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A Class of Optimal  Minimum  Odd-weight-column 
SEC-DED  Codes 

Abstract: The class of codes described in this paper is used for single-error correction and double-error detection (SEC-DED). It is 
equivalent to the Hamming SEC-DED  code  in the sense that for  a specified number k of data bits, the same number of check bits r 
is used. The minimum odd-weight-column code is suitable for applications to computer memories or parallel systems. A computation 
indicates that this code is better in performance, cost and reliability than are conventional Hamming SEC-DED codes. 

Introduction 
Single-error-correction, double-error-detection codes  (SEC- 
DED)  are widely  used to increase computer memory 
reliability. Examples are error-correction code (ECC) 
systems for the IBM 7030 and the IBM System/360 
Model 85. It has been  shown that a memory  with ECC, 
compared to a memory without ECC or  to two memories 
in a duplex configuration, has greatly improved relia- 
bility, as judged by performance, cost and size. This 
improvement is especially  evident  when the memory sys- 
tem is packaged in a one-bit-per-card base. The new 
packaging concept was first  discussed by  Allen,’  who 
organized the conventional memory  system into  the for- 
mat shown in Fig. 1 so that most error patterns on each 
card appear as if they  were  single errors. 

From an error correction point of  view, the scheme 
in Fig. 1 can easily handle errors in the sense  amplifier, 
bit driver, etc. In these cases,  each  memory  cell associated 
with a given code word is selected independently of all 
other cells in  the same code word. Note that the single 
large memory has been  replaced  by a number of smaller 
submemories, each  having an independent set of drive 
and sensing  circuits. This concept facilitates the use  of 
random-error-correcting codes. SEC-DED codes  may  be 
practically implemented in this application in contrast 
to double- or multiple-error-correction codes, which  re- 
quire a greater number of check bits and usually  need a 
more complicated and lengthy decoding process. 

The codes  described in this paper improve upon the 
conventional or modified Hamming SEC-DED codes’  by 
simplifying the hardware implementation and providing 
faster and better error-detection capability. The approach 

tory, Poughkeepsie, New York. 
The  author is located at the IBM Systems Development Division Labora- 

Addresslng 
I 

I 0 1 ,  k )  codeword  rcgister I 
Figure 1 One-bit-per-card organization. 

used to derive the codes  is  based on the corollary to 
Theorem 3.1 stated by Peter~on:~ 

“A code that is the null space of a matrix H has minimum 
weight (and hence minimum distance) at least w if and 
only if  every combination of w - 1 or fewer  columns of 
H is linearly independent.” 

Constructing  optimal  odd-weight  column  codes 
In order to have a SEC-DED code, the minimum weight 
requirement is 4, which  implies that three or fewer columns 
of the H-matrix are linearly independent. One way to 
satisfy this condition is to have the columns of the H- 
matrix meet the following constraints: 

1) There are no all-0  columns. 
2)  Every column is distinct. 395 
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3)  Every column contains an odd number of  1’s  (hence 
odd weight). 

The first  two constraints give a distance-3  code. The 
third constraint guarantees the code thus generated to 
have  distance 4. The proof of this is  simply to consider 
that the modulo-2  sum of any three odd-weight  columns 
never equals 0. In general, the modulo-2  vector addition 
of any odd number of odd-weight  vectors always  gives 
an odd-weight  vector, and any even number of odd- 
weight  vectors  gives an even-weight vector  including the 
weight-0 vector. This general  statement is actually used 
for double-error detection.  Next, it is realized that the 
total number of  1’s in each  row of the H-matrix relates 
to the number of logic  levels*  necessary to generate the 
check  bit or syndrome  bit of that row. Let ti be the total 
number of  1’s in the ith  row, and Ci and Si be the check 
bit and syndrome  bit specified  by the ith  row of the H- 
matrix,  respectively.  Then we have 

lCi = rlog, (ti - 111 (1) 

lsi = nog,  t i l  , (2) 

where 

lCi = the number of logic  levels  required to generate Ci 

lsi  = the number of logic levels required to generate Si 
if only a v-input  modulo-2 adder is  used, 

if only a u-input  modulo-2  adder  is  used, 

and [X1 is the smallest  integer  greater than or equal to 
X .  In practical applications, u is fixed for a given  circuit 
family.  Therefore, to minimize lSir the minimum ti  is 
desired. If all ti(i = 1,2, . . . , r)  are minimum and equal, 
then we have the fastest  encoding and error detection in 
the decoding  process.  These are the most  critical  on-line 
processes in the memory operations. In general, the code 
with  minimum ti also  requires  less hardware for imple- 
mentation. Less hardware not  only  implies  lower  cost 
but  also  means  better  reliability,  i.e., if the implementa- 
tion takes  less  hardware, it has less chance of failure, 
since  every  circuit has an intrinsic failure rate. Therefore, 
the minimum  number of ti for all i is very important 
from a practical point of  view. The codes  constructed 
by the process  suggested in this paper always have fewer 
1’s in the H-matrix than the Hamming SEC-DED codes. 
In  the following  section the actual construction procedures 
are given. 

Construction procedures 
The construction of the code is best  described in terms of 
the parity-check  matrix H. The selection of the columns 
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of the H-matrix for a given (n, k )  code is based on the 
following three constraints: 

1) Every column should have an  odd number  of 1’s; 
i.e.,  all  column  vectors are of odd weight. 
2) The total number of 1’s in the H-matrix should be a 
minimum. 
3) The number of 1’s in each  row of the H-matrix should 
be made equal, or as close as possible, to the average 
number,  i.e., the total number of 1’s in H divided by 
the number of rows. 

These constraints obviously  result from the reasons 
stated in the previous  section. If r parity-check  bits are 
used to match k data bits, the following equation must 
be true: 

( ; ) 2 r + k .  
1 =odd 

It can be  shown that this code uses the same  number of 
check bits as that of the Hamming SEC-DED code. For 
an unshortened  Hamming SEC-DED code, we have 

2r-1 = k +- r , (4) 

but 

and 

therefore, 

i -odd 

By comparing  Eqs. (4) and (7), one sees that the  same 
number of  check bits  is  required for both  codes. The H- 
matrix  is  constructed  as  follows: 

1) All (1) weight-1  columns are used for the r check-bit 
positions. 
2) Next, if (i) 2 k ,  select k weight-3  columns out of 
all  possible ( g )  combinations. If (I) < k,  all (I) weight-3 
columns  should  be  selected. The leftover  columns are 
then  first  selected from among all (L) weight-5  column, 
etc. Thc process  is  continued  until all k columns  have 
been  specified. 

If codeword  length n = k + r i s  exactly equal to 

g (;) 
i =odd 
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Table 1 Sample examples on code parameter relations. 

n 

22 

26 

30 

39 

43 

47 

5 5  

72 

80 

88 

96 

104 

112 

120 

I28 

130 

137 

k r Structure of H Total number Average number 
of 1's in H of 1's in H (for  rows) 

8 

9 

10 

11 

16 

20 

24 

32 

36 

40 

48 

64 

72 

80 

88 

96 
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112 

120 

121 
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4 

5 

5 

5 

6 

6 

6 

7 

7 

7 

1 

8 

8 

8 

8 

8 

8 

8 

8 

9 

9 

16 

32 

35 

40 

54 

66 

86 

103 

117 

157 

177 

216 

256 

296 

336 

376 

416 

456 

512 

446 

481 
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6.4 

7 

8 

9 

11 

4.3 

4.7 

6.7 

22.4 

25.3 

27 

32 

3 1  

42 

47 

52 

57 

64 

49.6 

53.4 

1 

1 
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Figure 2 H matrix of the (22, 16) SEC-DED code. 

for some odd j 5 r,  each row of the  H-matrix will have 
the following number of  1’s: 

- i t )  = [ r +  3 
1 i < r  r(r - 1 )(r - 2) 
r 2 = 1  3! 

z =odd 

If n is not exactly equal to 

i =odd 

for some j ,  then the arbitrary selection of the (I) cases 
should  make the number of  1’s in each row close to  the 
average number, as shown in Table 1. 

The double-error detection is accomplished by exam- 
ining the over-all parity of all syndrome bits. If one has 
an even number of syndrome bits, then an even number 
of errors  has occurred. Since all errors  are assumed to 
be statistically independent, multiple even errors are 
treated as if they were double errors. This double-error 
detection is different from the  Hamming code. In  the case 
of Hamming code, a special bit, which is generated by an 
all-1 row (n 1’s) in the  H-matrix, is examined to deter- 
mine whether a single (odd) or double (even) error  has 
occurred. The elimination of the all-1 row in  the H-matrix 
improves the speed of encoding and decoding for  error 
detection. Another  important  property of the parity-check 
matrix, which improves the speed of encoding and de- 
coding for error detection, is the reduced number of l’s 
in  the H-matrix, which is always less than  in Hamming 
codes. Moreover, the new H-matrix is designed so that 
ti 5 [ A ]  for all i and r A 1  (the average number shown 
in Table 1) is always less than  the number of  1’s in  the 
row containing the maximum number of  1’s in the H- 

398 matrix of the  Hamming  SEC-DED code. 

Illustrative  examples 
In this section several parity-check matrices for  data 
lengths 16, 32 and 64 are constructed. The matrices use 
6, 7 and 8 check bits, respectively. Figure  2 shows the 
parity-check matrix for 16 data bits and 6 checks bits. 
It is constructed according to  the n = 22 row of Table 1. 
Note  that there are 6 columns corresponding to  the 6 
possible combinations of 1-out-of-6 and 16 columns cor- 
responding to 16 of the 20 possible combinations of 
3-out-of-6. The  total number of  1’s in  the H-matrix, 
therefore, is  equal to 6 + (3 X 16) = 54 and  the average 
number of  1’s in each row is equal to 54/6 = 9. This 
implies that if a three-way EXCLUSIVE-OR gate is used 
( u  = 3), the check bits and syndrome bits can be generated 
in two levels. In  the conventional Hamming code, three 
levels are required to use the same kind of EXCLUSIVE-OR 

gate. Figure 3 shows the hardware  layout for  the decoder. 
The encoder can be obtained from  the first part of the 
decoder without using check bits as inputs. 

Figure  4 shows the parity-check matrix of the code 
having 32 data bits and 7 check bits. Figures 5 and 6 
show the H-matrix of the code for 64 data bits and 8 
check bits. In these figures, the eight consecutive 1’s  of 
each data byte section are used to generate the byte 
parity-bit, which requires no  additional  hardware and is 
generated before the syndrome bits. These byte parity- 
bits are usually required when the word is sent to  the 
central processing unit. 

Evaluation of the capability of (72,64) codes 
In this section, the capabilities of the modified Hamming 
(72,  64) code and  the (72,  64) codes of Figs. 5 and 6 in 
this  paper are compared. The comparison is based on  the 
assumptions that each code is designed for a binary sym- 
metric channel and  that  the occurrences of multiple errors 
are statistically independent. Since the (72,  64) codes are 
shortened codes and  are used for single-error correction 
and double-error detection, there are cases in which triple 
errors provide syndrome  patterns outside the columns of 
the code’s parity-check matrix. In these cases, the triple 
error will be correctly detected. If the triple error gives 
a syndrome pattern coinciding with another column, the 
decoder is forced to perform a miscorrection. It is im- 
portant  to minimize the probability of miscorrection. The 
miscorrection probability,  denoted by P3, can be com- 
puted as 

\ 3 J  

where W(4) is the number of codewords having weight 4. 
Equation (9) indicates that among  all possible (7) triple 
error patterns, the number of miscorrection cases is  4 W(4). 
Next, among  all the possible error  patterns,  there are 
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Figure 3 Card layout for ECC encoder and decoder. 

Figure 

1 
2 
3 

H= 4 
5 
6 
7 

Error 
detected 

(s,+s,+s3+s,+s5+s6) 
Double 
error 

Single 
error 

4 0  
“1 
“ - 4 2  

* Corrected . output 

- c5 - ‘6 

4 Parity-check  matrix of the (39, 32) SEC-DED code. 
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Figure 5 Parity-check  matrix of the (72, 64) SEC-DED code, version 1.  

Figure 6 Parity-check  matrix of the (72, 64) SEC-DED code, version 2. 

Table 2 Probability of miscorrection  and error detection for 
(72,64)  codes. 

Probability of Probability 
rniscorrected of detected 
triple errors quadruple errors 

Code  type W(4) (percent)  (percent) 

1) Modified 
Hamming 
code 11313 75.88 98.9 

2) Fig. 5 code 8392 56.28 99.19 
3) Fig. 6 code 8404 56.39 99.18 

W(4) cases that will  give zero  syndrome and  thus be 
undetected. Let P4 be the probability of undetected quad- 
ruple  errors, given that  four  errors have  occurred;  then 

W(4) p ,  = -. 
(Y)  

Since the probability of having one bit in error is low 
(e.g.,  of the  order of we can assume that  the proba- 

bility  of having a large number of multiple errors is very 
small. Two computer  programs were used, separately, to 
find the weight distributions of the three (72, 64) codes. 
Table 2 compares  various P3 and P., for given “(4). 
Clearly, the codes of Figs. 5 and 6 give better results. 

Conclusions 
We have  demonstrated a new  way of contructing a class 
of SEC-DED codes that uses the  same number of check 
bits as the Hamming SEC-DED code but is superior in 
cost, performance and reliability. For single-error correc- 
tion  and double-error detection, the class of codes pre- 
sented here is suitable for computer applications. The 
condition of having a minimum  number of 1’s in  the 
rows of the parity-check matrix permits  fast generation 
of check bits and syndrome bits. This rapid  generation 
of bits is  important regardless of whether the system has 
an  error  or  not. Because of the minimum number of l’s, 
there is a savings in code  implementation.  This  feature 
also permits minimizing the hardware. Since any hard- 
ware circuit has an intrinsic  failure  rate, however low, 
a reduction in  hardware tends to lower the failure rate 
of the decoders. 

Finally, it was shown that this class of codes has better 
error detecting capability for triple and quadruple errors 
than  do  the conventional modified Hamming codes. 
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