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Three Measures of Decoder Complexity*

Abstract: Three measures of the complexity of error correcting decoders are considered, namely, logic complexity, computation time
and computational work (the number of logical operations). Bounds on the complexity required with each measure to decode with
probability of error P, at code rate R are given and the complexity of a number of ad hoc decoding procedures is examined.

1. Introduction

Experience has taught that decoders for error correcting
codes are generally complex machines, both conceptually
and physically. While experience also provides intuitive
notions of complexity, concrete results wait for carefully
defined complexity measures. Three such measures that
are intuitively appealing yet amenable to analysis are
logic complexity (the number of circuit elements), com-
putation time (measured in units of the switching time of
gates) and computational work (the number of logical
operations). We shall present new results on the computa-
tional work done by several ad hoc decoding procedures
and present a spectrum of earlier results on each of the
complexity measures.™?

Of the three complexity measures, computational work
is perhaps the most interesting. It is defined as the product
of the number of logic elements in a decoder model and
the number of decoding cycles required to decode a
received word. Consequently, it is useful in those high-
speed data applications in which the decoder cost and
decoder speed are important. When decoder cost alone
is important and the number of cycles per block is un-
important, logic complexity is the applicable complexity
measure. And when the decoding time per block is the
most important quantity, such as in very-high-speed data
transmission situations, the computation-time measure
plays the most important role.

We begin with a discussion of codes, decoding rules,
machine models and the three complexity measures. This
is followed by a description of ensemble results obtained
with logic complexity as the measure. Using counting
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arguments we show that most decoders in each of several
classes are very complex and we relate their complexity
to characteristics of the classes. The significance of these
results is that decoders with small logic complexity are
unlikely to be found by random selection.

We then turn to computational work and derive lower
bounds that must be satisfied if an error probability P,
is to be attained at code rate R on noisy channels. Ad
hoc decoding schemes are examined and concatenated
coding is shown to have a moderately small rate of
growth of work with decoding reliability. Two feedback
coding strategies introduced by Schalkwijk and Kailath®*
are studied from the standpoint of computational work
and shown to be inferior to or to offer no improvement
over concatenated coding. We also demonstrate that
sequential decoding is far from optimal at very small P,
as shown before. We show that concatenated codes include
some binary parity-check codes, which demonstrates the
existence of well-structured codes with good decoders.

A lower bound on the computation time of decoders is
determined and is shown to grow as the logarithm of
reliability E, which is the negative logarithm of P,. This
rate of growth can nearly be reached by a decoding
procedure for codes that are similar to concatenated codes.

2. Codes, decoders and complexity measures

We shall deal exclusively with block codes, but the knowl-
edgeable reader will note that truncated convolutional
codes also form block codes.

Definition: A block code of length n and rate R (in bits)
is a collection of M = 2" code words {w,,},1 < m< M,
each of which is an n-tuple over some finite alphabet

EA = {0'0, Gy **° O'A_l}.
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A special class of block codes is the class of linear codes,
which are vectors in the row space of a k X »n matrix G
or, equivalently, in the null space of an n X (n — k)
matrix H. We also recognize concatenated codes in which
two encoders are concatenated and symbols in the outer
code are used to select code words from the inner code.
Many other restricted code types exist.

Throughout the paper we assume that codes will be
used on discrete memoryless channels (DMC’s) with input
alphabet =, and output alphabet 2. These channels are
described by an 4 X B matrix of transition probabilities
{p;s:}, where p;/; is the probability that the jth output is
received given that the ith input is transmitted.

The n channel outputs that are received upon trans-
mission of a code word are submitted to a decoder either
serially, in parallel, or in a serial-parallel format. (Observe
that as many as n parallel channels may be available.)
The decoder will then interpret the received n-tuple and
reach a decision that will be represented by the decoder
outputs. We emphasize that any representation of decoder
decisions will be acceptable. We shall restrict our attention
to decoders that reach at most 2*% + 1 decisions (corre-
sponding to the 2*” code words and “no decision”). And
any representation of these decisions by decoder output
will be acceptable.

Definition: A block decoding rule for a code of length n
and rate R is a mapping of n-tuples over Z; to integers
in the set {1, 2,3, --- , 2'" + 1}.

Note that any such mapping constitutes a block de-
coding rule and that a rule need not require the speci-
fication of a code. However, important rules such as the
maximum likelihood rule and the standard array rule for
linear codes are incomplete without code specification.

Let Y,., 1 < m < 2%, be the disjoint sets of channel
output n-tuples associated with the code words w,,, 1 <
m < 2%, in a code of length 7, rate R. Let U be the collec-
tion of n-tuples not contained in any Y. Then, a decoding
error occurs when w,, is sent if a y is received that is not
contained in Y,,. Therefore, the probability of error P, is
defined by

an B

P, = 211\7 2 POIwa), 1)
m=1 vEYm
where P(y|w,,) is the probability that n-tuple y is received
given that code word w,, has been transmitted (which is
a product of channel transition probabilities). We assume
in (1), as we shall throughout this paper, that the code
words are a priori equally probable of being selected for
transmission. For convenience we also define reliability E

by
E = —log, P,, @3]

where the base 2 indicates that E is measured in bits.
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If fair comparisons are to be made between the com-
plexities of two decoders, one must insist that they be
constructed with similar circuit elements. For this reason,
we choose to model all decoders by sequential machines
or combinational machines constructed with binary logic
elements with a fan-in of two and individual binary
memory cells.

Definition: A sequential machine S is described by a
S5-tuple S = (Z;, £,, @, 8, v), where =, is the input
alphabet of S, 2, is its output alphabet, Q is the state
set, 6 is the next state function and « is the output func-
tion, where

6:2;, X Q0—0
v:Zr X Q— Z,.

A combinational machine uses only logic elements and
is simulated by a sequential machine that is given one
input symbol only. We require that the memory cells of
a sequential machine be accessed individually by the logic
elements and not through tape heads or by a matrix of
connections as in core memory. However, equivalent cir-
cuits for such storage units can be created using logic
elements and individually accessed cells and the number
of additional logic elements used should be included in
the complexity measures.

Definitions of the three measures of complexity are
as follows: Logic complexity x, is the number of binary
logic elements and memory cells in a decoder model.
Computational work x, is the product XT of the number
of logic elements X and cycles T required by a sequential
machine model of a decoder to decode a received word.
Computation time 7 is the product T and r,, the maximum
number of logic levels between all inputs of the sequential
machine model and all outputs, where the inputs and
outputs include connections to the memory cells. Thus,

xe = XT, and 7 = Try. 3)

We are now ready to begin our examination of each
of the three complexity measures.

3. Logic complexity
The results that have been obtained with the measure
logic complexity are ensemble results.” A class of decoders
is given and a counting argument is applied to derive a
lower bound to the logic complexity of a very large frac-
tion of the decoders. Upper bounds are also given to the
logic complexity of the most complex decoder in a class.
These results, then, are most useful when decoders of
small logic complexity are being sought in a large collec-
tion.

Consider some complete set of logic elements, such as
the set AND, orR and Nort. Consider also sequential or
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combinational machines that have p external inputs and g
external outputs. Then, the number of such machines
that can be constructed with logic complexity x; or
less does not exceed’ N(x1) = xu + 2p + 4@0+erd,
If there are N different decoders to build and x;, p and ¢
are such that

N = N(Xl)l/(l—E) @)

for some fixed ¢, 0 < € < 1, then, the fraction F of the
decoders that can be built with complexity x; or less does
not exceed

NE

1
FL—=— 5
Sy N¢ (5)
If € is fixed and NV is large, F will be near zero and most
of the N decoders will require a logic complexity greater
than x,. These arguments are the basis for the following

theorem:.

Theorem': Consider a class of N different decoding
rules realized by machines with p external binary inputs
and g external binary outputs. Fix ¢, 0 < ¢ < 1, and let
p* be the larger of p and q. Then, for large N, almost
all of the decoding rules require a logic complexity x;
that satisfies

1(1 —¢log, N
x1+p*+2>—£—-ig2—~

— 2 log, (log. N) )

If p* is much smaller than the right-hand side, the in-
equality applies principally to x;.

The number of block decoding rules for codes of block
length n and rate R is the number of mappings of n-tuples
over 2 to the integers {1, 2, --- , 2'"® + 1}. A simple
counting argument shows this number to be (2% + 1)*".
The number of generator matrices G for systematic
binary linear codes is 2% ®, Two such codes are
equivalent if one is obtained from the other by the appli-
cation of some permutation to each n-tuple. The counting
argument that leads to N(x,) for combinational machines
involves counting the number of permutations of inputs.
With these observations we have from (6) the following.

Theorem': Map a set of n received channel letters into
a number of binary digits proportional to »#. These binary
digits are to be supplied to a decoding machine. Fix
¢, 0 < e < 1. Then, for large n, almost all block decoders
(sequential or combinational machines) require a logic
complexity that satisfies

R "
log, B B, (N

X1 = %(1 — €

and almost all combinational bounded-distance decoderst
of systematic binary linear codes require

t They correct errors out to one half of the minimum distance or less.
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n’R(1 — R)

> 1 — 80 TR
x 23 = 930 “ARd — R

®)
We conjecture that (8) holds also for sequential machine
decoders.

Similar results hold for other classes of decoding rules.
All that is required is the number N of distinct rules in
the class.

The bounds of (7) and (8) can nearly be reached. Using
a result of Lupanov® for combinational machines one
can prove the following theorem.

Theorem™: Given € > 0, every block decoder for codes
of rate R and length » can be realized with logic complexity
x1, bounded by

R

BTL
log, B

xi S 41+ e )

for large n.

One can also show that every linear code can be decoded
by a machine with logic complexity proportional to n°.
This machine generates each of the 2** code words in
succession until it finds a word that is within some speci-
fied distance of the received word. Thus, it exhibits good
growth of logic complexity but requires an unreasonably
large number of decoding cycles. Logic complexity, there-
fore, suffers because it fails to include a sufficient number
of important decoder parameters.

Theorem': Given 0 < ¢ < 1 and 0 < ¢, almost all
decoders for block codes require a logic complexity
bounded by

R (logs: B)E/EL(R)
: 10
log, B 2 (10)

x 2 31— &)

for large reliability £ on DMC’s with lower bound ex-
ponent E;(R) for 0 < R < C, channel capacity. Also,
every block decoder can be constructed with logic com-
plexity

R
< 41 X (long)E/Er(R), 1
xS A+ ) s 2 (n

where E.(R) is the random-code exponent.

These two results follow from lower and upper bounds
on the probability of error in DMC’s.*” We note that
the results hold for block decoders with or without feed-
back from decoder to encoder since the class of all de-
coders with and without feedback is the same.

4. Computational work
As stated earlier, computational work x, is the product
of X, the number of logic elements in a sequential machine
decoder, and T, the number of machine cycles needed to
decode a received word:
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xo = XT. (12)

Computational work can be interpreted as the number
of logic uses by a decoder. Since computation is done with
logic elements, it is intuitively plausible that a minimum
number of logic uses is required to achieve a reliability
E at rate R on a noisy DMC. We give a lower bound to
X2 that depends explicitly on E, R and channel parameters.
The computational work required by several ad hoc de-
coding procedures has been determined® and will be
reported here. We also bound the computational work
required by the Schalkwijk and Kailath feedback coding
strategies, examine a buffered feedback strategy for the
binary erasure channel and demonstrate the existence of
decoders for systematic, binary linear codes whose com-
putational work grows as the square of block length and
reliability.

Let f(-) be the decoding function realized by a sequential
machine decoder with x, = XT. By replicating the logic
box of this machine T times we create a combinational
machine with X7 logic elements that computes f(-). If
C(f) is the smallest logic complexity required to compute f
with a combinational machine, then®

X2 = XT 2> C(f). 13)

Using the inequality (13), one can show that for equi-
probable code words the smallest achievable probability
of error P (X, T, R) that can be obtained on a given
DMC by a sequential machine decoder with X logic
elements in 7T cycles obeys®

P¥(X, T, R) > PY(XT, 1, R), 14

where P¥(x,, 1, R) is the probability of error associated
with a combinational machine.

Equation (14) implies that a lower bound to proba-
bility of error with sequential machine decoders doing
computational work x, = XT can be obtained by exam-
ining combinational decoders of the same logic complexity.
Consider a combinational machine in which some output
is connected directly to an input. In such a machine, a
change in that one input changes the pattern of machine
outputs or the decoding decision. Thus, a single error in
that input will result in a decoding error.

Lemma®: On a completely connected DMC with small-
est transition probability P, PY(XT, 1, R) > P
(with or without channel feedback) if any decoder output
is equal to an input.

If the probability of error is to be very small, each
input can only be connected to outputs through logic
elements. Let n be the smallest block length consistent
with P, = 277 and rate R on a given completely con-
nected DMC. Then,

Xe = XT > 4n 15)
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since the logic elements have at most two inputs and the n
received letters are converted into at least » binary inputs
to the decoder. From this argument we have the following
theorem.

Theorem”: On completely connected DMC’s for which
there exists a lower bound to probability of error having
exponent E; (R) (the coefficient of block length n for n
large) the smallest computational work required of any
decoder that achieves reliability E at rate R satisfies

1_E
X =2 ELR)

(16)

for large E when 0 < R < C, channel capacity. The bound
holds with and without channel feedback with E (R)
suitably defined.

Corollary: Under the same conditions as above, on
DMC’s

1 E 2
X2y [1082 €/ Pmin)] an

at R = C; and on the binary symmetric channel (BSC)
with crossover probability p

1 sz 2
>
X =16 [1 ~ p:l 1%

at R = C.

We conclude from the above that high coding relia-
bility, especially at rates near channel capacity, requires
many logic uses or a decoder that has many logic elements,
uses many cycles to decode, or both.

The dependence of the bound of (16) on reliability
cannot be substantially improved at code rates near zero
because we can demonstrate a decoder for codes of small
rate whose computational work grows with E as [E/E(p)}
log, [E/E(p)] on the BSC with crossover probability p,
where E(p) > 0 for p < 1/4. The decoder corrects up to
t errors in a code of M code words of length n from a
maximal-length sequence code. We fix M and let ¢ be
one half of the minimum distance or t = n/4. The dezoder
is a bounded-distance decoder and generates each of the
M code words. Each word is generated by a shift register
containing a number of logic elements proportional to
log; n. The number of logic elements in other decoder
circuits grows no faster than this, while the number of
decoder cycles T = n. The overall decoder computa-
tional work grows as Mn log, » and » is bounded for
large E by n < E/E(p), from which the desired result
follows.

The binary erasure channel (BEC) has two inputs that
are either received correctly or erased. (The probability
of no erasure is g.) Although it is not a completely con-
nected channel, one might expect the above theorem to
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apply. If so, the result of this theorem is good at nonzero
rates also, since we can show existence of a feedback
coding strategy for the BEC,” the decoder of which has x.
proportional to [E/E.(R)] log [E/E.(R)] (and x, propor-
tional to log [E/E.(R)]) for large E, where E(R) is the
random code exponent for the BEC.

This feedback coding strategy requires that each of
k = nR binary digits be repeated until received correctly,
with feedback used to determine if a repeat is necessary.*
Digits are released to a customer when they first arrive
unerased so that the spacing between decoded digits is
not uniform. Y. Kim has recently shown® that if a buffer
is employed to space the decoded digits, then the decoder
computational work will grow as E° for large E. The
essential steps in his argument are given below.

Let source symbols have duration ¢,, channel symbols
have duration 7, assume that decoded digits are fed to a
buffer which stores B binary digits and that the first
decoded digit is supplied at time #, with later digits
following with a spacing of #,. Let n; be the number of
transmissions of the jth information digit required for
it to be received unerased for the first time. Then, a de-
coding error will occur if

k
> n; > n. 19)
i=1

Suppose that the /th information digit has not been de-
coded when it is supposed to be available to the customer.
Then,

1
<Z n,-) te > to + it (20)

im1
and if (20) holds for any 1 < / < nR the event “buffer
underflow” occurs. If more than B - [ digits have been
decoded at time ¢, + [z, the buffer will have “overflowed.”
Buffer overflow occurs if

<Z m) te <to+ (¢ — B— ), Q1)

i=1

for some B+ 1 < r < nR.

The average of n; is 1/g, where q is channel capacity as
well as the probability of no erasure. If the probability
of error, underflow or overflow is to be small, the averages
of the random variables on the left-hand sides of (19),
(20) and (21) must satisfy, respectively,

nR/q < n,

It,/g < t,+ It,, 22)
rt,/q> to+ (r — B — 1),

Also, the total time to produce k source digits must

equal the time to transmit # channel digits or R = 1./f,.

* An error occurs if more than n repeats are required.
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But R must also be less than channel capacity q. From
the last inequality of (22) we then have, setting r = nR,

B+ 1> (1/t,) + nR1 — R/q). (23)

We also find that the buffer size must be proportional to
n for large n. The number of logic elements required to
create such a buffer will be also proportional to » and
the number of decoder cycles 7" will equal #. Consequently,
x= will be proportional to n” and in the best case, # cannot
grow faster than linearly with E. Therefore, the buffered
Jeedback coding strategy described above requires a com-
putational work proportional to E° for large E. This result
suggests that no improvement on the E° rate of growth is
possible when a uniform spacing is desired between
decoded digits.

We have shown previously” that decoders for concat-
enated Reed-Solomon codes’ require a computational
work

X < AC{E?R)] @9

on DMC’s, where A4 is a constant of the decoders, C is
channel capacity and E,(R) is the concatenated coding
exponent. These decoders achieve this good dependence
on E without the aid of channel feedback. We have also
demonstrated” that the Ziv iterative decoding procedure
does a computational work x, bounded by

E b
T RO (R/C)m:l , (25)

X2SB[

where B is a constant of the procedure.

Sequential decoding has been examined” and the argu-
ments used to bound the computational work required
are worth repeating here. The decoder requires a buffer
that stores B branches or a number X of logic elements
that exceeds B. We put a lower bound » on the number 7’
of cycles needed to decode a block of n information digits
and note that the probability of buffer overflow in »
transmissions, which results in an uncertainty in the trans-
mitted message, is bounded by

1 a(R)
Ppr > —0(log B)"”?
Br 2 n[(SF)BJ exp [—0(log B)""], (26)
where SF is the speed factor, a(R) is the Pareto exponent,
and the function 0(#) is such that 0(n)/n — 0 as n —> ®,
Since 2% = P, > Pyp, we solve for x, = XT and find
that

nl—]/a(R)zE/a(R)
> D A
Xz = (SF)

for large E and fixed SF (which is limited by the switching
speed of elements). Thus, the computational work
of sequential decoders is exponential in E for large E
and they are far from optimal in this case.

27
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The theorem at the end of Section 3 states that almost
all decoders require a computational work that grows
exponentially with reliability [note the application of (13)].
So sequential decoders are not much better than the worst
decoders in terms of computational work for large relia-
bility. Nevertheless, they are still very useful in space and
other applications where the channel is noisy but the
desired probability of error is not too small.

We turn next to an examination of two feedback coding
strategies®* invented by Schalkwijk and Kailath for the
additive gaussian noise channel with noiseless delayless
feedback. Details of the two schemes can be found in the
literature.”*''° It suffices for our purposes to observe that
the strategy for the infinite bandwidth channel case re-
quires the calculation of the quantity*

N
U= My, + M 3 n/k (28)
k=2

to make a decision, where y; is the jth received channel
output, M is the number of code words and N is the
number of transmissions. Here

M= 2% N = 2%, (29)

where ¢ is the duration of the messages and R and C
are code rate and channel capacity measured in bits. We
wish to compare the computational work of this scheme
with bounds derived earlier, so we assume that a peak
power limit is applied to the channel and that sufficiently
fine quantization of channel input and output will result
in a channel approximating the additive gaussian noise
channel. Under these conditions the probability of error

- 10
18

P. = 2—s(a)t[l+0(t)]
o =

, (30)

where e(a) is a function of the ratio a of peak to average
power.

When the channel is bandlimited, the new quantities
are

N
U= My, + M@ — 1)'* 3 y/d";

ko2 (31)
aN — ZC’L’
where o is a simple function of signal to noise ratio. M
and P, are given by (29) and (30) except that a new e(a)
applies.

The two procedures require 7 = N cycles and the band-
limited channel scheme requires the storage of numbers
ranging from o to & or at least N — 1 bits of storage.
Therefore, the computational work of the first scheme is
bounded by (use X > 1)

xe > T = 2%, (32)

® Here we follow Wyner.10
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while that of the second scheme is bounded by
x: = (N— DN (33)

since the storage cells must be accessed by logic elements
and since X > N — 1. Note that these inequalities apply
regardless of the number of bits of quantization taken at
the channel output. Solving for 7 in (32) and N in (33)
and equating E with e(a@)f[1 4+ 0(?)] we have for the infinite
bandwidth case

X 2 297 (34)

and in the bandlimited case

CE__|*
w2 o] o>

Consequently, the Schalkwijk feedback coding scheme for
bandlimited gaussian channels does not improve on con-
catenated coding. The first scheme for channels with
infinite bandwidth is very far from optimal for large E.

We next show that the class of concatenated codes’
includes binary parity-check (BPC) codes or we exhibit
decoders for BPC codes whose complexity grows as the
square of block length n. This compares very favorably
with the ‘“‘almost all” lower bound of (8) for the class
of BPC codes which grows as n’/log, n. Additionally,
one can show that the probability of error obtainable
with these codes on the BSC decreases exponentially
with block length.

Consider a Reed-Solomon (RS) outer code with code
word symbols from GF(Q2™), a Galois field of charac-
teristic 2. Let (i, &, --- , i,) be a code word such that
n=2"—1; (@, i, --- , i) are the information symbols
of the word; ¥ = n 4+ 1 — d; d is the code minimum
distance; and the symbols (i;+1, - - * , i,) are check symbols.
Since the RS codes are linear, the term-by-term sum of
two code words over GF(2™) is another code word. But
the symbols can each be represented by binary m-tuples
and field addition is then term-by-term addition, modulo
2, of m-tuples. Now use the m-tuples iy, &, -+ , i, as
information digits for code words in a BPC code of length
n*, rate r* and minimum distance d*. If w = (w,, w,,,

-, w,,)is a complete code word formed by this process,
then the term-by-term sum, modulo 2, of any two such
code words is another code word and this establishes
that some concatenated codes are BPC codes.

We next show that the error-correcting capability of
such a code is greater than or equal to | d/2 | X [ d*/2 |}
Let each inner code word be decoded and the decoder
output represented as m-tuples. A decoding error at this
stage will not occur if no more than | 4*/2| channel
errors occur, If no more than | d/2 | inner decoding errors

t (X] represents the greatest integer less than or equal to X.
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occur, the decoder for the RS outer code can correct
such symbol errors. Thus, if no more than | d/2 | X | d*/2 |
channel errors occur in a word of length nn*, no distribu-
tion of these errors can force more than [ d/2 | symbol
errors in the outer code and a decoding error.

In the inner code the nurr;ber of information digits
per word is n*r* = m = log, (n + 1). Thus, the con-
catenated code words have km = rnlog, (n + 1) informa-
tion digits (r is the rate of the RS code), rate »r* and have
normalized error-correction capability p = (| d/2 {/n) X
( Ld*/2|/n*). From the Varshamov-Gilbert-Sacks exis-
tence theorem, we know that there exist inner codes of
rate r* < 1 — H(2)) for large n*. Therefore, if r and r*
are fixed, we can fix p at approximately (1 — r)\/2 for
large # and n* and if p > p, the crossover probability of
a BSC, the probability of more than an*p errors, or a
decoding error, will decrease exponentially in the con-
catenated code block length nn*.

5. Computation time

The third measure of decoder complexity examined here
is the minimum decoding time 7 to decode a code of rate
R with reliability E on a noisy DMC. Given any decoder
that executes T cycles and has a delay of 7, per cycle,
the time to compute outputs is

Tro 2> 7, (36)

since a combinational decoder with computation time 77
can be realized by the cascade combination of T copies
of the logic unit in the sequential machine decoder.
Equation (36) justifies our use of the computation time
of combinational decoders to generate a lower bound to
computation time.

To derive a lower bound to r on completely connected
DMC’s, we assume that some nonconstant output of a
combinational decoder is a function of K received channel
letters. Channel letters will be individually coded into
binary-tuples so this output depends on at least K non-
constant inputs to the decoder. Thus, at least log, K
levels of logic or a computation time of at least log, K
will be required. However, if P, is the minimum channel
transition probability, the probability of a decoding error
P, must satisfy

P, > PE (37

since every K-tuple has probability of at least PX; of
being received and some pattern of K transmissions must

result in a change in the output or a decoding error. Thus,
we have the following theorem.

Theorem®: On a completely connected DMC with mini-
mum transition probability of P.;,, a decoding time of 7

E
T > log, :TOEQ—F_ (38)
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is required to decode any code of rate R > 0 with relia-
bility E.

To show that the lower bound can be approached in
its dependence on E, we consider a form of iterated or
concatenated coding™® in which the outer code consists
of a number of binary BCH codes. To form each outer
code word we form k, code words of length n from a
binary BCH code of rate r. The k, digits in the ith posi-
tion of each code word are collected together and used
to select one word from an inner code of length N = log, n
and rate R,. Therefore,

ko = Rylogs n 39

and the overall block length of a complete code word is
No:

N, = nlog, n. (40)

It can be shown'? that an inner code for this iteration
scheme exists such that the overall probability of error
decreases exponentially in »n. Hence, for large E,

E

n < R’ (41)

where E,(R) is the concatenated coding exponent’ and
R = rR,.

The inner decoder can be realized in disjunctive normal
form with a number of levels of logic proportional to
log, n. The decoder for the BCH code can be realized by
a combinational machine with a number of levels of logic
proportional to (log, #) [log, (log. n)]. To see this, we
observe that 1) a decoder calculates syndromes with a
delay proportional to log, n since the modulo-2 addition
of at most n binary digits is required to compute each
digit in the syndrome vector. 2) With the Peterson pro-
cedure, the number of transmission errors is determined
by measurement of the rank of a ¢ X ¢ matrix which
requires calculation of determinants of ¢ X ¢ or smaller
matrices or the sum of ¢ products, each product containing
t Galois field elements. Thus, a total delay proportional to
(log, n) [log, (log, n)] will be required in this step.” 3) When
the rank of the 7 X ¢ matrix has been determined, a matrix
inversion is required that also has delay proportional to
(log; n) [log, (log, n)]. 4) The last step is the calculation
of error locations from the elementary symmetric functions
determined from the matrix inversion above. In a com-
binational machine this step can be completed with a
delay proportional to log; n. The error locations are used
to change received digits.

The above decoder can be realized with a delay bounded
by F(log, n) [log, (log: n)] for some constant F, n large.
Therefore, we have the following theorem.

Theorem: There exist decoding procedures for arbitrary
DMC’s for decoding codes of rate R with reliability E
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which have a computation time 7 bounded by

E E
r < s gl s 1o ) 2

for large E, where F is a constant.

While the lower bound can be approached, it should be
clear that the decoding time of any decoder that accepts
received channel digits sequentially must use a time pro-
portional to the code length n, which is at best propor-
tional to E. Thus, the lower bound can be reached by
decoders that process all digits in a received word simul-
taneously. For real-time decoding, this implies that n
parallel channels feed the decoder. The lower bound
might also be reached when received data are stored in
the memory of a computer and when these data potentially
could be processed simultaneously.

6. Conclusions

The complexity of decoders for error-correcting codes
has been studied using three measures: logic complexity,
computational work and computation time. Standard
decoder models consisting of sequential machines and
combinational machines constructed of binary logic ele-
ments and memory cells have been used so that fair com-
parisons between the relative complexities of decoders
can be made.

Several classes of decoding rules have been studied
using the logic complexity measure and we have given
lower bounds on the logic complexity of almost all de-
coders in each class. This bound grows exponentially
with block length n for the class of block decoders and
as n2/10g2 n for the class of binary parity-check codes.
While this type of result is useful when selecting a class
of decoders for examination, it is insufficient since de-
coders with small logic complexity may require an enor-
mous number of clock cycles to decode a block.

Computational work, which is defined as the product
of the number of logic elements in a decoder and the
number of cycles to decode a received word, is a more
useful measure. A lower bound to this measure has been
derived that is linear in decoding reliability E and in-
versely proportional to the sphere-packing exponent or
any similar exponent on a lower bound to probability
of error. This type of bound applies with or without feed-
back on completely connected DMC’s. The existence of
decoders for low-rate codes whose computational work
grows as E log E demonstrates that the dependence of
the lower bound on E cannot be substantially improved
upon at low rates.

While the lower bound applies only to completely
connected channels, with or without feedback, there is
a feedback coding strategy for the BEC, which is not
completely connected, whose computational work grows
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as E log E for all code rates less than channel capacity.
This suggests that substantial improvement in the lower
bound cannot be had at nonzero rates also. However,
there is other information to suggest that the best lower
bound at nonzero rates grows as E°. This follows because
buffering of the output of the feedback strategy for the
BEC mentioned above in order to insure a uniform separa-
tion between decoded digits has a complexity with this
rate of growth.

The computational work of a number of ad hoc de-
coding procedures has been determined and we find that
concatenated coding is the best of these known and its E’
growth is equal only to that of the Schalkwijk bandlimited
feedback strategy for the peak-power-limited, additive,
gaussian noise (AGN) channel. The Ziv iterative coding
procedure has a complexity growing as E°, while sequential
decoding, the Schalkwijk-Kailath white AGN channel
feedback strategy with a peak energy constraint, and al-
most all block decoders do a computational work that
grows exponentially in E. The nonoptimality of these
procedures as measured by computational work is clearly
evident for large E.

A lower bound to the third measure, computation
time, has been derived for completely connected channzls
which grows logarithmically in E. An iterative coding
procedure, which is a variant of concatenated coding,
has been shown to be decodable in time, growing only
slightly faster than logarithmically in E. Thus, the be-
havior of the best decoding time on E is essentially
known. However, this best time cannot be reached by
decoders that receive one digit at a time; it can only be
reached by sequential machine decoders that execute a
small number of cycles, perhaps only one cycle.

Decoders are often complex machines and it is useful
to have some idea of whether a given decoder is exces-
sively complex. These results will help in this matter.
Hopefully a further study of decoder complexity will
show how to relate important parameters of important
families of codes to decoder complexity, measured in
some fashion. Then, a theory of decoder complexity will
be more helpful in design.
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