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Orthogonal  Latin  Square  Codes 

Abstract: A new  class  of  multiple-error  correcting  codes  has  been  developed.  Since it belongs to the class of one-step-decodable 
majority  codes,  it  can  be  decoded at an  exceptionally  high speed. This  class of codes  is  derived from a set of mutually  orthogonal 
Latin  squares.  This  mutually  orthogonal  property  provides a class of codes  having a unique  feature of “modularity.”  The  parity check 
matrix possesses a uniform  pattern  and  results  in a small  number of inputs to modulo 2 adders.  This  class of codes has m2 data bits, 
where rn is an  integer,  and 2tm check  bits for  t-error  correcting. 

Introduction 
The paper deals with the class of one-step majoriyt- 
decodable codes. In general, a t-error correcting majority- 
decodable works on  the principle that  2t + 1 
copies of each  information  bit are generated from  2t f 1 
independent sources. One copy is  the bit itself received 
from memory or any  transmitting device. The  other 2t 
copies are generated from 2t parity  relations involving 
the bit. By choosing a set of h Latin squares that  are 
pairwise orthogonal, one can  construct a parity check 
matrix such that  the number of 1’s in each column is 
2t = h f 2. The orthogonality  condition ensures that 
for any  bit b, there exists a set of 2t parity check equations 
orthogonal  on bi, and  thus makes the code self-orthogonal 
and one-step majority decodable. One-step majority de- 
coding is  the fastest  parallel decoding method. 

The only related  work we have found  in  the literature 
is  that of Olderoge’ of the Soviet Union. He discovered 
a class of double-error correcting and triple-error de- 
tecting codes using a single Latin  square  to construct 
a set of row  and column  parity check equations. 

Besides being one-step majority decodable, our codes 
are constructed in such a way that  the decoder can be 
built in  modular  form; i.e., each additional module adds 
a further  error correction capability without affecting the 
existing modules. This feature of modularity results from 
parity check equations that  are constructed in  modular 
form. 

The t-error correcting codes generated by the method 
of this paper have m2 data bits and 2tm check bits  per 
word. The minimum distance between words is d = h f 3, 
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where h is the number of orthogonal Latin squares that 
can  be  constructed with m elements. The relation between 
rn and h is given by 12 = min (psi  - l), where the pti 
are integer powers of the prime  factors of the integer m. 

Orthogonal Latin sqwares  and error correcting  codes 
In this section, we shall show how the properties of a 
set of orthogonal Latin squares  can  be used to construct 
the parity check matrix of a t-error correcting majority- 
decodable code. The  method of constructing orthogonal 
Latin squares is included in  the Appendix. The reader 
may either refer to  the Appendix or find the existing 
orthogonal  Latin squares from  the  table of Fisher and 
~ a t e s . ~  

We shall first review the properties of the parity check 
matrix that  are related to the requirement that  the code 
be  majority de~odable .~  

Consider a parity check matrix of a linear code. A set 
of parity equations  is said to be orthogonal  on  the digit 
di if, for  any two panty equations c1 and c2 that contain 
dj, di is  the only common variable involved in c1 and c2. 
Now, if there is a set of 2t + 1 parity  equations orthogonal 
on d,, then di can be decoded correctly by majority coding 
in  the presence of t errors.  This is true since each error 
can  alter at most one  vote of the majority gate. The pre- 
ceding information is specifically stated  in  the following 
theorem. 

Theorem I t 4  If, in a linear code, there are at least d - 1 
check sums orthogonal  on each digit, then  the code has 
minimum  distance at least d. 

This theorem implies that  the number of 1’s in each 
column of the  data-bit positions of the parity check 
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matrix H should  be at least 2t for t-error correction. 
In  the codes that we derive, the number of 1's in each 
column is exactly 2t. The code is self-orthogonal4 and 
noncyclic. This t-error correcting code can  be derived 
from  the existing orthogonal  Latin squares discussed in 
the following section. 

Definition:" A Latin  square of order (size) rn is  an 
rn X m square  array of the digits 0, 1, . . . , rn - 1, with 
each  row and column  a  permutation of the digits 0,1,  * , 
rn - 1. Two  Latin squares are orthogonal if, when one 
Latin  square is superimposed on  the  other, every ordered 
pair of elements appears only once. 

Let  the r n 2  data bits  be  denoted by a vector 

Then  the 2mt check-bit equations for t-error correcting 
are obtained from  the following parity check matrix H: 

I z t ,  is an identity matrix of order 2tm and MI, . , MZl 
are submatrices of size rn X m2. These submatrices 
MI .. . M,, have the  form 

1 1  0 . .  1 1 

M, 2 [ I,I, . . * Im],Xrns. (4) 

The matrices M,, . . . , M,, are derived from  the existing 
set of orthogonal  Latin squares L1, L,, . . . , LZl-2 of 
size rn X rn. Denote  the set of Latin squares as 

where 

For any given Latin square  having rn elements, one 
can associate an incidence matrix defined on  one of its 
elements as follows. 

Definition: Let L = [fiilmXm be a Latin square; then 
an incidence matrix defined with respect to  the element 
p(1 5 p 5 rn, integer), denoted by Q ,  = [LI~:~], is defined 
by the rules 

For each Latin  square of rn elements, there exist rn 
incidence matrices Q1, Q2, * 9 , Q,. Each incidence 
matrix is concatenated into a vector form, 

v, = [ d l  * * *  qlnqzl . * .  * * .  d l  . . .  4 L I .  (7) ,I" 
If submatrix Mi is derived from a unique Latin square 

Lj, then 

where V1, V,, . . . , V, are derived from Lj. 
The above  procedures  lead to the following theorem. 

Theorem 2:  For  an existing set of X, m X m orthogonal 
Latin squares (X, 5 m - l), there exists a t-error  cor- 
recting code, where* 

t = 1+] + 1 

under the previously described procedures of constructing 
the H matrix. 

Proof: We show that  the entire  set of parity check 
equations specified by the H matrix is "pairwise" orthog- 
onal.  This is clearly true  for  the equations in MI and M2. 
For M3, MI, ... , M,,, no two elements of an Mi have 
any intersections. Suppose now that  an element of Mi 
and  an element of Mj  for i, j = 3, 4, . , 2t and i # j 
have  more than  one intersection. This implies that  the 
superposition of Latin squares Li and L, has  an ordered 
pair occurring more than once, contrary to their  orthog- 
onality. Suppose that some element of M i  for i # 1, 2 
has more than  one intersection with either MI or Ma. 
But this implies that Mi is  not a Latin square. 

Illustrative example 
A detailed example demonstrates the building concept of 
modularity. 

Example: Given k = 25, design a system derived from 
an  orthogonal  Latin  square code of class (n, k). 

Start with single-error correction. Since k = 25 = 5', 
there is a (35, 25) single-error correcting code with the 

* 1x1 is the greatest integer 5 X .  391 
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Figure 1 H matrices and decoder circuits for data-bit do. (a) Single-error correcting code (35, 25); (b) double-error correcting code 
(45, 25); and (c) triple-error correcting code (55,  25). 
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H matrix as shown in Fig. l(a). Note here that only MI will result in double-error correcting codes; the choice 
and M, are used. The decoding circuit for data bit do is  of all  three possible sections results in a triple-error cor- 
also shown in Fig. l(a). recting code. Moreover, the circuit for implementing each 

If there  is a need for the system to have the  error cor- module is identical. The triple-error correction capability, 
recting capability increased, a maximum set of orthogonal since there are  no additional  orthogonal  Latin squares, is 
Latin  squares is sought. Since 25 = 5' and m = 5 ,  there the maximum capability of this code. Generally, the maxi- 
exist four possible orthogonal  Latin squares: mum t is less than  or equal to (m f 1)/2. 

0 1 2 3 4  0 1 2 3 4  

1 2 3 4 0  2 3 4 0 1  

L , = 2 3 4 0 1  L , = 4 0 1 2 3  

3 4 0 1 2  1 2 3 4 0  

4 0 1 2 3  3 4 0 1 2  

0 1 2 3 4  0 1 2 3 4  

3 4 0 1 2  4 0 1 2 3  

L , = 1 2 3 4 0  L , = 3 4 0 1 2 .  

4 0 1 2 3  2 3 4 0 1  

2 3 4 0 1  1 2 3 4 0  

To generate additional coding for  the double-error cor- 
recting capability, ten more check bits are necessary since 
2tm equals 20. These additional  ten  equations are derived 
from  the Latin  squares L, and Lz. 

Use the procedures described in the previous section 
for converting the  Latin squares into the H matrix as 
shown in Fig. l(b). Note  that rows 11 to 15 are derived 
from L, and rows 16 to 20 are derived from L,. 

Check bits C,, up to C,, can be similarly derived. The 
decoder for  data bit do shown in Fig. l(b) now requires 
two identical logic boxes instead of the one shown in 
Fig. l(a). 

The circuitry necessary for correcting the additional 

Conclusions 
An ideal error correcting code must have a high  speed 
and simple decoder with minimum number of  check bits. 
Unfortunately, speed and redundancy do  not go together. 
Low redundancy usually implies the requirement of a 
complex and slow decoder. One example is the decoding 
process of the BCH codes. One way  of solving this dilemma 
is to increase the redundancy so that decoding is fast 
and inexpensive. Following this line, the class of orthog- 
onal Latin square codes was developed by adding  redun- 
dancy systematically. Low-density parity check matrices 
were obtained  as a result of high redundancy. The de- 
coder shows simplicity and regularity because only mod 2 
adders and (2t + 1)-way voting gates are required. Fur- 
thermore, modularity was introduced and this further 
simplified the design of the decoder. At a time when 
integrated circuits are being developed rapidly, orthogonal 
Latin  square codes should  make a strong and timely 
candidate for competition with linear cyclic codes in the 
field  of error correction for computer applications. 

Appendix.  Construction of a set of orthogonal 
Latin squares 
The essential result of finding a set of h orthogonal Latin 
squares of order rn is the following theorem from Mann." 

Theorem: Let m = pI'pi', . . , p:' be the factorization 
of rn into prime powers. Let 

gil 9 &?is 9 . . .  1 g * *  
(1) ( 2 )  ( a )  

error (the second error) can be added to  the first error 
correcting circuit as a modular  arrangement (see Section 
11, Fig. l(b). It is not necessary to interfere with the 
mechanization of the original first-error correcting circuit. 

denote the elements of GF (p:'), GF (pi'), . . . , GF (p: ' ) ,  
respectively, where ghl) is the 0 element and g;')  is the 
identity element of GF Cp;'). Form the points 

This  arrangement allows for considerable flexibility  in y = [g,, , g ,  , . . . , gi, 1, 
circuits that can be built in modular  form and easily 
packaged. 

Extending the example to triple-error correction capa- 
bility, the modularity concept can be further utilized by 
deriving additional check-bit equations e,,, C,,, . . . , C,, 
from  Latin squares L3 and L4. This results in a ( 5 5 ,  25) = (1) , gi ( 2 )  , . . . , gi ( a )  1 
triple-error correcting code shown in Fig. l(c). To decode 
data bit do, simply add a third section [Section I11 of 0 < j 5 h = min (p:' - 1 )  

(1) ( 2 )  ( 8 )  

which are elements of the Cartesian product of GF ( p y x ) ,  
GF @'), * . . , GF (p:'). These elements are multiplied 
and added by multiplying and adding  their coordinates. 
Further, let 

Fig. l(c)J to  the existing Section I and I1 modules. 
This example demonstrates the modular  property.  The 

choice of any section of the H matrix results in single- 

and number the remaining y in any arbitrary way from 
h + 1 to rn so that 

error correcting codes; the choice of any two sections Y~ = 0 = [g;" ( a )  
, s o  9 . . .  9 go I .  
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Then, the arrays 

0 1 . .  Ym-1 

YiYm-1 YiYm-1  + 1 . . . YiYm-1  + Ym-1 

for j = 1, 2, . , h form a set of h orthogonal  Latin 
squares. 

A few special cases are of interest. For example, if 
m = p is a prime  number, then  the  arrays 

0 1 

i 1 +j . . .  m - l + j  

. . .  m-1 

Li = 2j 1 +2i . . .  m-1+2j 

(m-l ) j   l+(m-l ) j  - . .  (m-l)+(m-l)j  

for j = 1, 2, . . . , m - 1 are written using mod m arith- 
metic and  form  the maximal  set of orthogonal  Latin 
squares of order m. 

The case for m = pe is also of interest. The construc- 
tion of (m - 1) orthogonal  Latin squares is obtained by 
constructing a GF (p”) which contains W as a primitive 
root.”  The elements of this GF (p“) are 0, 1, X,, . . , X,. 
Then, the set of orthogonal Latin squares is as follows: 

0 1 . . .  Xm 
@+ i 1 + wo+i . . . x, + W O + j  

Ci wl+i 1 + wl+i . . . x, + WlCi 

Wm-2+i 1 + wm-2+i . . . X m  + wm-’+j 
for j = 0, 1, e - .  , m - 2. 

by cyclically permuting the last m - 1 rows. 
It should be observed that is obtained from zi 

Example: Let m = 4. We have GF (2’) and  the elements 
are 0, 1 ,  X, 1 + X with X as a primitive root.  Its addition 
table is as shown: 

+ 0 1 x l + X  

0 0 1 x l + X  

1 

x l + X  0 1 X 

1 0 l + X  x 

l + X  l + X  x 1 0 

We shall, however, replace X by 2 and X + 1 by 3. Then, 
cyclically permuting the last  three rows of the first square 
yields the following three orthogonal  Latin squares. 

0 1 2 3  0 1 2 3  0 1 2 3  
1 0 3 2  2 3 0 1  3 2 1 0  
2 3 0 1  3 2 1 0  1 0 3 2  
3 2 1 0  1 0 3 2  2 3 0 1 .  
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