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Three  Measures of Decoder  Complexity* 

Abstract: Three  measures of the complexity of error  correcting  decoders  are  considered,  namely,  logic  complexity,  computation  time 
and computational work (the number of logical operations).  Bounds on the complexity  required  with  each  measure to decode  with 
probability of error P, at code rate R are given and  the complexity of a number of ad hoc  decoding  procedures is examined. 

1. Introduction 
Experience has  taught  that decoders for  error correcting 
codes are generally complex machines, both conceptually 
and physically. While experience also provides intuitive 
notions of complexity, concrete results wait for carefully 
defined complexity measures. Three such measures that 
are intuitively appealing yet amenable to analysis are 
logic complexity (the  number of circuit elements), com- 
putation time (measured in units of the switching time of 
gates) and computational work (the  number of logical 
operations). We shall present new results on  the computa- 
tional work  done by several ad  hoc decoding procedures 
and present a spectrum of earlier results on each of the 
complexity measures. '8 

Of the three complexity measures, computational work 
is perhaps the most interesting. It  is defined as the product 
of the number of logic elements in a decoder model and 
the number of decoding cycles required to decode a 
received word. Consequently, it is useful in those high- 
speed data applications in which the decoder cost and 
decoder speed are important.  When decoder cost alone 
is  important  and  the number of  cycles per block is un- 
important, logic complexity is the applicable complexity 
measure. And when the decoding time  per block is  the 
most important quantity, such as  in very-high-speed data 
transmission situations, the computation-time  measure 
plays the most important role. 

We begin with a discussion of codes, decoding rules, 
machine models and  the three complexity measures. This 
is followed by a description of ensemble results  obtained 
with logic complexity as  the measure. Using  counting 
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arguments we show that most decoders in each of several 
classes are very complex and we relate their complexity 
to characteristics of the classes. The significance of these 
results is  that decoders with small logic complexity are 
unlikely to be found by random selection. 

We then turn  to computational work and derive lower 
bounds that must  be satisfied if an  error probability P, 
is  to be attained at code rate R on noisy channels. Ad 
hoc decoding schemes are examined and concatenated 
coding is shown to have a moderately small rate of 
growth of work with decoding reliability. Two feedback 
coding strategies introduced by Schalkwijk and  Kailath3'4 
are studied from  the  standpoint of computational work 
and shown to be  inferior to or  to offer no improvement 
over concatenated coding. We also demonstrate that 
sequential decoding is far  from optimal at very small P, 
as shown before. We show that concatenated codes include 
some binary parity-check codes, which demonstrates the 
existence of well-structured codes with  good decoders. 

A lower bound  on  the computation  time of decoders is 
determined and  is shown to grow as  the logarithm of 
reliability E, which is  the negative logarithm of P,. This 
rate of growth  can nearly be reached by a decoding 
procedure for codes that  are similar to concatenated codes. 

2. Codes,  decoders  and  complexity  measures 
We shall  deal exclusively with block codes, but  the knowl- 
edgeable reader will note  that  truncated convolutional 
codes also form block codes. 

Definition: A block code of length n and  rate R (in bits) 
is a collection of M = 2nR code words { w,) , 1 5 rn 5 M ,  
each of which is  an n-tuple over some finite alphabet 

Z A  = { g o >  gl, ' * *  9 g A - 1 ) .  41 7 
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A special class of block codes is the class of linear codes, 
which are vectors in  the row space of a k X n matrix G 
or, equivalently, in  the null space of an n X (n - k )  
matrix H. We also recognize concatenated codes in which 
two encoders are concatenated and symbols in  the outer 
code are used to select code words from the  inner code. 
Many other restricted code types exist. 

Throughout the paper we assume that codes will be 
used on discrete memoryless channels (DMC's) with input 
alphabet ZA and  output alphabet ZB. These channels are 
described by an A X B matrix of transition probabilities 
(pi,i 1, where pili is the probability that  the  jth  output is 
received  given that the  ith input is transmitted. 

The n channel outputs that  are received upon  trans- 
mission of a code word are submitted to a decoder either 
serially, in parallel, or  in a serial-parallel format. (Observe 
that  as many as n parallel channels may be available.) 
The decoder will then  interpret  the received n-tuple and 
reach a decision that will be represented by the decoder 
outputs. We emphasize that any representation of decoder 
decisions will be acceptable. We shall restrict our attention 
to decoders that reach at most 2nR + 1 decisions (corre- 
sponding to  the 2nR code words and "no decision"). And 
any representation of these decisions by decoder output 
will be acceptable. 

Definition: A block decoding rule for a code of length n 
and rate R is a mapping of n-tuples over Z, to integers 
in the set (1, 2, 3, . . .  , 2nR f l} .  

Note that any such mapping constitutes a block de- 
coding rule and  that a  rule need not require the speci- 
fication of a code. However, important rules such as the 
maximum likelihood rule and  the standard  array  rule  for 
linear codes are incomplete without code specification. 

Let Y,, 1 5 m 5 2nR, be the disjoint sets of channel 
output n-tuples associated with the code words w,, 1 5 
m 5 2nR, in a code of length n, rate R. Let U be the collec- 
tion of n-tuples not  contained in any Y,. Then, a decoding 
error occurs when w, is sent if a y is received that is not 
contained in Y,. Therefore, the probability of error P, is 
defined by 

o n R  . 

where P ( y  1 w,) is the probability that n-tuple y is received 
given that code word wm has been transmitted (which js 
a product of channel transition probabilities). We assume 
in (l), as we shall throughout  this  paper, that  the code 
words are a priori equally probable of being selected for 
transmission. For convenience we also define reliability E 
by 

E = -log, P,, (2) 

where the base 2 indicates that E is measured in bits. 

If fair comparisons are to be made between the com- 
plexities  of two decoders, one must insist that they be 
constructed with similar circuit elements. For this reason, 
we choose to model all decoders by sequential machines 
or combinational machines constructed with binary logic 
elements with a fan-in of two and individual binary 
memory cells. 

Definition: A sequential machine S is described by a 
5-tuple S = ( Z r ,  ZJ, Q, 6, -y), where ZI is the input 
alphabet of S, Z is its output alphabet, Q is the state 
set, 6 is the next state function and y is the  output func- 
tion, where 

6:  ZI X Q+Q 
Y: 81 x Q+ Z J .  

A  combinational machine uses only logic elements and 
is simulated by a sequential machine that is given one 
input symbol only. We require that  the memory cells of 
a sequential machine be  accessed individually by the logic 
elements and  not through tape heads or by a matrix of 
connections as in core memory. However, equivalent cir- 
cuits for such storage units can be created using logic 
elements and individually accessed  cells and the number 
of additional logic elements used should be included in 
the complexity measures. 

Definitions of the three measures of complexity are 
as follows: Logic  complexity x1 is the number of binary 
logic elements and memory cells in a decoder model. 
Computational work xz is the  product XT of the number 
of logic elements X and cycles T required by a sequential 
machine model of a decoder to decode a received word. 
Computation time is the product T and ro, the maximum 
number of logic levels  between all inputs of the sequential 
machine model and all outputs, where the  inputs  and 
outputs include connections to the memory cells. Thus, 

xz = XT, and r = Tro. (3) 

We are now ready to begin our examination of each 
of the  three complexity measures. 

3. Logic complexity 
The results that have been obtained with the measure 
logic complexity are ensemble results.' A class of decoders 
is  given and a counting argument is applied to derive a 
lower bound to  the logic complexity of a very large frac- 
tion of the decoders. Upper  bounds are also given to the 
logic complexity of the most complex decoder in a class. 
These results, then,  are most  useful  when decoders of 
small logic complexity are being sought in a large collec- 
tion. 

Consider some complete set of logic elements, such as 
the set AND, OR and NOT. Consider also sequential or 
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combinational machines that have p external inputs  and q 
external  outputs.  Then, the number of such machines 
that can be constructed with logic complexity x 1  or 
less does not exceed' N ( x t )  = (2x1 + 2p + 4)i2x'+a+'). 
If there are N different decoders to build and xl, p and q 
are such that 

for some fixed t, 0 < t < 1, then, the fraction F of the 
decoders that can be built with complexity x 1  or less does 
not exceed 

If t is fixed and N is large, F will be near zero and most 
of the N decoders will require a logic complexity greater 
than xl. These arguments  are the basis for the following 
theorem. 

Theorem'; Consider a class of N different decoding 
rules realized by machines with p external binary inputs 
and q external binary outputs. Fix E, 0 < E < 1, and let 
p* be the larger of p and q. Then, for large N ,  almost 
all of the decoding rules require a logic complexity x1 
that satisfies 

1 ( 1  - E) log, N .  
'' " '* + ' 2 

log, (log, N )  

If p* is much smaller than the right-hand side, the in- 
equality applies principally to x l .  

The number of block decoding rules for codes of block 
length n and rate R is the number of mappings of n-tuples 
over ZB to the integers { 1, 2, . . , 2"R + 1 } . A simple 
counting argument shows this number to be (2"R + l)B". 
The number of generator matrices G for systematic 
binary linear codes is 2"'R(1-R' . Two such codes are 
equivalent if one  is  obtained from  the  other by the appli- 
cation of some permutation to each n-tuple. The counting 
argument that leads to N ( x l )  for combinational machines 
involves counting the number of permutations of inputs. 
With these observations we have from (6) the following. 

Theorem': Map a set of n received channel letters into 
a number of binary digits proportional to n. These binary 
digits are  to be supplied to a decoding machine. Fix 
E ,  0 < E < 1. Then, for large n, almost all block decoders 
(sequential or combinational machines) require a logic 
complexity that satisfies 

and almost all combinational bounded-distance decoders? 
of systematic binary linear codes require 

'f They correct errors out t o  one half of the minimum distance of less. 
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r~'R(1 - R )  
log? n'R(1 - R ) '  x1 - > '(' 2 - ') 

We conjecture that (8) holds also for sequential machine 
decoders. 

Similar results hold for other classes  of decoding rules. 
All that is required is the number N of distinct rules in 
the class. 

The bounds of (7) and (8) can nearly be reached. Using 
a result of Lupanov' for combinational machines one 
can prove the following theorem. 

Theorem': Given E > 0, every  block decoder for codes 
of rate R and length n can be realized with logic complexity 
xl, bounded by 

for large n. 

One can also show that every linear code can be decoded 
by a machine with logic complexity proportional to n2. 
This machine generates each of the 2nR code  words in 
succession until it finds a word that is within some speci- 
fied distance of the received word. Thus, it exhibits good 
growth of logic complexity but requires an unreasonably 
large number of decoding cycles. Logic complexity, there- 
fore, suffers because it fails to include a sufficient number 
of important decoder parameters. 

Theorem': Given 0 < t1 < 1 and 0 < t2, almost all 
decoders for block codes require a logic complexity 
bounded by 

for large reliability E on DMC's with lower bound ex- 
ponent &(R) for 0 < R < C, channel capacity. Also, 
every block decoder can be constructed with logic com- 
plexity 

where E,(R) is the random-code exponent. 

These two results follow from lower and upper bounds 
on  the probability of error  in DMC's.''' We note that 
the results hold for block decoders with or without feed- 
back from decoder to encoder since the class of all de- 
coders with and without feedback is the same. 

4. Computational work 
As stated earlier, computational work x z  is the product 
of X ,  the number of logic elements in a sequential machine 
decoder, and T,  the number of machine cycles  needed to 
decode a received word: 
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x, = XT. (1 2) 

Computational work can be interpreted as the number 
of logic uses  by a decoder. Since computation is done with 
logic elements, it is intuitively plausible that a minimum 
number of logic uses is required to achieve a reliability 
E at  rate R on a noisy DMC. We  give a lower bound to 
x2 that depends explicitly on E, R and channel parameters. 
The computational work required by several ad  hoc de- 
coding procedures has been determined' and will be 
reported here. We also bound the computational work 
required by the Schalkwijk and Kailath feedback coding 
strategies, examine a buffered feedback strategy for  the 
binary erasure channel and demonstrate the existence of 
decoders for systematic, binary linear codes whose com- 
putational work grows as the  square of block length and 
reliability. 

Let f(. ) be the decoding function realized by a sequential 
machine decoder with x2 = XT. By replicating the logic 
box of this machine T times we create a combinational 
machine with XT logic elements that computes f(-). If 
C(f) is the smallest logic complexity required to compute f 
with a combinational machine, then2 

xz = XT > C(f). (1 3) 

Using the inequality (13), one  can show that for equi- 
probable code words the smallest achievable probability 
of error P r ( X ,   T ,  R)  that  can be obtained on a given 
DMC by a sequential machine decoder with X logic 
elements in T cycles  obeys' 

P f  (X, T,  R) 2 P y  (XT, 1, R), (1 4) 

where P f ( x 2 ,  1, R) is the probability of error associated 
with a combinational machine. 

Equation (14) implies that a lower bound to proba- 
bility of error with sequential machine decoders doing 
computational work x, = XT can be obtained by exam- 
ining combinational decoders of the same logic complexity. 
Consider a combinational machine in which some output 
is connected directly to  an input. In such a machine, a 
change in  that one  input changes the  pattern of machine 
outputs  or  the decoding decision. Thus, a single error in 
that  input will result in a decoding error. 

Lemmu': On a completely connected DMC with small- 
est transition probability Pmin,  PF(XT, 1, R) > Pnin 
(with or without channel feedback) if any decoder output 
is equal to  an input. 

If the probability of error is to be very small, each 
input  can only be connected to  outputs through logic 
elements. Let n be the smallest block length consistent 
with P. = 2-E and  rate R on a given completely con- 
nected DMC.  Then, 

xz = XT 2 +n (1 5 )  

since the logic elements have at most two inputs and  the n 
received letters are converted into  at least n binary inputs 
to  the decoder. From this argument we have the following 
theorem. 

Theorem': On completely connected DMC's  for which 
there exists a lower bound to probability of error having 
exponent E,(R) (the coefficient  of block length n for n 
large) the smallest computational work required of any 
decoder that achieves reliability E at  rate R satisfies 

for large E when 0 < R < C,  channel capacity. The bound 
holds with and without channel feedback with EL(R) 
suitably defined. 

Corollary: Under  the same conditions as above, on 
DMC's 

at R = C; and  on the binary symmetric channel (BSC) 
with crossover probability p 

at R = C. 

We conclude from  the above that high coding relia- 
bility, especially at rates near channel capacity, requires 
many logic uses or a decoder that  has many logic elements, 
uses many cycles to decode, or both. 

The dependence of the bound of (16) on reliability 
cannot be substantially improved at code rates near zero 
because we can  demonstrate a decoder for codes of small 
rate whose computational work grows with E as [E/E(p)] 
log, [E/E(p)] on  the BSC  with crossover probability p ,  
where E@) > 0 for p < 1/4. The decoder corrects up to 
t errors  in a code of M code words of length n from a 
maximal-length sequence code. We fix M and let t be 
one half of the minimum distance or t E n/4. The dezoder 
is a bounded-distance decoder and generates each of the 
M code words. Each word is generated by a shift register 
containing a number of logic elements proportional to 
log, n. The number of logic elements in  other decoder 
circuits grows no faster than this, while the number of 
decoder cycles T = n. The overall decoder computa- 
tional work grows as Mn log, n and n is bounded  for 
large E by n 5 E/E(p), from which the desired result 
follows. 

The binary erasure channel (BEC) has two inputs  that 
are either received correctly or erased. (The probability 
of no  erasure  is 4. )  Although it  is not a completely con- 
nected channel, one might expect the above theorem to 
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apply. If so, the result of this  theorem is good at nonzero 
rates also, since we can show existence of a feedback 
coding strategy for  the BEC,’ the decoder of which has xz 
proportional  to [E/E,(R)] log [E/E,(R)] (and x1 propor- 
tional to log [E/E,(R)]) for large E, where E,@) is the 
random code exponent for  the BEC. 

This feedback coding strategy requires that each of 
k = nR binary digits be repeated until received correctly, 
with feedback used to determine if a  repeat is necessary.* 
Digits are released to a customer when they first arrive 
unerased so that  the spacing between decoded digits is 
not uniform. Y .  Kim  has recently shown’ that if a buffer 
is employed to space the decoded digits, then the decoder 
computational work will grow as E2 for large E. The 
essential steps in his argument are given below. 

Let  source symbols have duration t,, channel symbols 
have duration t,, assume that decoded digits are fed to a 
buffer which stores B binary digits and  that  the first 
decoded digit is supplied at time to with later digits 
following with a spacing of r e .  Let ni be the number of 
transmissions of the  jth information digit required for 
it to be received unerased for  the first time. Then, a de- 
coding error will occur if 
k 

ni > n. 
~ 

1 = I  

Suppose that  the Ith information digit has not been de- 
coded when it is supposed to be available to  the customer. 
Then, 

and if (20) holds for any 1 5 I 5 nR the event “buffer 
underflow” occurs. If more than B f I digits have been 
decoded at time to + It,, the buffer  will have “overflowed.” 
Buffer overflow occurs if 

for some B + 1 5 r 5 nR. 
The average of n j  is l / q ,  where q is channel capacity as 

well as  the probability of no erasure. If the probability 
of error, underflow or overflow is to be small, the averages 
of the  random variables on the left-hand sides of (19), 
(20) and (21) must satisfy, respectively, 

nR/q < n, 

k l q  < t o  + It,, (22) 

r&/q > to + (r - B - 1)t.. 

Also, the  total time to produce k source digits must 
equal the time to transmit I? channel digits or R = t,/t,. 

* An error occurs if more  than n repeats are required. 

But R must also be  less than channel capacity q. From 
the last inequality of (22) we then  have,  setting r = nR, 

B + 1 > (to/t,) + nR(1 - R/q).  (23) 

We also find that the buffer size must be proportional to 
n for large n. The number of logic elements required to 
create such a buffer  will be also proportional  to n and 
the number of decoder cycles Twill equal n. Consequently, 
x2 will be proportional  to n2 and  in  the best case, n cannot 
grow  faster than linearly with E. Therefore, the buffered 
feedback coding strategy described above requires a  com- 
putational work proportional to E2 for large E. This result 
suggests that  no improvement on  the E’ rate of growth is 
possible when a  uniform spacing is desired between 
decoded digits. 

We have shown previously’ that decoders for concat- 
enated  Reed-Solomon codes’ require a computational 
work 

on DMC’s, where A is a constant of the decoders, C is 
channel capacity and EJR) is the concatenated coding 
exponent. These decoders achieve this  good dependence 
on E without the  aid of channel feedback. We have also 
demonstrated’ that  the Ziv iterative decoding procedure 
does a computational work xz bounded by 

where B is a  constant of the procedure. 
Sequential decoding has been examined2 and  the argu- 

ments used to bound the computational work required 
are worth repeating here. The decoder requires a buffer 
that stores B branches or a number  X of logic elements 
that exceeds B. We put a lower bound n on the number T 
of cycles needed to decode  a block of n information digits 
and note that  the probability of buffer overflow in n 
transmissions, which results in an uncertainty in  the trans- 
mitted message, is bounded by 

where SF is the speed factor, a(R) is the  Pareto exponent, 
and  the function O(n) is such that O(n)/n -+ 0 as n -3 a. 

Since 2-E = P, 2 PBF, we solve for x2 = XT  and find 
that 

for large E and fixed S F  (which is limited by the switching 
speed of elements). Thus,  the computational  work 
of sequential decoders is exponential in E for large E 
and they are  far  from optimal in this case. 421 
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The theorem at  the end of Section 3 states that almost 
all decoders require a computational work that grows 
exponentially with reliability [note  the application of (13) ] .  
So sequential decoders are  not much better than the worst 
decoders in terms of computational work for large relia- 
bility. Nevertheless, they are still very useful in space and 
other applications where the channel is noisy but  the 
desired probability of error is not  too small. 

We turn next to  an examination of two feedback coding 
s t r a t e g i e ~ ~ ' ~  invented by Schalkwijk and Kailath for  the 
additive gaussian noise channel with noiseless delayless 
feedback. Details of the two schemes can be found  in the 
l i t e r a t ~ r e . ~ ' ~ ' ~ '  It suffices for  our purposes to observe that 
the strategy for  the infinite bandwidth channel case re- 
quires the calculation of the  quantity* 

u = MY,  i- M Yk/k ( 2 8 )  

to make a decision, where y i  is the  jth received channel 
output, A4 is  the number of code words and N is the 
number of transmissions. Here 

N 

k - 2  

M = 2Rt,  N = 2 C t ,  (29) 

where t is the duration of the messages and R and C 
are code rate  and channel capacity measured in bits. We 
wish to compare the computational work of this scheme 
with bounds derived earlier, so we assume that a peak 
power limit is applied to  the channel and  that sufficiently 
fine quantization of channel input  and  output will result 
in a channel approximating the additive gaussian noise 
channel. Under these conditions the probability of error 
islo 
pe = 2 - ~ w t ~ ~ + ~ ( t ) ~  

9 (30) 

where €(a) is a function of the  ratio a of peak to average 
power. 

When the channel is bandlimited, the new quantities 
are 

N 

U = My1 + M(a2 - 1)'" y , /ak ;  
k = 2  

(31)  
a!N = 2ct ,  

where a! is a simple function of signal to noise ratio. M 
and P, are given  by (29) and (30) except that a new €(a) 
applies. 

The two procedures require T = N cycles and  the band- 
limited channel scheme requires the  storage of numbers 
ranging from a' to ax or  at least N - 1 bits of storage. 
Therefore, the computational work of the first scheme is 
bounded by  (use X 2 1) 

xz 2 T = 2Ct,   (32) 

Here we follow Wyner.10 
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while that of the second scheme is bounded by 

x z  2 ( N -  1)N 

since the storage cells must be accessed by logic elements 
and since X 2 N - 1. Note  that these inequalities apply 
regardless of the number of bits of quantization  taken at 
the channel output. Solving for t in (32) and N in ( 3 3 )  
and  equating E with @t[l + O(t)] we have for  the infinite 
bandwidth case 

and  in the bandlimited case 

C E  
x 2  L a )  log,  ' 

Consequently, the Schalkwijk feedback coding scheme for 
bandlimited gaussian channels does not improve on con- 
catenated coding. The first scheme for channels with 
infinite bandwidth is very far  from optimal  for large E.  

We next show that  the class of concatenated codesg 
includes binary parity-check (BPC) codes or we exhibit 
decoders for BPC codes whose complexity grows as  the 
square of block length n. This compares very favorably 
with the "almost all" lower bound of (X) for  the class 
of BPC codes which grows as nz/logz n. Additionally, 
one  can show that  the probability of error  obtainable 
with these codes on  the BSC decreases exponentially 
with block length. 

Consider a Reed-Solomon (RS) outer code with code 
word symbols from GF(2"), a Galois field of charac- 
teristic 2.  Let ( i l ,  iz, . . . i,) be a code word such that 

of the word; k = II + 1 - d; d is the code minimum 
distance; and  the symbols ( ik+ly  - . . , i,) are check symbols. 
Since the RS codes are linear, the term-by-term sum of 
two code words over GF(2") is another code word. But 
the symbols can each be represented by binary m-tuples 
and field addition is then term-by-term addition, modulo 
2, of  m-tuples. Now use the m-tuples i,,  iz, . . . , i ,  as 
information digits for code words in a BPC code of length 
n*, rate r* and minimum distance d*.  If w = (wil ,   wLB, 
. . . , w t J  is a complete code word formed by this process, 
then the term-by-term sum,  modulo 2 ,  of any two such 
code words is another code word and this establishes 
that some concatenated codes are BPC codes. 

We next show that  the error-correcting capability of 
such a code is greater than  or equal to Ld/2 J X Ld*/2_1.7 
Let each inner code word be decoded and the decoder 
output represented as m-tuples. A decoding error at this 
stage will not occur if no more than Ld*/2_j channel 
errors occur. If no more than Ld/2_1 inner decoding errors 

n = 2 " -  1; (i,, iz, . , ik) are  the information symbols 

t [XJ represents  the  greatest  integer less than or equal to X. 

IBM J. RES. DEVELOP. 



occur, the decoder for  the RS outer code  can  correct 
such symbol errors. Thus, if no more than Ld/2_] X Ld*/2_] 
channel errors occur in a word of length nn*, no distribu- 
tion of these errors can  force more  than Ld/2_1 symbol 
errors  in  the  outer code and ? decoding error. 

In  the inner  code the number of information digits 
per  word is n*r* = m = log, (n + 1). Thus,  the con- 
catenated  code words have km = rn log, (n + 1) informa- 
tion digits (r is the  rate of the RS code), rate rr* and have 
normalized error-correction capability p = ( Ld/2J/n) X 
( Ld*/2_]/n*). From  the Varshamov-Gilbert-Sacks exis- 
tence theorem, we know that there exist inner codes of 
rate r* < 1 - H(2X) for large n*. Therefore, if r and r* 
are fixed, we can fix p at approximately (1 - r)X/2 for 
large n and n* and if p > p ,  the crossover probability of 
a BSC, the probability of more than nn*p errors, or a 
decoding error, will decrease exponentially in the con- 
catenated code block length nn*. 

5. Computation time 
The  third measure of decoder complexity examined here 
is the minimum decoding time T to decode a code of rate 
R with reliability E on a noisy DMC. Given  any decoder 
that executes T cycles and  has a delay of r0 per cycle, 
the time to compute outputs is 

TTO 2 7 ,  (36) 

since a combinational decoder with computation  time Tr0 
can be realized by the cascade combination of T copies 
of the logic unit in  the sequential machine decoder. 
Equation (36) justifies our use of the computation  time 
of combinational decoders to generate  a lower bound to 
computation time. 

To derive a lower bound to T on completely connected 
DMC's, we assume that some  nonconstant output of a 
combinational  decoder is a function of K received channel 
letters. Channel letters will be individually coded into 
binary-tuples so this output depends on  at least  K  non- 
constant  inputs to  the decoder. Thus,  at least log, K 
levels of logic or a  computation  time of at least log, K 
will be required. However, if Pmin is the minimum channel 
transition  probability, the probability of a  decoding error 
P. must satisfy 

pe 2 p:in (37) 

since every K-tuple has probability of at least Pzi, of 
being received and some pattern of K transmissions must 
result in a change in  the  output  or a decoding error. Thus, 
we have the following theorem. 

Theorem,: On a completely connected DMC with mini- 
mum  transition  probability of Pmin, a decoding time of T 

is required to decode any  code of rate R > 0 with relia- 
bility E. 

To show that  the lower bound  can be approached  in 
its dependence on E, we consider a form of iterated or 
concatenated in which the  outer code consists 
of a number of binary  BCH codes. To  form each outer 
code word we form k, code words of length n from a 
binary BCH  code of rate r. The k, digits in the ith posi- 
tion of each code word are collected together and used 
to select one  word from  an inner code of length N = log, n 
and  rate Ro. Therefore, 

ko = Ro log, n (39) 

and  the overall block length of a complete code word is 
No : 

No = IZ log, n. (40) 

It can be shown" that  an inner code for this  iteration 
scheme exists such that  the overall probability of error 
decreases exponentially in n. Hence, for large E, 

n < -  

where E,(R) is the concatenated coding exponentg and 
R = rRo. 

The inner decoder can be realized in disjunctive normal 
form with a number of levels of logic proportional to 
log, n. The decoder for  the BCH code can  be realized by 
a  combinational machine with a number of levels of logic 
proportional to (log, n) [log,  (log, n)]. To see this, we 
observe that 1) a decoder calculates syndromes with a 
delay proportional  to log, n since the modulo-2 addition 
of at most n binary digits is required to compute each 
digit in  the syndrome vector. 2)  With the Peterson pro- 
cedure, the number of transmission errors is determined 
by measurement of the  rank of a t X t matrix which 
requires calculation of determinants of t X t or smaller 
matrices or  the sum o f t  products, each product  containing 
t Galois field elements. Thus, a total delay proportional to 
(log, n) [log,  (log, n)] will be  required in this  step.2 3) When 
the  rank of the t X t matrix has been determined,  a matrix 
inversion is required that also has delay proportional to 
(log, n) [logz  (log, n)]. 4) The last  step is the calculation 
of error locations from  the elementary symmetric functions 
determined from  the matrix inversion above. In a com- 
binational  machine  this  step can be completed with a 
delay proportional to log, n. The  error locations are used 
to change received digits. 

The above decoder can  be realized with a delay bounded 
by F(log, n) [log, (logz n)] for some constant F, n large. 
Therefore, we have the following theorem. 

E 
E J R )  ' (41) 

Theorem: There exist decoding procedures for arbitrary 
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which have a computation  time  bounded by 

for large E, where F is a constant. 

While the lower bound  can be approached, it should be 
clear that  the decoding time of any decoder that accepts 
received channel digits sequentially must use a time pro- 
portional to  the code length n, which is at best propor- 
tional to E. Thus, the lower bound can  be reached by 
decoders that process all digits in a received word simul- 
taneously. For real-time decoding, this implies that n 
parallel channels feed the decoder. The lower bound 
might also be reached when received data  are stored in 
the memory of a computer and when these data potentially 
could be processed simultaneously. 

6.  Conclusions 
The complexity of decoders for error-correcting codes 
has been studied using three measures: logic complexity, 
computational work and computation time. Standard 
decoder models consisting of sequential machines and 
combinational machines constructed of binary logic ele- 
ments and memory cells have been used so that fair  com- 
parisons between the relative complexities of decoders 
can  be  made. 

Several classes of decoding rules have been studied 
using the logic complexity measure and we have given 
lower bounds on  the logic complexity of almost all de- 
coders in each class. This bound grows exponentially 
with block length n for  the class of block decoders and 
as n2/log, n for  the class of binary parity-check codes. 
While this  type of result is useful when selecting a class 
of decoders for examination, it is insufficient since de- 
coders with small logic complexity may require an enor- 
mous  number of clock cycles to decode a block. 

Computational work, which is defined as the product 
of the number of logic elements in a decoder and  the 
number of  cycles to decode a received word, is a more 
useful measure. A lower bound to this measure has been 
derived that is linear in decoding reliability E and in- 
versely proportional  to  the sphere-packing exponent or 

as E log E for all  code  rates less than channel capacity. 
This suggests that substantial improvement in the lower 
bound  cannot be had  at nonzero  rates  also.  However, 
there is other information to suggest that  the best lower 
bound at nonzero  rates grows as E’. This follows because 
buffering of the  output of the feedback strategy for  the 
BEC mentioned above  in order  to insure  a  uniform  separa- 
tion between decoded digits has a complexity with this 
rate of growth. 

The computational work of a number of ad  hoc de- 
coding procedures has been determined and we find that 
concatenated coding is the best of these known and  its E2 
growth is equal only to  that of the Schalkwijk bandlimited 
feedback strategy for  the peak-power-limited, additive, 
gaussian noise (AGN) channel. The Ziv iterative coding 
procedure has a complexity growing as E5, while sequential 
decoding, the Schalkwijk-Kailath white AGN channel 
feedback strategy with a peak energy constraint, and al- 
most all block decoders do a computational work that 
grows exponentially in E. The nonoptimality of these 
procedures as measured by computational work is clearly 
evident for large E. 

A lower bound to  the  third measure, computation 
time, has been derived for completely connected channzls 
which grows logarithmically in E. An iterative coding 
procedure, which is a variant of concatenated cpding, 
has been shown to be decodable in time, growing only 
slightly faster than logarithmically in E. Thus,  the be- 
havior of the best decoding time on E is essentially 
known. However, this best time cannot be reached by 
decoders that receive one digit at a time; it can only be 
reached by sequential machine decoders that execute a 
small number of  cycles, perhaps only one cycle. 

Decoders are often complex machines and  it is useful 
to have some idea of whether a given decoder is  exces- 
sively complex. These results will help in this  matter. 
Hopefully a further study of decoder complexity will 
show how to relate important parameters of important 
families of codes to decoder complexity, measured in 
some fashion.  Then, a theory of decoder complexity will 
be more helpful in design. 
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