390

M. Y. Hsiao
D. C. Bossen
R. T. Chien

Orthogonal Latin Square Codes

Abstract: A new class of multiple-error correcting codes has been developed. Since it belongs to the class of one-step-decodable
majority codes, it can be decoded at an exceptionally high speed. This class of codes is derived from a set of mutually orthogonal
Latin squares. This mutually orthogonal property provides a class of codes having a unique feature of “modularity.” The parity check
matrix possesses a uniform pattern and results in a small number of inputs to modulo 2 adders. This class of codes has m? data bits,

where m is an integer, and 2tm check bits for z-error correcting.

Introduction

The paper deals with the class of one-step majoriyt-
decodable codes. In general, a ¢-error correcting majority-
decodable code™" works on the principle that 2¢ -+ 1
copies of each information bit are generated from 2z + 1
independent sources. One copy is the bit itself received
from memory or any transmitting device. The other 2¢
copies are generated from 2¢ parity relations involving
the bit. By choosing a set of 2 Latin squares that are
pairwise orthogonal, one can construct a parity check
matrix such that the number of 1’s in each column is
2t = h -} 2. The orthogonality condition ensures that
for any bit b, there exists a set of 2¢ parity check equations
orthogonal on b;, and thus makes the code self-orthogonal
and one-step majority decodable. One-step majority de-
coding is the fastest parallel decoding method.

The only related work we have found in the literature
is that of Olderoge® of the Soviet Union. He discovered
a class of double-error correcting and triple-error de-
tecting codes using a single Latin square to construct
a set of row and column parity check equations.

Besides being one-step majority decodable, our codes
are constructed in such a way that the decoder can be
built in modular form; i.e., each additional module adds
a further error correction capability without affecting the
existing modules. This feature of modularity results from
parity check equations that are constructed in modular
form.

The r-error correcting codes generated by the method
of this paper have m® data bits and 2fm check bits per
word. The minimum distance between wordsisd = A+ 3,
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where 7 is the number of orthogonal Latin squares that
can be constructed with m elements. The relation between
m and / is given by & = min (p;* — 1), where the p‘
are integer powers of the prime factors of the integer m.

Orthogonal Latin squares and error correcting codes
In this section, we shall show how the properties of a
set of orthogonal Latin squares can be used to construct
the parity check matrix of a t-error correcting majority-
decodable code. The method of constructing orthogonal
Latin squares is included in the Appendix. The reader
may either refer to the Appendix or find the existing
orthogonal Latin squares from the table of Fisher and
Yates.’

We shall first review the properties of the parity check
matrix that are related to the requirement that the code
be majority decodable.*

Consider a parity check matrix of a linear code. A set
of parity equations is said to be orthogonal on the digit
d; if, for any two parity equations ¢; and ¢, that contain
d;, d; is the only common variable involved in ¢; and c,.
Now, if there is a set of 2¢ + 1 parity equations orthogonal
on d;, then d; can be decoded correctly by majority coding
in the presence of ¢ errors. This is true since each error
can alter at most one vote of the majority gate. The pre-
ceding information is specifically stated in the following
theorem.

Theorem 11* If, in a linear code, there are at least d — 1
check sums orthogonal on each digit, then the code has
minimum distance at least d.

This theorem implies that the number of 1’s in each
column of the data-bit positions of the parity check
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matrix H should be at least 2 for t-error correction.
In the codes that we derive, the number of 1’s in each
column is exactly 2¢. The code is self-orthogonal* and
noncyclic. This z-error correcting code can be derived
from the existing orthogonal Latin squares discussed in
the following section.

Definition:'° A Latin square of order (size) m is an
m X m square array of the digits 0, 1, --- , m — 1, with
each row and column a permutation of the digits 0,1, - - -,
m — 1. Two Latin squares are orthogonal if, when one
Latin square is superimposed on the other, every ordered
pair of elements appears only once.

Let the m® data bits be denoted by a vector
D = [dy, dv, -, dnay]. (1)

Then the 2mt check-bit equations for r-error correcting
are obtained from the following parity check matrix H:

M, |
|
M, |
i
H=|M |L,| @
Co
.
M, 1
L;.. is an identity matrix of order 2¢fm and My, - -- , My,

are submatrices of size m X m”. These submatrices
M, --- M,, have the form

11 -+ 1 xme
* Im]me’- (4)

The matrices My, - -+ , M, are derived from the existing
set of orthogonal Latin squares L;, Ly, --- , Lo, of
size m X m. Denote the set of Latin squares as

M2 = [ImIm 0T

Ll = [lii]me
L,

[l?i]me (5)

Ly, = [l?;—z]mxfn P
where
liie {1,2’ sm}'

For any given Latin square having m elements, one
can associate an incidence matrix defined on one of its
elements as follows.
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Definition: Let L = [l;l.x» be a Latin square; then
an incidence matrix defined with respect to the element
vl < u < m, integer), denoted by Q, = [q%,], is defined
by the rules

1 f l,',' =
¢t = { ! K (6)
0 if L; # u.

For each Latin square of m elements, there exist m
incidence matrices Q;, Q,, ''+ , Q,. Each incidence
matrix is concatenated into a vector form,

Tmi * Gl (7)

If submatrix M; is derived from a unique Latin square
L;, then

V., = gl @inlor ** " Qom ="

v,
Mi = .H 1 (8)
vm
where Vy, V,, -+ , V,, are derived from L;.
The above procedures lead to the following theorem.

Theorem 2: For an existing set of \,, m X m orthogonal
Latin squares (\,, < m — 1), there exists a z-error cor-
recting code, where*

>\m
t = L?J +1 ©)

under the previously described procedures of constructing
the H matrix.

Proof: We show that the entire set of parity check
equations specified by the H matrix is “‘pairwise” orthog-
onal. This is clearly true for the equations in M; and M.
For M,;, M,, --- , M,,, no two elements of an M; have
any intersections. Suppose now that an element of M,
and an element of M; for i, j = 3,4, --- ,2tand i j
have more than one intersection. This implies that the
superposition of Latin squares L; and L; has an ordered
pair occurring more than once, contrary to their orthog-
onality. Suppose that some element of M; for i # 1, 2
has more than one intersection with either M; or Ma.
But this implies that M; is not a Latin square.

llustrative example
A detailed example demonstrates the building concept of
modularity.

Example: Given k = 25, design a system derived from
an orthogonal Latin square code of class (n, k).

Start with single-error correction. Since k = 25 = 57,
there is a (35, 25) single-error correcting code with the

* | X] is the greatest integer < X,
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Figure 1 H matrices and decoder circuits for data-bit d,. (a) Single-error correcting code (35, 25); (b) double-error correcting code
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H matrix as shown in Fig. 1(a). Note here that only M,
and M, are used. The decoding circuit for data bit d, is
also shown in Fig. 1(a).

If there is a need for the system to have the error cor-
recting capability increased, a maximum set of orthogonal
Latin squares is sought. Since 25 = 5° and m = 5, there
exist four possible orthogonal Latin squares:

01234 01234
12340 23401
L, =23401 L,=40123
34012 12340
40123 34012
01234 01234
34012 40123
L,=12340 L,=34012.
40123 23401
23401 12340

To generate additional coding for the double-error cor-
recting capability, ten more check bits are necessary since
2tm equals 20. These additional ten equations are derived
from the Latin squares L, and L,.

Use the procedures described in the previous section
for converting the Latin squares into the H matrix as
shown in Fig. 1(b). Note that rows 11 to 15 are derived
from L; and rows 16 to 20 are derived from L,.

Check bits Cy; up to Cy can be similarly derived. The
decoder for data bit d, shown in Fig. 1(b) now requires
two identical logic boxes instead of the one shown in
Fig. 1(a).

The circuitry necessary for correcting the additional
error (the second error) can be added to the first error
correcting circuit as a modular arrangement (see Section
II, Fig. 1(b). It is not necessary to interfere with the
mechanization of the original first-error correcting circuit.
This arrangement allows for considerable flexibility in
circuits that can be built in modular form and easily
packaged.

Extending the example to triple-error correction capa-
bility, the modularity concept can be further utilized by
deriving additional check-bit equations Cy;, Coay - -+ , Cso
from Latin squares L; and L,. This results in a (55, 25)
triple-error correcting code shown in Fig. 1(c). To decode
data bit d,, simply add a third section [Section III of
Fig. 1(c)] to the existing Section I and II modules.

This example demonstrates the modular property. The
choice of any section of the H matrix results in single-
error correcting codes; the choice of any two sections
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will result in double-error correcting codes; the choice
of all three possible sections results in a triple-error cor-
recting code. Moreover, the circuit for implementing each
module is identical. The triple-error correction capability,
since there are no additional orthogonal Latin squares, is
the maximum capability of this code. Generally, the maxi-
mum ¢ is less than or equal to (m + 1)/2.

Conclusions

An ideal error correcting code must have a high speed
and simple decoder with minimum number of check bits.
Unfortunately, speed and redundancy do not go together.
Low redundancy usually implies the requirement of a
complex and slow decoder. One example is the decoding
process of the BCH codes. One way of solving this dilemma
is to increase the redundancy so that decoding is fast
and inexpensive. Following this line, the class of orthog-
onal Latin square codes was developed by adding redun-
dancy systematically. Low-density parity check matrices
were obtained as a result of high redundancy. The de-
coder shows simplicity and regularity because only mod 2
adders and (2¢ + 1)-way voting gates are required. Fur-
thermore, modularity was introduced and this further
simplified the design of the decoder. At a time when
integrated circuits are being developed rapidly, orthogonal
Latin square codes should make a strong and timely
candidate for competition with linear cyclic codes in the
field of error correction for computer applications.

Appendix. Construction of a set of orthogonal
Latin squares

The essential result of finding a set of 4 orthogonal Latin
squares of order m is the following theorem from Mann.*’

Theorem: Let m = p;'py*, -+ , pi* be the factorization

of m into prime powers. Let

g, g, e,
denote the elements of GF (p{*), GF (p;*), - -+ , GF (p}*),

respectively, where gV is the 0 element and g!" is the

identity element of GF (p{*). Form the points

(1) (2) (8)
v =g, g0, .8 )

which are elements of the Cartesian product of GF (p}'),
GF (p3*), *++ , GF (p:*). These elements are multiplied
and added by multiplying and adding their coordinates.
Further, let

(L (2 (s)
v o= lg;i 8, - ,gia]

0<ji<h=min@! —1)

and number the remaining v in any arbitrary way from
h 4+ 1 to m so that

(1) (2) a)
7m=0:g0 > 8o :""g((l ]
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Then, the arrays

0 1 ey
Yi v + 1 Yi + Ym-1

L = v Yive + 1 YiY2e + Ym-r

YiYm-1 Yi¥m-1 T+ 1 Yi¥m-t + Ym—1

for j = 1,2, --- , h form a set of % orthogonal Latin
squares.

A few special cases are of interest. For example, if
m = p is a prime number, then the arrays

0 1 e om—1
J 14j m—1+j

L, =2j 1+42j m—1+42j

(m—1)j 1+(m—1)j (m—1+(m—1)j

forj=1,2, -+, m— 1 are written using mod m arith-
metic and form the maximal set of orthogonal Latin
squares of order m.

The case for m = p° is also of interest. The construc-
tion of (m — 1) orthogonal Latin squares is obtained by
constructing a GF (p°) which contains W as a primitive
root.'* The elements of this GF (p”) are 0, 1, Xz, « -+ , X,n-
Then, the set of orthogonal Latin squares is as follows:

0 1 e X

wei 1+ W' X, + W'’
f‘i - Wit 14 wti X, + W

Wm—2+i 1+ Wm—2+i Xm __|_ Wm—2+i
forj=0,1,--- ,m— 2.

It should be observed that L,,; is obtained from L,
by cyclically permuting the last m — 1 rows.

Example: Let m = 4. We have GF (2°) and the elements
are 0, 1, X, 1 4+ X with X as a primitive root. Its addition
table is as shown:

+ 0 1 X 1+ X
0 0 1 X 1+ X
1 1 0 1+ X X
X X 14+ X 0 1
1+ X |1+ X X 1 0

We shall, however, replace X by 2 and X 4 1 by 3. Then,
cyclically permuting the last three rows of the first square
yields the following three orthogonal Latin squares.

0123 0123 0123
1032 2301 3210
2301 3210 1032
3210 1032 2301.
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