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Sequence-state Methods for Run-length-limited Coding

Abstract: Methods are presented for the encoding of information into binary sequences in which the number of zEROS occurring be-
tween each pair of successive oNEs has both an upper and a lower bound. The techniques, based on the state structure of the constraints,
permit the construction of short, efficient codes with favorable error-propagation-limiting properties.

1. Introduction

This paper presents a study of a class of codes that are
of interest in connection with a number of digital re-
cording and communication techniques. The codes are
such that coder output sequences are binary, and have
the property that two consecutive ONES are separated by
at least d but no more than k zeros. The parameter d
may be used to control interference between recorded
transitions in saturation recording, or to limit spectrum
spread in frequency-shift keying. The parameter k im-
poses a bound on the maximum transition spacing, a
dimension that must be specified in most systems that
employ self-clocking.

Problems connected with such run-length-limited codes
have received considerable attention.'”® Application of
the codes, particularly to magnetic recording, was dis-
cussed by Melas,' Kautz,” Tang® and Gabor.* Properties
of the output sequences were studied by Melas.! Asymp-
totically optimal coding techniques whose complexity
grows linearly with the code word length were described
by Kautz® and Tang.® In addition, a number of short
codes and state-oriented coding techniques were presented
by Freiman and Wyner,’ Gabor* and Tang.’

The approach taken in this paper is based on the use
of finite-state machines as models of the run-length-limited
sequence constraints. The analysis is thus applicable to
any constraints that can be described in this form. Algo-
rithms presented in a recent report’ are used to construct
synchronous (fixed-rate) codes that are optimal in the
sense that the maximum word length is minimized for
a given bit-per-symbol value. Word lengths of fixed- and
of variable-length codes in this class are compiled for a
number of (d, k) constraints. The results indicate that
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varying the word length frequently yields codes that are
shorter and easier to implement. The problem of error
propagation, which arises in state-dependent and variable-
length coding,® is studied. It is shown that one can always
limit error propagation in fixed-length (d, k) codes by a
proper assignment of message digits to code words. A
method for constructing error-propagation-limiting,
variable-length (d, k) codes is described, the method
being valid for the more general case of constrained
sequences with finite memory. Finally, some examples
of code construction are included to illustrate the methods.

2. Run-length-limited sequence constraints

In some applications it is desirable to impose minimum
and maximum distances between transitions or pulses
in a signal. Digital magnetic recording is an example.
The recording medium is typically partitioned into inter-
vals of length 7. Information is stored in these intervals
by means of the presence or absence of transitions between
saturation levels. Intervals in which transitions occur are
assigned the value oNE. If no transition occurs, the interval
is assigned the value zero. The separation between such
transitions must be sufficiently great to limit interference
to acceptable levels. If clocking is to be derived from the
recorded data, an additional requirement is that transi-
tions occur frequently enough to provide adequate energy
for the timing circuits.

Suppose that Q and ¥ are respectively the minimum
and maximum tolerable distances between transitions. A
possible approach to the signal design problem is to
require that the recorded sequence be (d, k) run-length-
limited with (d + 1)T > Q and (k + 1T < V. That is,
at least (d + 1) but no more than (¢ 4 1) intervals occur
between each pair of successive transitions. If Q and V
are fixed, an increase in (d 4+ 1) (i.e., a decrease in T)
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will produce an increase in the amount of information
that can be stored, and a decrease in the level of tolerable
degradation. Thus, the choice of d and k is a function
of the interference and of the circuit quality in a given
system.

The (d, k) sequence constraints may be represented by
a finite-state sequential machine. Figure 1 illustrates a
possible state-transition diagram. There are (k - 1) states,
(o1, 02, -+ , 04+1). Transmission of a Zero takes the
sequence from state o; to state ¢,,;. Transmission of a
ONE takes the sequence to o,. That is, state o, r = 1,
2, -+, k -+ 1, indicates that (» — 1) zEros have occurred
since the last ONE. A ONE may be transmitted only when
the sequence occupies states o441, *** , 0x+1. If the se-
quence occupies state o,,;, then only a ONE may be
transmitted.

The skeleton transition matrix, which gives the number
of ways of going from state o; to state ¢;, is given by
the (k + 1) X (k + 1) array:

D = {d.}, 1)
where
di=1, i>d+1; @
d; =1, j=i+1; €))
d;; = 0, otherwise. 4
For example, the D matrix for (d, k) = (2, 4) is

[0 1 0 0 0]

001 00
D=/1 001 0 (5)

1 0 0 0 1

11 0 0 0 0]

The above representation is related to the input-re-
stricted channels first studied by Shannon.’ The finite-
state machine model permits the computation of the
channel capacity, defined as the number of bits per symbol
that may be carried by the sequence. This quantity is
given® by the base-two logarithm of the largest real root of

det [d;Z' — 5,;1= 0. ©

For large values of k it may be more convenient to obtain
the channel capacity from®

¢~ logs X o, )
where
d;; = [D"];;. ®

If the value of n is a power of two, then D" may be ob-
tained from D by a total of log, » matrix multiplications.
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Figure 1 State-transition diagram for a (d, k) sequence.

Table 1: Channel capacities for a selection of (d, k) con-
straints,

Channel capacity

d k in bits/symbol
0 1 0.694
0 2 0.879
0 3 0.947
1 3 0.552
1 4 0.617
| 5 0.651
1 7 0.679
2 5 0.465
2 8 0.529
2 11 0.545
3 7 0.406
3 11 0.452
3 15 0.462
4 9 0.362
4 14 0.397
5 12 0.337
5 17 0.356
6 13 0.301
6 17 0.318
6 20 0.324
7 15 0.279
7 23 0.298
8 17 0.260
8 26 0.276

The required value of #» may be estimated from the
following bound for the capacity”:

1 m
% Uoe: Z d}; — 2 1og, (k + D] )

< csilogg >

Values of C for a number of (d, k) constraints were
obtained by computer calculation. These values are given
in Table 1.

A property of the above sequence constraints is that
the channel is of finite memory. That is, the channel state
may be uniquely determined from a finite number of
previously transmitted symbols. More precisely, if the
channel occupies state ¢,, r = 1,2, --- , k + 1, (we use
the numbering of Fig. 1), then the channel state may

377

RUN-LENGTH-LIMITED CODING




378

Table 2: Shortest fixed-length codes of given bit-per-symbol
values for a selection of (d, k) constraints.

d k @ N E

0 1 3 5 0.865
0 2 4 5 0.910
0 3 9 10 0.950
1 3 1 2 0.906
1 5 6 10 0.922
1 7 6 10 0.884
2 5 4 10 0.860
2 8 11 22 0.945
2 11 8 16 0.917
3 7 46 115 0.985
3 11 8 20 0.885
3 15 8 20 0.866
4 9 9 27 0.921
4 14 12 33 0.917
5 12 9 30 0.890
5 17 15 45 0.843
6 13 12 44 0.906
6 17 9 33 0.858
6 20 15 50 0.926
7 15 9 36 0.896
7 23 7 28 0.839
8 17 27 108 0.962
8 26 12 48 0.906

Number of bits per word
Word length

>4
N
E = [a/N]/C, the code efficiency

o

be identified through knowledge of the r previously trans-
mitted symbols. This property is used to limit error
propagation in variable-length codes.

3. Fixed-length binary (d, k) codes

o Discussion

Suppose one wishes to map binary information onto a
(d, k) sequence with a code of fixed length. The message
sequence is partitioned into blocks of length «, and such
blocks mapped by the code onto words composed of N
channel symbols. A code may be state dependent, in
which case the choice of the word used to represent a
given binary block is a function of the channel state, or
the code may be state independent. State independence
implies that code words can be freely concatenated without
violating the sequence constraints.’ It is an additional
restriction that, in general, leads to codes that are longer
than state-dependent codes for a given bit-per-symbol
value. In some cases state independence may yield advan-
tages in error propagation limitation, since channel words
may be decoded without knowledge of the state. However,
state-independent decoding may be achieved for any fixed-
length (d, k) code, as is indicated by the theorem below.
Since coder and decoder complexity tends to increase
exponentially with the code word length, it is usually
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advantageous to search for the shortest existing code
without regard to state independence, and to achieve
state-independent decodability by a proper assignment of
message digits to code words.

Let S denote the states of a finite-state machine that
represents a (d, k) sequence. Let W (o;) denote the set
of words that may be transmitted when the sequence
occupies the initial state o;.

Theorem 1: Given a set of states §' = {¢;} C S and
a class of associated word sets { W(s;)} such that each
W(s,) contains at least 2* words, it is possible to assign
binary blocks b,, r = 1, 2, --- , 2%, to the word sets
{W(s,)} so that there is a unique inverse mapping.

Proof: A word w that is allowable from at least one
state (i.e., it may be obtained from that state by an
appropriate path through the state transition diagram)
is not allowable from another state either because there
is a ONE too close to the beginning of the word, or be-
cause there are too many zeros before the first ONE.
Suppose w is allowable from state ¢, and o,,,, where
m > 0. Then the allowability from o, implies that the
first ONE is not too close to the beginning for w to be
allowable from o,,1, Gui2, *** , Onsm-1- The allowability
of w from o,,,, implies that it does not have too many
ZEROS in the prefix to be allowable from ¢,,1, opi2, **° »
Opim-1. THUS,

w e W(Un) N W(°’n+m) =w E W(Un+f)a
=12, m—1, (10)

which is a sufficient condition® for the theorem to hold.

o Fixed-length codes of minimum length

A quick method for determining whether there exists
a code with word length N and « bits per word is given
in Ref. 7. It is a recursive search technique for deter-
mining the existence of a set of principal states through
operations on the D matrix. These are the states from
each of which there exists a sufficient number, 2%, of
paths terminating at other principal states. The existence
of a set of principal states is a necessary and sufficient
condition for the existence of a code with the given values
of « and N, and in the case of (d, k) sequences, is a
necessary and sufficient condition for the existence of a
state-independently decodable code. A number of (d, k)
combinations and the length of the shortest existing fixed-
length codes for a given ratio of a/N were computed.
These are listed in Table 2, which may be used as an
aid in construction of both state-dependent and state-
independent codes. In the latter case the Table indicates
a lower bound on the code-word length for a given bit-
per-symbol value. The systematic construction of a state-
dependent code is illustrated next.
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o Code construction

The words available for encoding are the paths of length
N connecting the principal states. These may be obtained
from the Nth power of the (k¢ + 1) X (k¥ + 1) channel-
transition matrix

A = {a;}, an

where q;; represents the sequence digit corresponding to
a transition from state o; to o;. If it is not possible to go
from o, to o; with one digit (i.e., if 4;; = 0), then a;; = 0,
where @ denotes the null symbol. Powers of A are formed
by the operations of disjunction, -}, and concatenation.
The concatenation of the null symbol @ with any symbol
results in @.
As an example, consider the transition matrix

A=Ll O] 12)
1 @

which corresponds to (d, k) = (0, 1).
The outputs of length two are given by

At = [11 + 01 10}_ (1%
11 10

Code words in W(s;) may be obtained from Y _; [A"];;,
where the operation, -, is taken over the principal states.

A state-independently decodable code may be obtained
as follows®:

1) List the principal states o,,, Om, *°* , 0m, Where
m < m < - < mg.

2) Assign a binary word of length « to each of the 2°
words from W(s,,).

3)If w, & W(on) M W(o,,;), where i < j, assign the
same binary word to w, for coding from ¢, as from
O B W, & W(ay,) but w, & W(o,,), assign the binary
word to a w, & W(o,,) such that w, & W(s,,).

Theorem 1 assures the success of the procedure.

o Example
Consider (d, k) = (1, 3). D and D? are given by
0 1 0 0]
D = 1 01 0 ’ (14)
1 0 0 1
1 00 0]
1 01 0]
1 1 1
D? = 0 . 1%
1 1 0 0
101 0 0]
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Table 2 shows that a bit-per-symbol value of 4 represents
over 90 percent of the channel capacity.

Use of the search algorithm described in the subsection
on fixed-length codes of minimum length indicates that
the shortest existing code with this bit-per-symbol value
has the parameters « = 1, N = 2. The principal states
are o, 03, 03. Code words may be obtained from

or g 00 ¢
Ao |01 10§ 00 16
or 10 p @

L9 10 9 ¢

The alphabets available for encoding are the word sets
associated with the principal states:

_ Jot

Wio,) = {OO, an
Wios) = {?(1) )
Wi(as) = {(1):) 19)

A state-independently decodable code may be constructed
with the following binary assignments:

Binary symbols State Channel code words
1 oy 01
Jg 01
g3 01
0 o, 00
Uy 10
T3 10

This code is well known and is usually referred to as
MFM (modified frequency modulation). It is of interest
to note that it results almost automatically from the
application of the above techniques to the (d, k) = (1, 3)
sequence.

4. Variable-length synchronous binary codes

o General

The codes discussed in the previous section have the
property that the code may be a function of the state
occupied by the sequence. This permits a minimization
of word length over the class of fixed-length codes with
a given bit-per-symbol value. In this section, an additional
degree of freedom is introduced by allowing the word
length to vary. The result is often a significant decrease
in the required code word length. The rate of information
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Table 3: Shortest variable-length codes of given bit-per-
symbol values for a selection of (d, k) constraints.

d k @ N M E

2 8 1 2 4 0.945
2 11 1 2 4 0.917
3 7 2 5 8 0.985
3 i1 2 5 3 0.885
3 15 2 5 3 0.866
4 9 1 3 3 0.921
4 14 4 i 3 0.917
5 12 3 10 3 0.890
5 17 1 3 6 0.843
6 13 3 11 3 0.906
6 17 3 11 2 0.858
6 20 3 10 4 0.926
7 15 1 4 3 0.896
7 23 1 4 3 0.839
8 17 1 4 8 0.962
8 26 1 4 5 0.905

a = number of bits per word

N = word length

NM = maximum word length

transmission is kept constant by fixing the bit-per-symbol
value for each word. That is, words of length N carry
half as many bits as those of length 2N. Algorithms
described in a recent report” are used to construct variable-
length fixed-rate (synchronous) codes that are optimal in
the sense that the maximum word length is minimized.
Procedures are developed to find codes with error-propa-
gation-limiting properties.

& Variable-length codes of minimum length

A recursive search and optimization method to determine
whether there exists a variable-length code with a given
bit-per-symbol value and maximum word length is de-
scribed in Ref. 7. To apply the procedure, a basic channel
word length N and number o of bits per N channel symbols
are chosen, along with a maximal word length MN.
Words may be of length jN, j = 1,2, --- , M. The pro-
cedure involves operations on powers of the D matrix.
If the search is successful, the results are a set of states
from which coding may be performed (termed the principal
states) and, for each such state o;, a set of paths that
maximizes the quantity

¥(o,) = Li(o;) + z_aLz(Ui) + .-

+ 27 Ly (o)), 20)
where L;(c;) is the number of available code words of
length jN. It is required that ¥(s;) > 2* for a code to

exist. Terminal states are specified for the paths. These
terminal states are in turn principal states, so that channel
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words always lead to states from which coding is possible.

The shortest maximum word lengths for a number of
(d, k) constraints and bit-per-symbol values were com-
puted with the above technique and are shown in Table 3.
A comparison of the variable-length codes with the fixed-
length codes of Table 2 shows that the extra degree of
freedom in variable-length coding often yields a very
significant decrease in word length. For example, the
d, k) = (4, 9) constraints, with a bit-per-symbol value
of %, result in fixed-length codes with a minimum of 9
bits per word. Thus, at least 2° = 512 words are required
for fixed-length coding, while a variable-length code
(illustrated in an example given later in this section)
exists with a maximum word length corresponding to
3 bits, and which has a total of 6 words. Since coding is
done by table look-up, the advantage of the variable-
length code is clear. Further benefits resulting from the
shorter word length are discussed below.

~ Error propagation limitation

Consider the fixed-length codes of Section 3. It was
shown that if a fixed-length code exists, then it is possible
to code so that decoding can be performed without a
knowledge of the state occupied by the channel at the
beginning of the transmitted word. This property implies
that an error in the detection of a symbol in a given
word does not affect the decoding of the next word.
However, the property is not sufficient to limit error
propagation in codes of variable word length since an
error in detection may cause the decoder to treat the
received symbol as part of a word of length different
from that which was transmitted, possibly resulting in
serious error propagation. Thus, error propagation in
variable-length codes may result from improper blocking
of the received sequence into words (misframing), as well
as from code state dependency.

Suppose it were possible to mark word endings with,
for example, a special sequence of symbols. Misframing
as a result of an error in detection could then be eliminated
after the correct reception of at most one word. For
channels with finite memory [of which the (d, k) con-
straints are an example] it is possible to achieve essen-
tially this result by an appropriate choice of code paths,
as shown below. Since the method depends in part on
identification of the sequence state, it overcomes error
propagation due to state dependence as well as to mis-
framing.

Let S, be the subset of the principal states in which
code words actually terminate. Consider a code such that
code words are required to terminate when a state that is
a member of S, is entered after rN symbols, where r is
an integer. Since words may end only after an integer
multiple of N symbols, this restriction is sufficient to
permit the decoder to determine word endings by tracking
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the state of the sequence. Knowledge of the state also
resolves ambiguities resulting from code-state dependence.

Let L be the maximum number of channel symbols
that are required to identify such a state. In general,
L is less than the channel memory, 91T. The decoder may
identify the first word termination occurring after at most
L correctly received symbols. Note that this is equivalent
to marking word endings with any one of a number of
special sequences, some of which may be longer than
code words. An advantage of this approach over that
of using a single sequence to mark word terminations is
that it may result in a larger number of available code
words of a given length, and thus in a shorter code for
a given bit-per-symbol value.

o A search routine for a class of error-propagation-limiting
codes

In order to implement the error-propagation-limiting (EPL)
procedure discussed in the previous section, it is necessary
to find a set of states S, (termed an EPL set) and paths
connecting them that have the following properties:

1) The set S. is a subset of S, the set of principal states.
This is due to the necessity of starting words from principal
states.

2) A word that enters a state o; & S, after N symbols,
r=1,2, -+, M, terminates there. All words terminate
in states that are members of S..

3) Associated with each o, & S, there is a set of words
of length rN, r = 1,2, --- , M, such that

\I/(U.‘) = Lx(ffi) + 2_°‘L2(az-) + ctr
+ 27V Loy > 2% @D

It follows from these properties that there may be
instances when one or more states must be eliminated
from S, in order to form a set S,, if it exists.

Let ¥V be an r-tuple of states that may be elided from
S, while the possibility of encoding is maintained. That is,
from each state ; & (S, — V}) there is available a
sufficient number of words terminating in states belonging
to (S, — V}) to satisfy Eq. (21). Such subsets of the
principal state set are termed principal subsets. Let Q" be
the set of V| r-tuples.

The set Q' can be found by using the optimization
procedure of Ref. 7 to determine whether (S, — o;) is
a principal subset of states for each ¢; & S,. The dimen-
sionality of the search for all principal subsets of S, may
be reduced by noting that if an r-tuple of states is a
member of Q', then all combinations of (» — 1) members
of the r-tuple are members of Q.

Each principal subset S, may be tested to determine
whether it forms an EPL set. The subset .S, is an EPL
set if, for each o; & S2, ¥, (0;) > 2°.

JuLy 1970

V(o)

= > oA+ Y > odldl, A+ -

orE 8y g 81 TmE S2

e DY > 2 di--e dy,

oo E 8, geESM—1 0, E8 M
(22)

where the 8, = S,[rN, o,] are those members of S that
are reachable from ¢, with rN symbols.

The available code words can be obtained from the
channel-transition matrix A. Let W,(c;) be the words of
length rN available from state o;. Using the operations
defined in Section 3 we construct the words

N

Wye;) = Z ai,
TqES8p®
Woo) = 2 2 anaq

TgESpT T1ES e

cal.. (23)

Wan(e:) = Z te Z a}'\;afl o

oqESp® o1 kS, €8,
Examples of codes for (d, k) = (4, 9) and (4, k) = (7, 15)
are given below.

o Example.: a variable-length code for (d, k) = (4, 9)
Consider the sequence with (d, k) = (4, 9). There are
ten states: o,, 05, *** , 010. Using the procedure discussed
in the second subsection of Section 4 a set of principal
states can be found for coding with « = 1, N = 3 and
M = 3. These are o4, 05, 05 and ¢,. In this case, S, is
an EPL set. Moreover, {oy, o5, ¢, 07} is the only principal
subset of states; elimination of one state from this subset
eliminates the possibility of coding with the above o, N
and M parameters. Channel words corresponding to the
EPL paths for the principal states, obtained from Eq. (23),
are shown in Fig. 2.

Table 4 shows an assignment of binary digits to the
channel words such that decoding may be performed
without recourse to state information as long as there
are no errors.

Words that enter principal states after 3, 6 or 9 symbols
terminate there. Word endings may be found through
state identification. Since » symbols are required to iden-
tify o,, the correct reception of any word except 000 is
sufficient to determine word termination. In the latter
case, this can be done after reception of the next word,
so that at worst, code words corresponding to four bits
must be correctly received in order to identify word ter-
mination after an error in detection.

Table 2 shows that fixed-length coding with the same
bit-per-symbol value as in the current example would
require channel words of minimum length 27, each rep-
resenting 9 bits. Here table look-up coding and decoding
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Figure 2 EPL coding paths for (d, k) = (4, 9), « = 1,
N = 3 and M = 3. The principal states are oi, os, de,
o7; R = 5, 6 and 7 for the paths corresponding to o5, os
and ¢r, respectively.

might not be practical. Moreover, a single error in detec-
tion could result in the incorrect decoding of nine bits.

& Example: Variable-length code for (d, k) = (7, 15)
The (d, k) = (7, 15) channel has sixteen states. A variable-
length code with « = 1, N = 4 and M = 3 exists, as
can be seen in Table 3. The principal states for such
encoding are o5, 04, - ** , 013. These do not form an EPL
set. However, there exist principal subsets that have the
EPL property. The smallest such set is {3, 0g, 07, 05, 010
o1, 013}. A code with these as terminal states can be
formed as shown in Table 5.

Word termination may be detected by channel state
identification. That is, words terminate when a state in
the principal subset is entered after rN symbols, where
r is an integer. Once the detected sequence has been
partitioned into words, decoding may proceed without
further recourse to state information. Misframing as a
result of an error in detection is corrected after the detec-
tion of at most 16 channel symbols, which correspond to
4 bits.

5. Conclusions
Methods have been described for the systematic construc-
tion of run-length-limited codes. The techniques are based
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Table 4 A (d, k) = (4, 9) code for « = I, N = 3 and

M = 3.
State Binary symbols  Channel code words
o4 0 000
10 001 000
11 010 000
a5y 06, 7 10 001 000
11 010 000
01 100 000
001 000 100 000
000 100 001 000

Table 5 A (d, k) = (7, 15) code for « = 1, N = 4 and

M = 3.
State Binary symbols Channel code words
o5 00 0001 0000
010 0000 0100 0000
011 0000 1000 0000
11 0000 0000
100 0000 0001 (000
101 0000 0010 0000
s, 07 1 0000
00 0001 0000
01 0010 0000
08, 010 5 011, 013 00 0001 0000
01 0010 0000
10 0100 0000
11 1000 0000

on modeling the sequence constraints by finite-state ma-
chines, and are thus applicable to any constraints that can
be described in this form. It was shown that varying the
code word length often yields codes with superior error-
propagation-limiting properties that are simpler and easier
to implement than the corresponding codes of fixed word
length.
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