introduced. The randomizer memory size (4000 to 8000 
bits) is comparable to  the bit  content of the superblocks; 
thus,  only one memory need be used to accomplish both 
randomization and block grouping. Consequently,  approxi- 
mately the same amount of storage is needed in each of 

or 1440 bits, 

* This rate represents the third  quartile of the data given in Ref. 4. 431 

HYBRID TRANSMISSION JULY 1970 



432 

Table 2 Comparison of transmission  schemes  (channel  bit rate = 4800 bits/sec, channel  error rate P = turn-around time = 
300 msec  or 1440 bits). 

Code 

Pi 
R bit/sec 
Retransmission rate 

Blocks/superblock 
Transistors/encoders 
Transistors/decoders 

Retransmission 
Case A Case B Case  C 

Half  duplex  Half  duplex  with Recerse channel 
superblocks  with  superblocks 

(127, 113; 2,O) (127, 113; 2,O) (127, 113; 2,O) 

5 x 1 0 - 1 3  5 x 10-13 5 x 10-13 

305  2800  3750 

12% 12% 12% 

1 32 1 or 32 

300  300  300 

300  300  300 

Hybrid 
Case D Case E 

Half  duplex with Recerse  chu.wel 
superblocks  with  superblocks 

(255, 231 ; 3,2) (255, 231; 3, 2) 

3.4 x 10-10 3.4 x 10-10 

3210 4350 

0.2% 0.2% 

16 1 or 16 

400 400 

2800  2800 

Forward error 
correction 

Cuse F 

(255,  231 ; 3) 

3.5 x 10-6 

4350 

0 

1 

400 

>>2800 

the six transmission schemes, with memory being used 
most efficiently in Cases B and  D,  and eventually in C and 
D. Finally, an evaluation of the coder and decoder com- 
plexity is given by an estimate of the number of transistors 
needed for implementing the corresponding shift registers 
and  control logic (assuming the use of four-phase MOS 
shift registers with six transistors per stage). Except for 
the decoder of the forward error correction scheme (Case 
F), the complexity of the encoder and decoder is within 
the practical and economical range of the present large- 
scale integration technology. 

Conclusions 
The preceding study has shown the advantages of the 
hybrid transmission scheme versus the pure retransmission 
and  the forward error correction schemes when a high 
reliability is needed for  data transmission over a noisy 
channel. Nevertheless, this  study was limited to linear 
block codes under the assumption of a memoryless binary 
symmetric channel. A comparative study using convolu- 
tional codes under the same hypothesis would be  inter- 
esting. The validity of the results for a  real  channel depends 
essentially on whether or not interleaving can randomize 
the channel as was assumed. This may not always be 
possible. For a given real  channel,  burst error correcting 
codes can  be  made to outperform random  error correcting 
codes, but this is true only if the real  channel  cooperates 
to cluster the  errors  into  pure bursts with the correct 
guard spaces. A comparative  study of burst error cor- 
recting codes using different models of real channels 
would be worthwhile. 
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Appendix A: Probability of undetected error 
The exact expression of Pu is: 

p u  = 2 P(rn, n) X Prob (error pattern weight 
m = 2 t + l - O  

= rn in  Subset 111). 64-1) 

Since the channel is supposed memoryless, we will neglect 
P(m, n) for rn > 2t + 1 > nP in comparison with P(2t + 
1 - 0, n); i.e., 

P(m, n) 0 for rn > 2t + 1. (A-2) 

We  will consider only the  error patterns of weight rn 5 
2t + 1. Such an  error  pattern of  weight rn cannot be 
located in  the cosets whose coset leader has weight 2t - 
rn or less, i.e., in  the (:) first cosets. The hypoth- 
esis of uniform  distribution of the weight in  the  standard 
array gives the following approximation for  the  proba- 
bility of an  error  pattern of weight rn in Subset 111: 

(A-3) 
L f% \q/ 

where the  numerator (denominator) represents the number 
of cosets that contain weight-rn error patterns in Subset I11 
(the standard  array of error patterns). 

Appendix B: Relation between the probability of 
undetected block error PUB and the probabilities of 
undetected bit error P, and P,  
Taking a given bit, say bit I, of an n-bit block, we state 
that  the probability of this bit not being in  error, given 
that there are exactly rn errors  in  the block, is 
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Pibit 1 not in error 1 m errors} 

The probability of bit 1 being not in error  and of having 
exactly m errors is 

P { bit I not in error, m errors} 

= (?)P‘(m, n ) ,  (B-2) 

where P’(m, n) is the probability of having exactly m 
errors in  a block after decoding. Since the number of 
errors in a block may vary from (2t + 1) in  the worst 
case (independently of 0 as noticed) to n: 

P{bit 1 not in error 1 2 2t + 1 errors} 

If we assume 

P’(m + 1, n)<< P’(m, n), m > 2t + 1, 

(B-3) reduces to (B-1); hence, 

P (  bit I in error I block error} % ___ 
2t + 1 

n 

or 

Pb = P(bit I in  error) % 

and, more precisely, the probability of undetected infor- 
mation-bit  error Pi is 

(2t  + 1)k 
Pi 2 P l I B ,  (B-7) 

under the assumption (B-4). 
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