402

b-Adjacent Error Correction

D. C. Bossen

Abstract: A high-speed method is derived for single-symbol error correcting Reed-Solomon and Hamming type codes. A matrix de-
scription is used for implementation of the codes, in which single-error correction in the Galois field 2° corresponds to correcting a block
of b bits in a binary field. The resulting codes correct not only single-bit errors but also single clusters of b-adjacent-bit errors.

Introduction

In the application of error correcting codes to digital
computer systems, there are a number of situations for
which an error correcting code capable of correcting
clusters of adjacent bits in error is uniquely suited. An
example would be the error due to a failure in the address-
ing circuitry of a memory system that is packaged in a
b-bits-per-card basis, where the number of bits in a memory
word is equal to some kb. If a failure occurs, the resultant
information readout from memory is likely to have a
block of & bits in error. In this kind of application, it
may be desirable to have an error correcting code capable
of correcting all single-bit errors as well as all single
clusters of b-adjacent-bit errors.

It is well known that many of the results from the theory
or error correcting codes’ apply to information that is
coded from any finite field. In particular, we are interested
in codes with symbols from the Galois field of 2° elements,
ie., GF (2°). The reason for this is twofold. In the first
case, single-error correction in the field GF (2°) is equiv-
alent to correcting a block of b bits in the binary field.
Secondly, the codes with symbols from GF (2°) have
generally low redundancy. In many cases, the theoretical
bounds are achieved since each additional check symbol
increases the distance of the code by 1.

The central problem addressed by this paper is the
high speed and practical implementation of error cor-
recting systems capable of correcting clusters of errors.
There are 2 number of known classes of error correcting
codes that have this property. Among these are the Reed-
Solomon codes® and the redundant residue polynomial
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codes.® In the applications for which the present work is
intended, the speed of decoding is critical as, for example,
in a high-speed memory or data path. The hardware
approaches to the decoding problem proposed by Peterson’
are cyclic in nature and require a relatively long processing
time. The Oldham-Chien-Tang* approach to error cor-
rection using Reed-Solomon codes is essentially a soft-
ware technique. The high-speed parallel single-error cor-
rection method developed in this paper, being a hardware
technique, has the time for correction measured in terms
of a few logic levels rather than in terms of a few processor
cycles.

The derivation of the single-symbol error correcting
decoding method presented in this paper does not depend
on the cyclic property of the codes involved, and, in fact,
the method is clearly applicable to noncyclic codes. The
essential and well-known algebraic fact is that GF (2°) is
always an extension field of GF (2). This is used to describe
the codes in a matrix form such as that proposed by
Cocke,” who used this representation to show how any
encoding and decoding computations could be performed
in the prime field rather than in the extension field. From
this matrix description, we show how to construct the
high speed implementation for the single-error-correcting
Reed-Solomon and Hamming codes with symbols from
GF (2.

Hamming-type codes over GF (2°)

It is well known that a Hamming single-error correcting
code can be constructed with symbols from any finite
field. If F is such a field, then the parity-check matrix
H for a single-error correcting code with elements from
F is constructed as follows: Choose as columns of H all
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the nonzero r-tuples of elements from F such that no
two columns of H are linear multiples of each other in
the field F. This can be accomplished either by deleting
all but one of the columns that are linear multiples of
each other or by keeping separate account of the linear
multiples of every column as it is added to H so that
new columns are not chosen from this set. This is easy
to do once the multiplication and addition rules in F
are known. Since no linear combination of d — 1 = 2
or fewer columns of H is equal to 0, the code has d = 3
and is capable of correcting any single error. If &£ such
columns are found, an (n, k) = (k + r, k) code results,
where n is the number of symbols per word, & is the number
of information bits per word and r is the number of
check symbols per word.

In particular, if we use the field GF (2), then each
symbol from GF (2°) is equivalent to a binary b-tuple,
and hence all b-adjacent errors occurring in the blocks
corresponding to the elements of GF (2°) can be corrected
as long as only one such block of b errors occurs.

Example 1: A code with symbols from GF (2°). In this
example we use GF (2°) = GF (2)[X] mod p(X), where
p(X) is the irreducible polynomial X* 4 X - 1. In this
case, GF (2% consists of the elements 0, 1, o, o, which
correspond to the residue classes modulo p(X) of 0, 1,
X, X 4+ 1. In vector form over GF (2) these elements or
residue classes correspond to the vectors

NERH R,

The addition and multiplication rules in GF (2°) are
determined by p(X), and are seen to be

+10 1 a o X0 1 a o
010 1 a o 0/0 0 0 O
11t 0 & «a 1101 a o
ala & 0 1 al0 a o 1
&l a«a 1 0 10 a2 1 a

These rules are used to test for linear dependence rela-
tions among r-tuples from GF (27). With these relations,
it is easy to verify that the H matrix for a single-error-
correcting code over GF (2°) is as shown in Fig. 1. This
code could be used for single-card correction with a 2
bit-per-card memory consisting of 64 data bits and 8
check bits.

Matrix description of error correcting codes over
GF (29).

For the purpose of implementing the Hamming-type codes
of the previous Section and the codes to be discussed in
later Sections, it is necessary to obtain the H matrix in
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Figure 1 Parity check matrix, H, for a single-error-correcting
code from GF(22).

binary form rather than as symbols from GF (2°). The
essential fact necessary for accomplishing this is that the
field GF (2% is a vector space of dimension b over the
field GF (2). Addition of two elements in the field GF (2°)
corresponds to the bit-by-bit modulo 2 addition of their
corresponding vector representations. Multiplication in
GF (2°) on the other hand can be thought of as defining
a set of linear transformations on the corresponding vector
space. Let § be the binary vector representation for an
element 8 in GF (2°). Then a linear transformation T, P
is defined by

Te(y) = By )

for all v in GF (2%), where the expression on the right-
hand side of Eq. (1) is the vector representation of the
element By of GF (2°). Each such linear transformation
can be represented by a b X b matrix with elements
from GF (2).

In particular, the identity element 1 of GF (2°) is
equivalent to the 4 X b5 identity matrix. Similarly, the 0
element is equivalent to the 5 X b O-matrix.

Since GF (2") is equivalent to the residue class ring
[GF (2)X] mod p(X), where p(X) is an irreducible poly-
nomial of degree b over GF (2), we can consider the vector
space corresponding to GF (2°) to be spanned by the
vectors

LXK, 1

or

1] (o) (o] (o)
0| |1 ol [0
of o}, -, :
1 1 o0
10) (0, L0} (1)

Then a matrix T; corresponding to the linear trans-
formation T} is given by the concatenation of the columns

xb-l@, Xb—zg, e, X@, @
so that
T; = {Xb—lga Xb_2@’ <, 81 2

With this definition, it is clear that multiplication in
GF (2% of some @, by 8, is equivalent to the ordinary
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vector-by-a-matrix multiplication of the vector 3, by the
matrix T, .

Finally, the desired binary H matrix for a given code
is constructed by replacing each 8 in GF (2°) by the
b X b matrix Ts.

Example 2 (Continuation of Example 1): With the
definition of GF (2°) given in Example 1, the 2 X 2
matrices T,, Ty, T,, TZ are as shown in Eq. (3).

T, = [0 OJ, T, [1 0]
0 0 0 1

T, = [1 l] N [0 l]- 3)
1 0 1 1

Substitution of these matrices into the matrix of Fig. 1
yields the binary H-matrix.

i

2-redundant b-adjacent codes

There is an interesting subclass of Hamming-type codes
over GF (2°) that have two check symbols and are capable
of single-error correction in GF (2°). These codes are
called 2-redundant for this reason, and they will always
have a parity check matrix of the form

Hz[ll L,y 11 0] @
1 Bl st a.Blc—l 0 l,i

If 81, Bay *+ - 5 Bus, 1 are all distinct elements of GF (2°),
it is clear that no two columns of H are linearly dependent
so that the code has distance 3 and is, therefore, a single-
error-correcting code. The maximum number of informa-
tion symbols for such a code is equal to the number of
nonzero elements in GF (2"), which is 2° — 1. If the poly-
nomial p(X) defining GF (2°) is chosen to be a primitive
polynomial, then all powers of @ = {X} are distinct so

that every 8 in GF (2%) is equal to some power of o.
The resulting H-matrix can then have the form

H:[l T 1, -, 1 1 Ojl’ )
0 2 262

a o o, o, 0 1

It will be shown in a later section that this form is par-
ticularly useful for implementation purposes.

Example 3: An (80, 64) code over GF (2%). The proposed
code is for a data length of 64 bits configured in eight
8-bit cards. Two additional ‘“check cards” (16 bits) are
required for error correction. Only one “check card” of
8 bits is required if it is desired only to detect a single
card in error. A single card in error implies any error
pattern whatever, as long as only a single card has an
error. This could be total failure of the card or only some
of the bits in error.
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Let o, o, --+ , &’ be the vector representation of
distinct nonzero and nonidentity elements of GF (2%).
However, for simplicity of decoding, that is, for a mini-
mum number of inputs to the EXCLUSIVE-OR gates in the
decoder, it is very likely that there will be an optimal
choice for the «. For simplicity let us choose

a = { X}
a7; {x}7. 6

If we use GF (2% = GF (2)[X] mod (X* + X* + X* +
X?+ 1), which determines the multiplication and addition
rules between elements of GF (2%), then the matrices T,
are given by (7).

01 000000
00100000
0001000 O
T, o1 |l 0001000
1 0000100
10000010
0000O0O0O0 1
1 000000 O]
[0 01 0 00 0 0]
0001000 0
10001000
oo |l 1000100
1 100001 0
0100000 1
1000000 0
001 0000 0 0
00010000
1 0001000
11000100
Popo|l L1000 L0
0110000 1
10100000
0100000 0
001 000 0 0
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1000100 0
110007100
{1 110001 0
oo |01 110001}
10110000
01010000
001000O0 0
0001 00 0 0]
(11 0001 0 0
1110001 0
01110001
¥ 00111000
11011000
1 0107100 0 -
0001000 O
L10001000¥
111000 1 0
0111000 1
0011100 0
oo _ (0001 1100}
011017100
11010100
1 000100 0
1 100010 0
0111000 1
00111000
00011100
Yoo |l 0001110
001107110
01101010
11000100
1 1100 0 1 0

T, = I, Ty, = 0.

It is evident that the H-matrix of a single-error correcting
code over GF (2% is, according to Eg. (5),

JULY 1970

a a a a 24 [0 a

Substituting the matrices T,: for ' in (8) where the Tq:
are given in (7) results in the binary H-matrix of Fig. 2.

Reed-Solomon codes
The Reed-Solomon codes are a general class of cyclic
multiple-error correcting codes over GF (2°). In this Sec-
tion, a matrix description of these codes is given along
with a modified form for implementation.

In Ref. 1 it is shown that the generator polynomial
for a distance d code with symbols from GF (2°) is given by

gX) = X — )X — &), -+, (X — '™, )

where we will choose o to be a primitive element of
GF (2%. It has previously been shown that any element
in GF (2°) can be represented by a b X b binary matrix.
The H-matrix of the code specified by Eq. (9) can then
be written as

Fact Faca s "o s Fay Taczs * '+ 5 1 Fo
i A 1,-+-,00]
0
H = e . (10)
0, ---,10
0,--,0 1]

L. J "

where n = 2° — 1 and 1is the b X b identity matrix
and r; is a column vector whose entries are b )X b matrices
that represent the coefficients of the remainder polynomial
after dividing X* by g(X) in GF (2%). That is, since each
residue r; has the form

= roX X+ re X4 - + ri(d~2)Xd_2’ an

where each r;; is an element of GF 2", then a matrix
representation of the column vector

f
Tia-2)

r, = : (12)

Tio
is a column vector of b X b matrices corresponding to
the r;;. An example from GF (2% should make these
ideas clear.
Example 4: Reed-Solomon Code over GF (2°). The
addition and multiplication rules for GF (2%) are deter-
mined by the polynomial

X=XxX4+xX+1, (%))
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[ | | |

Figure 2 H-matrix for the (80, 64) 8-adjacent-error correcting code.

Table 1 Addition in GF (2°).

+ 1 T, T.2 To® Tat Tu5 Tab
1 0 T8 Tt T Tub Tt T,
T, T, 0 Tt 1 T,2 T,% T,
T,2 | T,0 Tu* O T, T, T, 1
T, | T, 1 T,5 0 TS T, T,
Tt | T,° Tu? T. Ta* O 1 T.?
T, | Tot Tef T8 T2 1 0 T,
TS | T2 Tof 1 T, T.° T. 0

If we make o = {X} be a primitive element of GF (2%)
by picking p(X) to be primitive, then every element of
GF (2% is equal to a power of «, so that the multiplica-
tion rules are trivial. The addition rules are shown in
Table 1.

According to (9) we chose as the generator polynomial
of a distance 4 code

g(X) = (X — TN(X — T°}(X — T
=X+ X(T+T+ 1
+ X(T° + T + T% + T° (14)

By applying the addition rules of Table 1, this reduces
to

gX) = X' + X*(T°) + X(T) + T, s)
where the T° represent elements of GF (2°) and o = {X}
is primitive. Choosing o = {X} in GF 2" results in
T, being the companion matrix of the polynomial p(X) =
X+ X+ 1.

Then n = 2° — 1 = 7, and we have

e I; Iy Iy Iy Iy Ig

(T ™ T T 1 0 ojl
H = Ll ™ T T 0 1 0f- (16)
™ T T T 0 0 1‘1
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Finally, the binary form of (16) is obtained by replacing
the symbol 1 by the b X b identity matrix, and by re-
placing T by the » X b companion matrix of p(X) =
X+ x4 1.

For implementation purposes it may be desirable to
have the resultant parity-check matrix of a form in which
all identity matrices are in the top row, similar to the
matrix of (5). This is easily accomplished using the fol-
lowing lemma.

Lemma: Bach column of H can be normalized so that
the top entry is 1, the identity of GF (2°).

Proof: Consider a set of d — 1 columns of H, where
for example, d = 4,

Tz‘l Til Tkl
T, T, T |- (17)
Ti3 T:’S Tlc3

These columns are linearly independent over GF (2°).
It is also claimed that the columns

1 1 1
Ti2-it Tiz-it e (18)
Ti3vil T:f3—il Tk3—kl

are linearly independent. If not, then there exists some
T, T77, T"* 0 such that

1 1 1
TE T2 TR T 4 TP TR = 0. (19)

Ti3‘i1 TiSA:fl Tk3-—k1
But then
Til Til Tkl

TPi—H: Ti2 + TPi+i1 Tiz + TPk+h Tkz = 0 (20)
Ti3 Ti3 Tks

contrary to the linear independence of (18)! QE.D.
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Using now the fact that each column can be normalized
(by muitiplication of each element by the inverse of the
top element) without affecting the linear independence
of combinations of the columns, the parity-check matrix
(16) of Example 4 becomes

1 1 1 1 1 0 O
H= T T T T 0 1 0/ 21
T T T 1 0 0 1
These procedures are quite general and can be used to
generate useful descriptions of codes for any specified

error-correcting capability and any specified length less
than or equal to the natural length of the code.

Implementation of single-error correction in GF (2°)

o Decoding of Hamming-type codes in GF (2")
A possible method of implementing single-error correction
with the Hamming-type codes is to use a set of (2° —1)N
AND gates to recognize the possible syndrome patterns.
Here N is the length of the code word in symbols from
GF (2°). In the case of the (72, 64) GF (2°) code of
Examples 1 and 2 this would require 216 8-way AND gates.
There is an alternate method of performing the error
correction that reveals a clear-cut cost vs speed trade-off.
The syndrome is computed by using an EXCLUSIVE-OR tree
in the conventional manner. The syndrome is equal to

S=(5,95,",S). 2
If the ith column of H is equal to
B
Bt 23)
B.

then an error e; in symbol i yields a syndrome that is
equal to

Bie:s o€y <0, Bre;. 24)
Since e, is an element of GF (2°), it is equal to some power
of @ = {X}. Then there is some power j such that oe; =
1. Therefore, if the (S1, S», -+ , S,) are loaded simulta-
neously into a set of r linear feedback shift registers
connected according to the companion matrix of p(X)
which defines GF (2°), then after j shifts, the contents of
the set of shift registers will be (3,, 8z, - - - , 8.) which can
be recognized by a single AND gate. Since there are N
columns, the total number of AND gates is equal to M.
This gives the error location. Since every column of H
contains at least one identity element, then the original
syndrome contains the error magnitude in one of the
positions S, Ss, --- , S,. This is gated in a bit-by-bit
EXCLUSIVE-OR to the error location to produce the correct
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Data and check bits

L

EXCLUSIVE-OR trec

B connected according to p(X)

hith D

Y S, e S, ~Lincar feedback shift register

Error signal gives
location of the
block in error

.

Figure 3 Block diagram of single-error correction scheme.

Ay f—>

information. A block diagram of this implementation is
shown in Fig. 3.

o Decoding of 2-redundant codes

An important characteristic of the 2-redundant codes dis-
cussed earlier lies in the method by which they may be
decoded. The decoding procedure is first discussed in
general and then the decoder for the (80, 64) code of
Example 3 is presented.

Suppose that an error of » or fewer bits occurs in
block i of the data bits. This error pattern corresponds
to some ¢; & GF (2°). The syndrome that corresponds to
this error has the value

[SIJ = [ %'I } = syndrome, (25)
S2 (Xlei

where S, and S, are binary column vectors of b com-
ponents. This can be seen from (5). If the error occurs
in either of the check blocks, then the syndrome has the

value
0

N

or
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Data and check bits

EXCLUSIVE-OR tree

a0 S
1
®g 4y * Error'
2 location
signals
afl §,
® A
SZ

Figure 4 Basic error-correcting scheme for the 2-redundant
codes.

depending on whether the error is in the first or second
check block. The cases given in (26) are easily detected by
AND gates checking either for S; = all 0’s or §; = all 0’s.
This is true since the case given by (25) can never have
e, or e, equal to 0, because in GF (%) e # 0= a'e # 0,
V a'e GF 2"): a # 0.

For a syndrome as in (25), it can be shown that the
error is in block i if and only if

aisl = S2 N (27)

in which case the error of value e; = S, can be added
mod 2 to block i for error correction. Testing for the
conditions specified in (26) and (27) forms the basis for
the error correction. Eq. (27) can be rewritten as

oS+ 8,=0, (28)

where 4 stands for bit-by-bit EXCLUSIVE-OR.
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A set of { EXCLUSIVE-OR circuits, i = 1,2, --- , 2" — 1,
can be built to test for condition (28) using a circuit
like that shown in Fig. 4.

It is easily seen from Fig. 4 that this method of de-
coding requires the following circuitry in addition to that
needed for generation of the syndrome bits. K is the
number of data blocks.

K -+ 2 aND gates of b inputs
Kb EXCLUSIVE-OR gates with an average of 4/2 + 1
inputs each.

As a particular example, we have for the (80, 64)
8-adjacent error correcting code the following:

10 AnD gates of 8 inputs
64 EXCLUSIVE-OR gates with average of 5 inputs.

Straightforward AnD-gate decoding of the syndrome
would require 2040 AND gates of 16 inputs.

Conclusions

Error correction systems that have the characteristic of
high-speed parallel implementation are required in com-
puter applications. Codes that are capable of correcting
blocks of errors have a good potential for use due to
their generally low redundancy. However, their decoding
speed must be competitive with other high-speed error
correction techniques such as Hamming single-error cor-
rection. To this end, a high-speed method for implementing
single-symbol error correction with the Reed-Solomon
and Hamming type codes with symbols from GF @5
has been derived, using a matrix description of these
codes. It is felt that the matrix description of codes over
GF (2") can be used to produce many other useful results.
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