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An Analysis of the Effectiveness of Hybrid

Transmission Schemes

Abstract: A comparison is made of the performance of pure retransmission, forward error correction and hybrid (error detecting/
correcting) schemes for data transmission in a noisy (probability of error, P > 10~%) binary symmetric channel. The performance
calculations are based on the use of BCH codes for error detection and correction up to the full correction capability of the code.
It is shown that a probability of undetected error of less than 10-? error/bit, can be achieved by correcting only a few errors while
retaining a reasonable throughput and a very low retransmission rate. The best codes in the class considered are specified and the
complexity of instrumentation is estimated. Finally, various combinations of possible systems employing half duplex and reverse
channel operation are used in a comparison of the transmission schemes. For line error rate worse than 10~* error /bit, a hybrid system

operating with a reverse channel is superior to the other possibilities.

Introduction

In most of the applications of data transmission for com-
puter to computer or computer to terminal communica-
tion, a very high reliability is needed; i.e., the probability
of information-bit error must be less than 10~°. Depending
upon the channel error rate, two basic approaches, both
using a feedback channel, allow the achievement of this
high reliability. The first approach uses error detection
combined with retransmission on request. This method
has been used for many years with different error detec-
tion schemes (e.g., horizontal redundancy checking,
horizontal and vertical redundancy checking, and the
use of a cyclic code) and with different retransmission
procedures.”” Retransmission is attractive because it
requires only a minimum of hardware, but it is efficient
only for channel error rates less than 10™* as in low-speed
voice channels.

The second approach is the hybrid transmission scheme,
which uses refransmission combined with partial error
correction to reduce the number of retransmission re-
quests. This method requires a larger amount of hard-
ware for performing the error correction; it will be shown
that it becomes attractive when the channel error rate
becomes large (10™* to 107%), as happens, for example,
on a voice channel when the number of levels is increased
in order to transmit at higher rates.®* In that case, the
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error correcting scheme has to be carefully chosen in
order to have a code rate high enough to take advantage
of the improvement in the data rate.

Three approaches are possible for designing an error
correction scheme. They all suppose a good knowledge
of the burst error characteristic of the channel. The first
two approaches consist of using a random error cor-
recting code after proper randomization of the errors
(by interleaving, for example). The first method uses block
codes, the second, convolutional codes and the third,
burst error correcting codes.

We will limit the paper to a detailed study of the first
approach, i.e., the use of block codes for error correc-
tion on channels with high error rates, and we assume
that an efficient randomizing device has been designed.
Answers will be given to the four basic questions:

1) What is the maximum transmission rate compatible
with 2 maximum probability 10™° of undetected infor-
mation-bit error?

2) What is the influence of partial error correction on
the retransmission rate?

3) What is the influence of the channel error rate on the
probability of undetected error and on the transmission
rate?

4) What is the influence of the channel error rate on the
probability of undetected error when using forward error
correction (no retransmission)?
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Basic assumptions

The technique used for evaluating transmission schemes
in this paper consists of grouping the possible error
patterns into four subsets according to their effect on
the decoding: no error, correct decoding, decoding failure
(retransmit) and undetected decoding error. To evaluate
the various probabilities, it is assumed that

1) the bit errors are caused by a memoryless, binary
symmetric channel (BSC), and

2) the standard array of the codes has a homogeneous
distribution of n-tuple Hamming weights among the rows
in which such weights can occur.

& Classification of the error patterns
A linear, systematic, binary block code can be specified
by its parity check matrix H:

P |
H = L, (n
L,,,J

where P is an arbitrary & X (n — k) matrix defining the
code and where I,_; is the identity matrix of order (n —
k). When an n-tuple is received, represented by an n-
place row vector r, the first step of the decoding is to
determine the syndrome vector s:

s = rH.

The vector s is an (n — k)-place row vector, so that
there are 2" * possible syndromes, one of which is the
all-0 syndrome; the corresponding n-tuples are the 2*
code words. Given an n-tuple that is not a code word,
all the n-tuples corresponding to the same syndrome are
obtained by adding a codeword to the n-tuple. In that
manner, given a linear code of block length n, the set of
the 2" possible n-tuples can be broken down into 2**
disjoint subsets corresponding to the 2*"* possible syn-
dromes. The set can be represented as a rectangular array,
the standard array, with 27~ * rows and 2* columns. Each
row contains all the n-tuples corresponding to one par-
ticular syndrome. The first row contains the 2° code
words. The leftmost column contains the “coset leader,”
i.e., the minimum weight n-tuple of the row. If the code
can correct up to ¢ errors, all the n-tuples with weight
less than or equal to r are coset leaders.

Taking another point of view, one may consider the
standard array as representing all the possible error pat-
terns. Then it may be divided into four subsets (Fig. 1):

1) Subset I contains the all-0 n-tuple only. It corresponds
to an error-free transmission.

2) Subset II contains all the coset leaders of weight less
than or equal to the maximum error correcting capability
# used for the code: 0 < 6 < ¢;i.e., the code could correct
up to ¢ errors but is used to correct only up to 8 errors.
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Figure 1 Error pattern array.

The only error patterns corrected by the code are those
of subset II. Each time such an error pattern occurs there
is a correct decoding.

3) Subset III contains all the n-tuples (except the coset
leaders) whose coset leaders are in Subsets I and II. Each
time such an error pattern occurs there is a decoding
error, for the decoding algorithm takes as an error pattern
corresponding to a given syndrome the most likely n-
tuple of the coset, i.e., the coset leader (minimum weight).
When a decoding error occurs, the number of undetected
errors in the block after decoding may be equal to the
number of errors introduced during transmission increased
by the weight of the coset leader; i.e., the minimum
number of undetected errors per block is, in most cases,
2t + 1 independently of 6.

4) Subset IV contains all the other cosets. Each time an
error pattern of Subset IV occurs, there is a decoding
failure; we will assume that in that case retransmission
is requested. For a “close-packed” or “perfect” code,
Subset 1V is empty when 6 = 1.

& Weight distribution

Since the code is supposed capable of correcting up to
t errors, the minimum weight of the code words is 27 + 1.
In the cosets in which the coset leader has weight m;,
the minimum weight of the n-tuple is at least 2¢r + 1 —
my, for each n-tuple of the coset is the sum of the coset
leader and of the code words.

We make the following hypothesis concerning the
weight distribution of the n-tuples: The n-tuples of weight
m are uniformly distributed in the standard array within
the rows in which they can exist. In the particular case
of interest here, i.e., making an estimate of the proba-
bility of decoding error, this hypothesis is a good approxi-
mation for two reasons:

1) As is well known,’ given a certain bit position in the
code word, the bit in this position is a one for 2°* of
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the code words and a zEro for the other 2°~*. This also
applies within each coset. Thus, the average weight of
all cosets is the same, arguing for a horizontal and vertical
homogeneity of the weight distribution. As a consequence
of this hypothesis, the weight distribution of the code
words is a binomial distribution, since the total number
of n-tuples of weight m is (). In fact, it has been verified
that the actual distribution for BCH codes is very close
to the binomial distribution.®*

2) The number of coset leaders of weight m, is (,,);
i.e., the number increases rapidly when the number of
errors that can be corrected increases and at the same time
the minimum weight (2t 4+ 1 — m;) of the n-tuple in
the corresponding coset decreases. Since the most likely
error patterns are those with lower weight,f the most
important contribution to the probability of decoding
error is that of the cosets containing high-weight coset
leaders. Due to the relatively large number of these cosets,
the hypothesis of uniform weight distribution becomes
more accurate.

o Error characteristics after decoding
The decoding after one transmission of a block of » bits
can be characterized by the following probabilities:

P, = probability of no error (error pattern of Subset I)

P = probability of correct decoding (Subset II)

Py = probability of undetected error (Subset I1I)

Pp, = probability of decoding failure (Subset IV); this
equals the probability of requesting a retransmis-
sion in a hybrid system (both error correction and
retransmission).

Il

These probabilities can be expressed as a function of
the probability P(m, n) of having exactly m errors in
a block of n bits. For a memoryless, binary symmetric
channel with error rate P:

P(m, n) = (”’n )P’"(l — Py, 2)
Hence, for a (n, k; ¢, 6) block codel, (see Appendix A),
Po = PO, n), 3)
‘]
Pg = 2 P(m,n), )
m=1
¢ n
Py = 2, P(m, n) —THor )
m=2t+1—0 Zn_k _ Z (n)
q=0 q

* Compare with the weight enumerators given in Ref. 7.

¥ Since, to reach P; < 1079, ¢ > nP must hold.

i The notation (n, k; 1, §) specifies the block length n; the number k of
information bits (where n — k is the number of check bits); the maximum
number ¢ of errors that can be corrected; and the effective number ¢ of errors
that will be corrected by the decoder.
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Phx~1— Py — Ps— Py. (6)

In a hybrid system, the interesting parameter is the
probability of undetected block error Py including re-
transmissions:

PUB:PU+PUPD+PUPE)+”'

R %)

1 — Py
Knowing the probability of undetected block error Pyy,
we can compute the probability of undetected bit error
P,, and the probability of undetected information-bit
error P; from the following (see Appendix B):

2t 1
Ph =~ '_i—* PUB, (8)
n
2t 1)k
P = (——%—r_;—)ﬁ Pys. %)

Finally, the throughput rate of a hybrid transmission
scheme is given by

number of information bits
transmitted in a block

I

total number of bits transmitted
before accepting the block

k
n+ n(Pp) + n(Po)’ + -+

I

a = po. (10)
n

where an ideal retransmission scheme is assumed; ie.,
there is assumed to be no retransmission delay (line delay,
modem turn-around time). As will be discussed in the
last section, this rate can be reached with a full duplex
low-speed return channel if confirmation and retransmis-
sion requests are to be transmitted after each block.
When only a half duplex channel is available, it can be
attained by transmitting the confirmation and retrans-
mission requests for a large number of blocks at a time.
When this logic cannot be implemented, n has to be re-
placed by n 4 d + s in relation (10), where d is the retrans-
mission delay and s the length of the return message:

’

k
—— (1 — Pp).
w ot d L s ( )
Furthermore, it is assumed that transmission in the feed-
back channel is error free. This is a reasonable hypothesis
since the feedback information rate is generally very low.

Results
The relations in the preceding section permit a precise
and practical evaluation of a hybrid retransmission scheme
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(error correction plus transmission) that uses block codes.
Values of these relations have been computed for actual
codes. The numerical application covers two particular
cyclic codes: the primitive BCH codes,™® which are the
most powerful random-error correcting codes known, and
the Golay code,' a nonprimitive BCH code, which is
one of the rare “perfect” binary codes known. Both codes
are quite close to the Hamming-Plotkin-Elias bound;"’
i.e., they almost reach the maximum efficiency that can
be attained with block codes for the block lengths con-
sidered here. Computations cover the range of block
length from 15 to 511 bits and the range of BSC error
rate from 107" to 107*,

e Maximum transmission rate with BCH codes
It is interesting to compare the normalized capacity C
of the memoryless BSC channel,

C=1+4 Plog, P
+ (1 — P)log, (1 — P) bits/channel use, 11

with the maximum transmission rate that can be reached
with BCH codes. (In doing this, we neglect the complexity
of the decoding.) In Fig. 2, a probability of undetected
information-bit error, P; < 10°°, is assumed. For a
given P, the maximum rate increases slowly with the block
length s, but remains far from the channel capacity;
indeed, the higher the error rate, the further from capacity
it remains. Each point on the diagram represents the coding
schemes giving the largest throughput rate for a given
block length. The first number associated with each point
gives the number # of errors effectively corrected; the
second number ¢ gives the maximum error correcting
capability of the code. It is interesting to note that in
most of the cases in which P > 107* the higher rates are
obtained with a hybrid transmission scheme. For P <
107*, error detection with retransmission is the best scheme.

Practically, the complexity of the decoder®”'* limits
the number of different values of 6 to three or four;
Table 1 shows the corresponding maximum throughput
rate of a hybrid transmission scheme for several values
of channel probability of error P, such that the probability
P; of undetected information-bit error is less than or
equal to 10°°.

o Probability of retransmission

In a hybrid transmission scheme the role of error correc-
tion is to improve the transmission rate by reducing the
number of retransmission requests. Figures 3(a)-(d) show
how the probability of retransmission varies as a func-
tion of channel error rate where the number 6 of errors
corrected is a parameter. For a given block length and
a given number of corrected errors, the curves obtained
are roughly independent of the code, for in the expression
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Figure 3 Probability of retransmission P» vs error proba-
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Figure 4 Performance of several linear block codes. (a) (31, 11; 5) BCH code; (b) (63, 45; 3) BCH code; (c) (127, 106; 3) BCH code;
(d) (255, 231; 3) BCH code; (e) (255, 215; 5) BCH code; (f) (23, 12; 3) Golay code. The solid curves correspond to a given number 6
of errors effectively corrected and the dashed curves correspond to a given channel probability of error P. The vertical arrows give
the probability of undetected block error Pyg for the corresponding value of P in the absence of retransmission. The legend showing
the value of ¢ for the various shapes of data points is given in (a), but is the same for all other parts of the figure. The negative num-

bers on the figure are log;, of P.

of Pp the only term depending on the code is Py, which
is generally much smaller than 1 — Py and P.. Taking,
for example, the (63, 45; 3, 1) code for P = 107%, we see
in Fig. 3(a) that 13 percent of the blocks contain errors
430 after correction of one error; in fact, only 6 out of 18 check
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bits are used for the one-error correction. The other 12
are used for error detection to achieve, with retransmission,
a probability of undetected error of 107°.

These curves can be used for another purpose: to give
the order of magnitude of the probability of undetected
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Table 1 Maximum throughput rate for hybrid transmission.

Typical code
P Rate (nk;t,6)
101 0.13 (31,6;7,3)
10-2 0.62 (63,45;3,1)
10-3 0.92 (511, 475; 4, 3)
104 0.96 (511, 493; 2, 1)

error in a forward-error-correction (FEC) transmission
scheme using no retransmission. In that case the maxi-
mum error correcting capability of the code has to be
used. For example, with the (63, 45; 3, 3) code in Table 1,
the error rate at P = 107> without retransmission is
P79 X 1075

& Performance of a code as a function of the channel
error rate

When a hybrid transmission scheme is used on a channel
with large error rate, P, the transmission rate depends
drastically on the channel error rate. Figures 4(a)-(f) show
how the rate and the block probability of undetected error
vary with P for different codes capable of correcting from
0 (pure retransmission) up to ¢ errors. Taking, for example,
the (63, 45; 3, 1) code, we can see in Fig. 4(b) that, for
single-error correction, the rate drops very rapidly as P goes
from 1077 to 10”""°. For P less than 10~ ”'°, the transmis-
sion rate becomes close to k/n and is thus independent
of the channel error rate because the percentage of re-
transmission requests can be neglected. The vertical dashed
line in the middle of the figures indicates an information
bit probability of undetected error P; = 107°. Finally,
a series of vertical arrows indicates the block error rate
when the full error correcting capability of the code (8 = 1)
is used without retransmission (i.e., when forward error
correction is used). For codes correcting 6§ = t = 3 or
more errors, retransmission does not improve the block
error probability very much (only one order of magnitude).
Obviously, no improvement is observed with the Golay
code [Fig. 4(f)], since Subset IV is empty.

The above performance evaluation of block random
error correcting codes indicates that, for the range of
channel probability of error greater than 107" (as in a
high-data-rate modem on a voice-grade line), a hybrid
transmission scheme, which incorporates both some error
correction and error detection with retransmission, is
superior to both pure error detection with retransmission
and forward error correction.

An important practical result is that only a few errors
need to be corrected to reach very high reliability while
still retaining a reasonable throughput. That is, even for
a large block length, only a small portion of the error

JuLy 1970

correcting capability of the code needs to be used. In
fact, the error correction is used to bring the channel
reliability up to the point where the throughput rate is
not degraded by successive retransmissions.

Discussion

To compare the performance of the hybrid transmission
scheme with that of the two other schemes, pure retrans-
mission and forward error correction, a numerical example
is given. The following system parameters are assumed:

& transmission bit rate = 4800 bit/sec,

& average transmission delay + turn around = 300 msec
or 1440 bits,

& binary symmetric channel error rate = 107° *

The practical implementation of retransmission depends
1) on the nature of the feedback channel available (half
duplex, reverse channel), and 2) on the retransmission
algorithm. Three typical cases of retransmission (A, B
and C) are considered as indicated in Table 2. In Case A
each block of data is acknowledged separately before
retransmission or transmission of the next block. In
Case B the blocks are grouped into superblocks; i.e.,
after transmission of a superblock, the transmitter is noti-
fied which blocks are in error. Two hybrid schemes are
considered: Case D, with half duplex and superblocks
and Case E, with a reverse channel. Finally, in Case F,
forward error correction is assumed and the same code is
used as in the hybrid schemes, Cases D and E.

Table 2 gives a general comparison of the six different
schemes. In each case but Case F, the designed proba-
bility of information-bit errors is P; < 107°. The codes
chosen are those having the highest information-bit rate
R consistent with an error rate better than 107°.

For the constraints of this example, the system of Case
E (hybrid 4 reverse channel) is superior to the others.
Comparison of E with C (retransmission - reverse chan-
nel) shows a rate improvement of 15 percent with a drastic
reduction in the retransmission rate. Comparison of E
with F (forward error correction) shows a reliability im-
provement of four orders of magnitude though it is
necessary to consider the cost of a reverse channel versus
that of a more complex decoder.

The results are based on the assumption that the channel
errors are randomly distributed. This is not normally a
good assumption for a telephone channel unless, as pre-
viously mentioned, sufficient error randomization has been
introduced. The randomizer memory size (4000 to 8000
bits) is comparable to the bit content of the superblocks;
thus, only one memory need be used to accomplish both
randomization and block grouping. Consequently, approxi-
mately the same amount of storage is needed in each of

* This rate represents the third quartile of the data given in Ref. 4.
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Table 2 Comparison of transmission schemes (channel bit rate = 4800 bits /sec, channel error rate P = 10-3, turn-around time =

300 msec or 1440 bits).

Retransmission Hybrid Forward error
Case A Case B Case C Case D Case E correction
Case F
Half duplex Half duplex with  Reverse channel | Half duplex with Reverse channel
superblocks with superblocks superblocks with superblocks
Code (127, 113;2,0) (127,113;2,0) (127,113;2,0) | (255,231;3,2) (255,231;3,2) (255,231, 3)
P 5 X 10718 5 X 10713 5 X 10713 3.4 X 1071 3.4 X 10710 3.5 X 10-¢
R bit /sec 305 2800 3750 3210 4350 4350
Retransmission rate 129, 129, 0.29%, 0.29, 0
Blocks /superblock 1 32 1or32 16 lorl6 1
Transistors /encoders 300 300 400 400 400
Transistors /decoders 300 300 2800 2800 >2800

the six transmission schemes, with memory being used
most efficiently in Cases B and D, and eventually in C and
D. Finally, an evaluation of the coder and decoder com-
plexity is given by an estimate of the number of transistors
needed for implementing the corresponding shift registers
and control logic (assuming the use of four-phase MOS
shift registers with six transistors per stage). Except for
the decoder of the forward error correction scheme (Case
F), the complexity of the encoder and decoder is within
the practical and economical range of the present large-
scale integration technology.

Conclusions

The preceding study has shown the advantages of the
hybrid transmission scheme versus the pure retransmission
and the forward error correction schemes when a high
reliability is needed for data transmission over a noisy
channel. Nevertheless, this study was limited to linear
block codes under the assumption of a memoryless binary
symmetric channel. A comparative study using convolu-
tional codes under the same hypothesis would be inter-
esting. The validity of the results for a real channel depends
essentially on whether or not interleaving can randomize
the channel as was assumed. This may not always be
possible. For a given real channel, burst error correcting
codes can be made to outperform random error correcting
codes, but this is true only if the real channel cooperates
to cluster the errors into pure bursts with the correct
guard spaces. A comparative study of burst error cor-
recting codes using different models of real channels
would be worthwhile.
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Appendix A: Probability of undetected error
The exact expression of Py is:

Py = D, P(m,n) X Prob (error pattern weight

m=2t+1-~0

= m in Subset III). (A-1)

Since the channel is supposed memoryless, we will neglect
P(m, n) for m > 2t -+ 1 > nP in comparison with P2 -}
1— 6,n);ie.,

P(m,n)~0 for m> 2t 1. (A-2)

We will consider only the error patterns of weight m <
2t + 1. Such an error pattern of weight m cannot be
located in the cosets whose coset leader has weight 2z —
m or less, ie., in the »_25™ () first cosets. The hypoth-
esis of uniform distribution of the weight in the standard
array gives the following approximation for the proba-
bility of an error pattern of weight m in Subset III:

>0

P(m | T my —=2isizn 0

-5 ()

q=0 )

(A-3)

where the numerator (denominator) represents the number
of cosets that contain weight-m error patterns in Subset ITI
(the standard array of error patterns).

Appendix B: Relation between the probability of
undetected block error P,; and the probabilities of
undetected bit error P, and P,

Taking a given bit, say bit /, of an n-bit block, we state
that the probability of this bit not being in error, given
that there are exactly m errors in the block, is

IBM J. RES. DEVELOP.



P{bit I not in error | m errors}

IV e

The probability of bit / being not in error and of having
exactly m errors is

P{bit ! not in error, m errors}

= (” _n m)P’(m, n), (B-2)

where P'(m, n) is the probability of having exactly m
errors in a block after decoding. Since the number of
errors in a block may vary from (2t 4 1) in the worst
case (independently of @ as noticed) to =:

P{bit I not in error | > 2¢ 4+ 1 errors}

<”__£1> -
n

n—1

~ m=2t+1 . (B—3)
Z P'(m, n)
m=2f+1
If we assume
P(m+ 1, n) << P'(m, n), m>2t+1, (B-4)
(B-3) reduces to (B-1); hence,
P{bit [ in error | block error} & 2t 1 (B-5)
n
or
P, = P(bit [ in error) ~ (2’ * 1>pm (B-6)
n

and, more precisely, the probability of undetected infor-
mation-bit error P; is

(2t + Dk
P =~ —*—i_}_i Puyg, (B-7)

n

under the assumption (B-4).
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