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b-Adjacent Error Correction 

Abstract: A high-speed method  is derived for  single-symbol  error  correcting  Reed-Solomon  and  Hamming  type  codes. A matrix de- 
scription  is used for implementation of the  codes, in which  single-error  correction  in  the  Galois field 26 corresponds  to  correcting a block 
of b bits  in a binary field. The  resulting codes correct  not  only  single-bit  errors  but also single  clusters of b-adjacent-bit  errors. 

Introduction 
In the application of error correcting  codes to digital 
computer  systems,  there are a number of situations for 
which an error correcting  code  capable of correcting 
clusters of adjacent  bits in error is  uniquely  suited.  An 
example  would  be the error due to a failure in the address- 
ing circuitry of a memory  system that is  packaged in a 
b-bits-per-card  basis, where the number of bits in a memory 
word  is  equal to some kb. If a failure occurs, the resultant 
information readout from memory is likely to have a 
block of b bits in error. In this kind of application, it 
may  be  desirable to have an error correcting  code  capable 
of correcting all single-bit errors as well as all single 
clusters of b-adjacent-bit errors. 

It is  well known that many of the results from the theory 
or error correcting  codes'  apply to information that is 
coded from any  finite field. In particular, we are interested 
in codes  with  symbols from the Galois field  of 2b elements, 
i.e., GF(2b). The reason for this is twofold. In the first 
case,  single-error  correction in the field GF (2b) is equiv- 
alent to correcting a block of b bits in the binary  field. 
Secondly, the codes  with  symbols from GF (2b) have 
generally  low  redundancy. In many  cases, the theoretical 
bounds are achieved  since  each additional check  symbol 
increases the distance of the code by 1. 

The central  problem  addressed by this paper  is the 
high  speed and practical  implementation of error cor- 
recting  systems  capable  of  correcting  clusters  of errors. 
There are a number of known classes  of error correcting 
codes that have  this  property.  Among  these are the Reed- 
Solomon  codes2 and the redundant residue  polynomial 
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codes.3 In the applications for which the present  work is 
intended, the speed  of  decoding is critical as, for example, 
in a high-speed  memory or  data path. The hardware 
approaches to the decoding  problem  proposed by Peterson' 
are cyclic in nature and require a relatively  long  processing 
time. The Oldham-Chien-Tang4 approach to error cor- 
rection using Reed-Solomon  codes  is  essentially a soft- 
ware  technique. The high-speed  parallel  single-error  cor- 
rection  method  developed in this paper, being a hardware 
technique, has the time for correction  measured in terms 
of a few  logic  levels rather than in terms of a few processor 
cycles. 

The derivation of the single-symbol error correcting 
decoding  method  presented in this paper does not depend 
on the cyclic property of the codes  involved, and, in fact, 
the method  is  clearly  applicable to noncyclic  codes. The 
essential and well-known  algebraic fact is that GF (2') is 
always an extension  field  of GF (2). This is  used to describe 
the codes in a matrix form such as that proposed by 
C ~ c k e , ~  who  used this representation to show  how  any 
encoding and decoding computations could  be  performed 
in the prime field rather than in the extension  field. From 
this  matrix  description, we show  how to construct the 
high  speed  implementation for the single-error-correcting 
Reed-Solomon and Hamming  codes  with  symbols from 
GF (2b). 

Hamming-type codes  over GF (2b) 
It is  well known that a Hamming  single-error  correcting 
code can be constructed  with  symbols from any  finite 
field.  If F is  such a field, then the parity-check  matrix 
H for a single-error  correcting  code  with  elements from 
F is constructed as follows:  Choose as columns  of H all 
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the nonzero r-tuples of elements from F such that  no 
two columns of H are linear multiples of each other in 
the field F. This can be accomplished either by deleting 
all  but  one of the columns that are linear multiples of 
each other or by keeping separate  account of the linear 
multiples of every column as it is added to H so that 
new columns are  not chosen from this set. This is easy 
to  do once the multiplication and addition rules in F 
are known. Since no linear combination of d - 1 = 2 
or fewer columns of H is equal to 0, the code has d = 3 
and is capable of correcting any single error. If k such 
columns are found, an (n, k )  = (k + r ,   k)  code results, 
where n is the number of symbols per word, k is the number 
of information bits per word and r is the number of 
check symbols per word. 

In particular, if we use the field GF (2), then each 
symbol from GF (2') is equivalent to a binary b-tuple, 
and hence all b-adjacent errors occurring in  the blocks 
corresponding to  the elements of GF (2') can be corrected 
as long as only one such block of b errors occurs. 

Example 1: A code with symbols from GF (2'). In this 
example we use GF (2') = GF (2)[4 mod p(X) ,  where 
p ( X )  is the irreducible polynomial X' + X + 1. In this 
case, GF (2') consists of the elements 0, 1, a, a', which 
correspond to  the residue classes modulo p(X)  of 0, 1, 
X ,  X + 1. In vector form over GF (2) these elements or 
residue classes correspond to  the vectors 

[:I ' [:I ' [:I ' [:I* 
The addition and multiplication rules in GF (2') are 

determined by p(X) ,  and are seen to be 

+ 
0 

1 

- 

a 
2 

a! 

0 1 a a 2  x 0 1  a a 2  

0 1 a a 2  0 0 0  0 0 

1 0  a ' a  1 0 1  a a '  

a a z o  1 a o a  a2 1 

a 2 a  1 0  a2 0 a2 1 a 

- 

These rules are used to test for linear dependence rela- 
tions  among r-tuples from GF (2'). With these relations, 
it is easy to verify that  the H matrix for a single-error- 
correcting code over GF (2') is as shown in Fig. 1. This 
code could be used for single-card correction with a 2 
bit-per-card memory consisting of 64 data bits and 8 
check bits. 

Matrix description of error correcting codes  over 
GF (2'). 
For  the purpose of implementing the Hamming-type codes 
of the previous Section and  the codes to be discussed in 
later Sections, it is necessary to obtain  the H matrix in 

1 1 I I 1 ~ 2 ~ 1  I I G ~ O O I  I I I I I 1 o o o 0 o o o o o n ~ 2 ~ 1  1 0 0 0  
~ ~ a l O O n l l l l ~ ~ a n o l l l l o l o o o a ~ a l l l l o O O O 1 o o  

n o o o o o a ? a o o ~  I I 1 a 2 a 1 0  I I&,I I I 1 0 0 0 1  I 1 n o o 1  
~ ~ ~ I I I ~ ~ ~ I I I I ~ ~ ~ O O O I I I I I I O ~ O ~ ~ ~ I ~ O ~ ~ ~ I U  

Figure 1 Parity  check  matrix, H, for a single-error-correcting 
code from GF(2'3. 

binary form rather than as symbols from GF (2'). The 
essential fact necessary for accomplishing this is that  the 
field GF (2b)  is a vector space of dimension b over the 
field GF (2). Addition of two elements in  the field GF (2') 
corresponds to the bit-by-bit modulo 2 addition of their 
corresponding vector representations. Multiplication in 
GF (2b)  on the  other hand can be thought of as defining 
a set of linear transformations on  the corresponding vector 
space. Let @ be the binary vector representation for  an 
element ,8 in GF (2b). Then a linear transformation To 
is defined  by 

TdY) = eY (1) 

for all y in GF (2'), where the expression on  the right- 
hand side of Eq. (1) is the vector representation of the 
element by of GF (2'). Each such linear transformation 
can be represented by a b X b matrix with elements 
from GF (2). 

In particular, the identity element 1 of GF (2') is 
equivalent to the b X b identity matrix. Similarly,  the 0 
element is equivalent to  the b X b 0-matrix. 

Since GF (2') is equivalent to the residue class ring 
[GF (2)a  mod p(X),  where p(x> is an irreducible poly- 
nomial of degree b over GF (2), we can consider the vector 
space corresponding to GF (2b )  to be spanned by the 
vectors 

xb-1, x b - 2 ,  . . . 9 x, 1 

or 

L 

... , , 

Then a matrix TP corresponding to  the linear trans- 
formation TB is given  by the concatenation of the columns 

X""@, X b - 2 @ ,  . - , X@, @ 

so that 

T, = [X"-'& Xb-'@, - * a  , 91. ( 2 )  

With this definition, it is clear that multiplication in 
GF (2') of some p2 by PI is equivalent to the  ordinary 
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Finally, the desired  binary H matrix for a given  code 
is  constructed by replacing  each /3 in GF  (2’) by the 
b X b matrix T,. 

Example 2 (Continuation of Example 1): With the 
definition of GF  (22) given in Example 1, the 2 X 2 
matrices To, TI, T,, TZ are as shown in Eq. (3). 

T, = / l  
Ll 01 

Substitution of these  matrices into the matrix of Fig. 1 
yields the binary H-matrix. 

2-redundant b-adjacent codes 
There is an interesting  subclass of Hamming-type  codes 
over GF  (2’) that have  two check  symbols and are capable 
of single-error  correction in GF  (2’). These  codes are 
called 2-redundant for this reason, and they  will  always 
have a parity check matrix of the form 

1 1 01 

If &, p2, . * . , /3k”l, 1 are all distinct  elements of GF (2b),  
it is  clear that no  two  columns  of H are linearly  dependent 
so that the code has distance 3 and is, therefore, a single- 
error-correcting  code. The maximum  number of informa- 
tion symbols for such a code is equal to the number of 
nonzero  elements in GF  (2b),  which  is 2* - 1. If the poly- 
nomial p(X)  defining GF (2’) is chosen to be a primitive 
polynomial, then all powers of a! = { X }  are distinct so 
that every /3 in GF  (2‘) is equal to some  power of a. 
The  resulting H-matrix can  then  have the form 

It will  be  shown in a later section that this form is par- 
ticularly  useful for implementation  purposes. 

Example 3: An (80, 64) code over GF (2’). The proposed 
code is for a data length of 64 bits  configured in eight 
8-bit  cards.  Two additional “check cards” (16 bits) are 
required for error correction.  Only  one  “check card” of 
8 bits is required if it is  desired  only to detect a single 
card in error. A single card in error implies  any error 
pattern whatever, as long as only a single card has an 
error. This could  be total failure of the card or only some 
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However, for simplicity  of  decoding, that is, for a mini- 
mum number of inputs to the EXCLUSIVE-OR gates in the 
decoder, it is  very  likely that there will  be an optimal 
choice for the ai. For simplicity  let us choose 

a =  (x) 
cy2 = { X I 2  

a3 = { xi3 

CY7 = { x}7  ( 6 )  

If we  use GF (2’) = GF (2)[XJ mod (x“ + x“ + X 3  + 
X’ + l), which determines the multiplication and addition 
rules  between  elements of GF  (2’), then the matrices T,. 
are given  by (7). 

- - 
0 1 0 0 0 0 0 0  

0 0 1 0 0 0 0 0  

0 0 0 1 0 0 0 0  

1 0 0 0 1 0 0 0  

1 0 0 0 0 1 0 0  

1 0 0 0 0 0 1 0  

0 0 0 0 0 0 0 1  

T = T  = 

~ 1 0 0 0 0 0 0 0  - 

- - 

0 0 1 0 0 0 0 0  

0 0 0 1 0 0 0 0  

1 0 0 0 1 0 0 0  

1 1 0 0 0 1 0 0  

1 1 0 0 0 0 1 0  

0 1 0 0 0 0 0 1  

1 0 0 0 0 0 0 0  

T‘ == TZ = 

~ 0 1 0 0 0 0 0 0 ~  

0 0 0 1 0 0 0 0  

1 0 0 0 1 0 0 0  

1 1 0 0 0 1 0 0  

1 1 1 0 0 0 1 0  

0 1 1 0 0 0 0 1  

1 0 1 0 0 0 0 0  

0 1 0 0 0 0 0 0  

0 0 1 0 0 0 0 0  - 

- - 

T3 = T3 = 
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1 I 1 0 0 0 1 0 0 0  

1 1 0 0 0 1 0 0  
H = [  1 1 1 1 1 1 1 1  

1 a1 a2 CY3 a4 a5 a6 a' 0 1 

1 1 1 0 0 0 1 0  Substituting the matrices T,i for ai in (8) where the T,+ 

0 1 1 1 0 0 0 1  

1 0 1 1 0 0 0 0  

are given in (7) results in  the binary H-matrix of Fig. 2. 
Tt = T4 = 

9 

0 1 0 1 0 0 0 0  

0 0 1 0 0 0 0 0  

0 0 0 1 0 0 0 0  

1 1 0 0 0 1 0 0  

1 1 1 0 0 0 1 0  

0 1 1 1 0 0 0 1  

0 0 1 1 1 0 0 0  

1 1 0 1 1 0 0 0  

1 0 1 0 1 0 0 0  

0 0 0 1 0 0 0 0  

Ts = T5 

~ 1 0 0 0 1 0 0 0  - 

1 1 1 0 0 0 1 0  

~ 1 1 1 0 0 0 , ;  

0 0 1 1 1 0 0 0  

0 1 1 0 1 1 0 0  

1 1 0 1 0 1 0 0  1 : : : : : : : :  
I 1 0 1 1 1 0 0 0 1  

0 0 1 1 1 0 0 0  

Reed-Solomon  codes 
The Reed-Solomon codes are a general class of cyclic 
multiple-error correcting codes over GF (2*). In this Sec- 
tion, a matrix  description of these codes is given along 
with a modified form  for implementation. 

In Ref. 1 it is shown that  the generator polynomial 
for a distance d code with symbols from GF (2b )  is given  by 

where we will choose a to be a primitive element of 
GF (2b) .  It  has previously been shown that any element 
in  GF (2b) can be represented by a b X b binary matrix. 
The  H-matrix of the code specified by Eq. (9) can then 

(7) be  written as 

L i J i J  I. J o , . . .  , o 1_1 

where n = 2* - 1 and 1 is the b X b identity matrix 
and ri is a column vector whose entries are b X b matrices 
that represent the coefficients  of the remainder polynomial 
after dividing Xi by g ( X )  in GF (2b) .  That is, since each 
residue ri has  the  form 

ri = rioXo + r i lX + r i , P  + + ri(d-2$-2, (11) 

where each rii is an element of GF (2b),  then a matrix 
representation of the column vector 

~ 1 1 0 0 0 1 0 0 ~  is a column vector of b X b matrices corresponding to 

L1 1 1  0 0 0  1 0 1  
the r i i .  An example from GF (23) should  make these 
ideas clear. 

TI = I s ,  To = Os. Example 4 :  Reed-Solomon Code over GF Q3). The 
addition  and multiplication rules for GF (Z3) are deter- 
mined by the polynomial It is evident that  the  H-matrix of a single-error correcting 

code over GF (2') is, according to Eq. ( 9 ,  p ( X )  = X 3  + X 2  + 1 . (1 3) 405 
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Figure 2 H-matrix  for the (80, 64) 8-adjacent-error  correcting  code. 

Table 1 Addition  in GF (2') .  

f 1 T,  T,2  T,3  T,4  T,5  T,6 
~_ - 

1 0 

1 

Ta 
1 
Ta 
0 

If we make a = {X) be  a primitive element of G F  (2') 
by picking p ( X )  to be primitive, then every element of 
GF (23) is equal to a power of a, so that  the multiplica- 
tion rules are trivial. The addition rules are shown in 
Table 1. 

According to (9) we chose as the generator polynomial 
of a distance 4 code 

g ( X )  = ( X  - T)(X - T2)(X - T3) 

= X 3  + X2(T + T2 + T3) 

+ X(TJ + T4 + T3) + T6. (14) 

By applying the addition rules of Table 1, this reduces 
to 

g(X)  = X3 + X2(T6) + X(T) + T', (1 5 )  

where the Ti represent elements of GF (2*)  and a = { X )  
is primitive. Choosing a = { X )  in GF (2*)  results in 
T, being the companion  matrix of the polynomial p ( X )  = 
x3+ xz+ 1 .  

Then n = 23 - 1 = 7, and we have 

rs rj r4 r3 r2  rl  ro 

T T3 T6 Ts 1 0 
H = [l O I  

T4 T2 T 0 1 ( 1  6 )  

T2  T5 T" T6 0 0 1- 

I 

Finally, the binary form of (16) is obtained by replacing 
the symbol 1 by the b X b identity  matrix, and by re- 
placing T by the b x b companion matrix of p ( X )  = 

For implementation  purposes it may be desirable to 
have the resultant parity-check matrix of a form  in which 
all identity matrices are  in  the  top row, similar to  the 
matrix of (5). This is easily accomplished using the fol- 
lowing lemma. 

Lemma: Each column of H can  be normalized so that 
the top entry is 1, the identity of GF (2b) .  

for example, d = 4, 

x3 + x2 + 1. 

Proof: Consider  a set of d - 1 columns of H, where 

[ j ,  [;j, [ j .  (1 7 )  

These columns are linearly independent over GF (2'). 
It is also claimed that  the columns 

(1  8) 
[Tt'-<l J J L T K 3 - X 1  J 

are linearly independent. If not, then  there exists some 
T", TP',  TPk # 0 such that 

But then 

contrary to  the linear independence of (18)! Q.E.D. 
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Using now the fact that each  column  can  be normalized 
(by multiplication of each element by the inverse of the 
top element) without affecting the linear independence 
of combinations of the columns, the parity-check matrix 
(16) of Example 4 becomes 

Data and check bits 
. . .  

Excmslvr~on trec 

(21) 

These  procedures are quite general and  can be used to 
generate useful descriptions of codes for any specified 
error-correcting capability and any specified length less 
than  or  equal  to  the  natural length of the code. 

Implementation of single-error correction in GF (2') 

Decoding of Hamming-type codes in GF (2b) 
A possible method of implementing single-error correction 
with the Hamming-type codes is to use a set of (2b - l )N 
AND gates to recognize the possible syndrome  patterns. 
Here N is the length of the code word in symbols from 
GF (2')). In  the case of the (72,  64) GF (2') code of 
Examples 1 and 2 this would require 216 8-way AND gates. 

There is an  alternate method of performing the  error 
correction that reveals a clear-cut cost vs speed trade-off. 
The syndrome is computed by using an EXCLUSIVE-OR tree 
in  the conventional  manner. The syndrome is equal to 

s = ( S I ,  Sz, , S,)  . (22) 

If the ith column of H is equal to 

PI 

0 2  

then an  error e ,  in symbol i yields a  syndrome that is 
equal  to 

@,ei, h e i ,  . . . , P,ei. (24) 
Since ei is an element of GF (2b), it is equal to some power 
of CY = { X I .  Then there is some power j such that d e i  = 

1. Therefore, if the (SI, Sz, . . . , S,) are loaded  simulta- 
neously into a set of r linear feedback shift registers 
connected  according to the companion  matrix of p ( X )  
which defines GF (2b), then  after j shifts, the contents of 
the set of shift registers will be GI, Pz, . . . , PI) which can 
be recognized by a single AND gate. Since there  are N 
columns, the  total number of AND gates is equal  to N.  
This gives the  error location. Since every column of H 
contains at least one identity element, then the original 
syndrome  contains the  error magnitude in  one of the 
positions SI, S,, . . . , S,. This is gated in a bit-by-bit 
EXCLUSIVE-OR to  the  error location to produce the correct 
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Lincar feedback shift rcgister 
connected according to p ( X )  

I I 

o t+ '* A2 "+ Error signal gives 
11 I "  location of the 
I I I block in error 

Figure 3 Block diagram of single-error  correction scheme. 

information.  A block diagram of this  implementation is 
shown in Fig. 3. 

Decoding oj'2-redundant codes 
An important characteristic of the  2-redundant codes dis- 
cussed earlier lies in the method by which they may be 
decoded. The decoding procedure is first discussed in 
general and  then  the decoder for  the (80, 64) code of 
Example 3 is presented. 

Suppose that  an  error of b or fewer bits occurs in 
block i of the  data bits. This error  pattern corresponds 
to some ei E GF (2'). The syndrome that corresponds to 
this error  has  the value 

= [ li 1 = syndrome, 
CY ei 

where SI and S, are binary column vectors of b com- 
ponents. This can  be seen from (5). If the  error occurs 
in either of the check blocks, then  the syndrome has  the 
value 

[a:] = 1; 



Data and check bits w EXCLUSIVE-OR tree 

1 

I) ~- - ACI  

Error 
location 
signals 

Figure 4 Basic error-correcting scheme for  the 2-redundant 
codes. 

depending on whether the error is in the first or second 
check  block. The cases  given in (26) are easily  detected by 
AND gates  checking  either for SI = all 0’s or S, = all 0’s. 
This  is true since the case  given  by (25) can never have 
e, or e2 equal to 0, because in GF (2b) e # O* a i e  # 0,  
V aie GF (2b): a! # 0. 

For a syndrome as in (25), it can  be  shown that the 
error is in block i if and only if 

a”1 = s, , (27) 

in which  case the error of value e ,  = SI can  be added 
mod 2 to block i for error correction.  Testing for the 
conditions specified in (26) and (27) forms the basis for 
the error correction. Eq. (27) can be  rewritten as 

ai& + s, = 0 , (28) 

where + stands for bit-by-bit EXCLUSIVE-OR. 
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A set of i EXCLUSIVE-OR circuits, i = I ,  2,  . , 2b - 1, 
can  be  built to test for condition (28) using a circuit 
like that shown in Fig. 4 .  

It is easily  seen from Fig. 4 that this method of de- 
coding  requires the following  circuitry in addition to  that 
needed for generation of the syndrome  bits. K is the 
number of data blocks. 

K + 2 AND gates of b inputs 
Kb EXCLUSIVE-OR gates with an average  of b/2  -k 1 

inputs each. 

As a particular example, we have for the (80, 64) 
8-adjacent error correcting  code the following: 

10 AND gates of 8 inputs 
64 EXCLUSIVE-OR gates  with  average of 5 inputs. 

Straightforward am-gate decoding of the syndrome 
would require 2040 AND gates of 16 inputs. 

Conclusions 
Error correction  systems that have the characteristic of 
high-speed  parallel  implementation are required in com- 
puter applications.  Codes that are capable of correcting 
blocks of errors have a good potential for use due to 
their generally  low  redundancy.  However, their decoding 
speed  must  be  competitive  with other high-speed error 
correction  techniques  such as Hamming  single-error  cor- 
rection. To this  end, a high-speed  method for implementing 
single-symbol error correction  with the Reed-Solomon 
and Hamming  type  codes  with  symbols from GF (2b) 
has been derived,  using a matrix  description of these 
codes. It is  felt that the matrix  description of codes  over 
GF (2b)  can  be used to produce many other useful  results. 
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