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Sequence-state  Methods""for .. 1 Run-length-limited  Coding 

Abstract: Methods are presented  for  the  encoding of information  into  binary  sequences  in  which  the  number of ZEROS occurring  be- 
tween  each  pair  of  successive ONES has  both  an  upper  and a lower  bound.  The  techniques,  based  on the state  structure of the constraints, 
permit the  construction of short, efficient  codes  with favorable  error-propagation-limiting  properties. 

1. Introduction 
This  paper presents a  study of a class of codes that  are 
of interest in connection with a number of digital re- 
cording and communication techniques. The codes are 
such that coder output sequences are binary, and have 
the property that two consecutive ONES are separated by 
at least d but no more than k ZEROS. The parameter d 
may be used to control interference between recorded 
transitions  in saturation recording, or  to limit spectrum 
spread  in frequency-shift keying. The parameter k im- 
poses a  bound on  the maximum transition spacing, a 
dimension that must be  specified in most systems that 
employ self-clocking. 

Problems connected with such run-length-limited codes 
have received considerable attention."6 Application of 
the codes, particularly to magnetic recording, was dis- 
cussed by Melas,' Kautz,' Tang3  and Gabor.*  Properties 
of the  output sequences were studied by Melas.' Asymp- 
totically optimal coding techniques whose complexity 
grows linearly with the code word length were described 
by Kautz' and Tang.3 In addition,  a  number of short 
codes and state-oriented coding techniques were presented 
by Freiman and Wyner,6 Gabor4  and Tang.6 

The approach  taken  in  this  paper is based on  the use 
of finite-state machines as models of the run-length-limited 
sequence constraints. The analysis is thus applicable to 
any constraints that can be described in this form. Algo- 
rithms presented in a recent report7  are used to construct 
synchronous (fixed-rate) codes that  are optimal in  the 
sense that  the maximum word length is minimized for 
a given bit-per-symbol value. Word lengths of  fixed- and 
of variable-length codes in this class are compiled for a 
number of (d, k )  constraints. The results indicate that 
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varying the word length frequently yields codes that  are 
shorter and easier to implement. The problem of error 
propagation, which arises in state-dependent and variable- 
length coding,' is studied. It is shown that  one can always 
limit error propagation in fixed-length (d, k )  codes by a 
proper assignment of message digits to code words. A 
method for constructing  error-propagation-limiting, 
variable-length (d, k )  codes is described, the method 
being valid for  the more general case of constrained 
sequences with finite memory. Finally, some examples 
of code construction are included to illustrate  the methods. 

2. Run-length-limited  sequence  constraints 
In some  applications it is desirable to impose minimum 
and maximum distances between transitions or pulses 
in  a signal. Digital magnetic recording is an example. 
The recording medium is typically partitioned into inter- 
vals of length T. Information is stored in these intervals 
by means of the presence or absence of transitions between 
saturation levels. Intervals in which transitions  occur are 
assigned the value ONE. If no transition occurs, the interval 
is assigned the value ZERO. The separation between such 
transitions must be  sufficiently great to limit interference 
to acceptable levels. If clocking is to be derived from  the 
recorded data,  an  additional requirement is that transi- 
tions occur frequently enough to provide adequate energy 
for  the timing circuits. 

Suppose that Q and V are respectively the minimum 
and maximum  tolerable distances between transitions. A 
possible approach to the signal design problem is to 
require that  the recorded sequence be (d, k )  run-length- 
limited with (d + 1)T 1. Q and (k + l)T 5 V. That is, 
at least (d f 1) but  no  more  than (k + 1) intervals occur 
between each  pair of successive transitions. If Q and V 
are fixed, an increase in (d + 1) (i.e., a decrease in T )  
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will produce an increase in the amount of information 
that can be stored, and a decrease in the level  of tolerable 
degradation. Thus,  the choice of d and k is a function 
of the interference and of the circuit quality in a given 
system. 

The (d, k )  sequence constraints may  be represented by 
a finite-state sequential machine. Figure 1 illustrates a 
possible state-transition diagram. There are (k + 1) states, 

sequence from state ut to  state u ~ + ~ .  Transmission of a 
ONE takes the sequence to ul. That is, state u?, r = 1, 
2, . . . , k + 1 ,  indicates that (r  - 1) ZEROS have occurred 
since the last ONE. A ONE may be transmitted only when 
the sequence occupies states u ~ + ~ ,  . . . , u ~ + ~ .  If the se- 
quence occupies state u ~ + ~ ,  then only a ONE may be 
transmitted. 

The skeleton transition matrix, which  gives the number 
of  ways  of going from state ui to state u;, is given by 
the (k + 1) X (k + 1) array: 

(UI, UZ, . . .  , u ~ + ~ ) .  Transmission of a ZERO takes  the 

D {4;J , (1) 

where 

d,, = 1, i 2 d +  1; (2) 

dii = 1, j =  i +  1; (3) 

d,, = 0, otherwise. (4) 

For example, the D matrix for (d, k )  = (2, 4)  is 

D =  

- 0 1 0 0 0  

0 0 1 0 0  

1 0 0 1 0  

1 0 0 0 1  

1 0 0 0 0 ~  

The above representation is related to the  input-re- 
stricted channels first studied by S h a n n ~ n . ~  The finite- 
state machine model permits the computation of the 
channel capacity, defined as the number of bits per symbol 
that may be carried by the sequence. This quantity is 
given' by the base-two logarithm of the largest real root of 

det [diiZ" - = 0. (6)  

For large values of k it may be more convenient to obtain 
the channel capacity from' 

C E - log, d l j ,  
1 

(7) 
t i  

where 

Ki = [D"Iii. (8) 

If the value of n is a power of two, then D" may  be ob- 
tained from D by a total of  log, n matrix multiplications. 

t 

Figure 1 State-transition  diagram for a (d,  k )  sequence. 

Table 1: Channel capacities for a selection of (d ,  k )  con- 
straints. 

d k 
Channel capacity 

it1 bifs/symbol 

0 
0 
0 
1 
1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
5 
5 
6 
6 
6 
7 
7 
8 
8 

1 
2 
3 
3 
4 
5 
7 
5 
S 

11 
1 

11 
15 
9 

14 
12 
17 
13 
17 
20 
15 
23 
17 
26 

0.694 
0.879 
0.947 
0.552 
0.617 
0.651 
0.679 
0.465 
0.529 
0.545 
0.406 
0.452 
0.462 
0.362 
0.397 
0.337 
0.356 
0.301 
0.318 
0.324 
0.279 
0.298 
0.260 
0.276 

The required value of n may  be estimated from the 
following bound for the capacity': 

Values of C for a number of (d, k )  constraints were 
obtained by computer calculation. These values are given 
in Table 1. 

A property of the above sequence constraints is that 
the channel is  of finite memory. That is, the channel state 
may  be uniquely determined from a finite number of 
previously transmitted symbols. More precisely, if the 
channel occupies state u7, r = 1 ,  2, . . . , k + 1, (we  use 
the numbering of Fig. l) ,  then the channel state may 
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Table 2: Shortest  fixed-length  codes  of  given  bit-per-symbol 
values for a selection  of ( d ,  k )  constraints. 

d k 01 N E 

0 1 3  5  0.865 
0 2 4  5 
0 3 9 

0.910 
10 

1  3  1 
0.950 

2 
1  5  6 10 0.922 

0.906 

1 7 6 10 0.884 
2  5 4 10 0.860 
2  8 11  22 
2 11 8 

0.945 
16 

3  7 46  115 0.985 
0.917 

3 11 8 20 
3 15 8 20 

0.885 

4 
0.866 

9 9 27 0.921 
4 14 12  33 
5 12 9 

0.917 
30 

5 
0.890 

17  15  45 0.843 
6 13  12  44 0.906 
6 17 9 
6 

33 
20 15 

0.858 
50 

7 15 9 
0.926 

36 
7 23 7 28 

0.896 

8 
0.839 

17  27  108 
8 26  12  48 0.906 

0.962 

u = Number of bits per word 
N = Word length 
E = [a/hll/C, the code efficiency 

be  identified through knowledge of the r previously trans- 
mitted  symbols. This property is  used to limit error 
propagation in variable-length  codes. 

3. Fixed-length  binary (d, k )  codes 

Discussion 
Suppose one wishes to map binary information onto a 
(d, k)  sequence  with  a  code  of  fixed  length. The message 
sequence  is partitioned into blocks of length a, and such 
blocks  mapped by the code onto words  composed  of N 
channel  symbols. A code may  be state dependent, in 
which  case the choice of the word  used to represent  a 
given  binary  block is a function of the channel  state, or 
the code  may  be state independent. State independence 
implies that code  words can be  freely  concatenated  without 
violating the sequence  constraints.6 It is an additional 
restriction that,  in general,  leads to codes that are longer 
than state-dependent  codes for a given bit-per-symbol 
value. In some  cases state independence may  yield advan- 
tages in error propagation limitation, since  channel  words 
may  be  decoded  without  knowledge of the state.  However, 
state-independent  decoding may  be  achieved for any fixed- 
length (d, k)  code, as is  indicated by the theorem below. 
Since  coder and decoder  complexity tends to increase 
exponentially  with the code  word  length, it is usually 

P. A. FRANASZEK 

advantageous to search for the shortest existing  code 
without  regard to state independence, and to achieve 
state-independent  decodability by a  proper  assignment of 
message  digits to code  words. 

Let S denote the states of a  finite-state  machine that 
represents  a (d, k )  sequence.  Let W (ai) denote the set 
of words that may be transmitted when the sequence 
occupies the initial state ai. 

Theorem I: Given  a  set of states S' = {ai } C S and 
a  class of associated  word  sets { @'(aj)] such that each 
@'(ai) contains at least 2" words, it is possible to assign 
binary  blocks b,, r = 1 ,  2, - , 2", to the word  sets 
{ W(aj)) so that there is  a  unique  inverse  mapping. 
Proof: A word w that is allowable from at least  one 

state (i.e., it may be  obtained from that state by an 
appropriate path through the state transition diagram) 
is not allowable from another state either  because there 
is a ONE too close to the beginning of the word, or be- 
cause there are too many ZEROS before the first ONE. 

Suppose w is allowable  from state an and a,,,, where 
m > 0. Then the allowability from a,, implies that the 
first ONE is not too close to the beginning for w to be 
allowable from u,,,~, an+z, - , u,,+~-~. The allowability 
of w from a,,,, implies that it does not have too many 
ZEROS in the prefix to be  allowable from a,,+l, . , 
gn+rn-I- Thus, 

w E W(gn) W(am+tn) * w E W(g*+i)% 

j = 1, 2 ,  e . .  , m - 1, (10) 

which is a  sufficient  condition' for the theorem to hold. 

Fixed-length codes of minimum length 
A quick  method for determining  whether  there  exists 
a  code with  word  length N and a bits  per  word is given 
in Ref. 7. It is  a  recursive  search  technique for deter- 
mining the existence  of  a  set of principal states through 
operations on the D matrix.  These are the states from 
each of  which there exists a sufficient  number, 2", of 
paths terminating at other principal  states. The existence 
of a set of principal states is  a  necessary and sufficient 
condition for the existence of a  code  with the given  values 
of a and N,  and in the case  of (d, k)  sequences, is a 
necessary and sufficient condition for the existence of a 
state-independently  decodable  code. A number  of (d, k )  
combinations and the length of the shortest  existing  fixed- 
length  codes for a given ratio of a / N  were computed. 
These are listed in Table 2, which  may be  used as an 
aid in construction of both  state-dependent and state- 
independent  codes. In the latter case the Table indicates 
a  lower  bound on the code-word  length for a given bit- 
per-symbol  value. The systematic construction of a state- 
dependent  code  is  illustrated  next. 
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Code construction 
The words  available for encoding are the paths of length 
N connecting the principal  states.  These may  be  obtained 
from the Nth power  of the (k + 1) X (k + 1) channel- 
transition matrix 

A = {aii) 5 (1 1) 

where aii represents the sequence  digit  corresponding to 
a transition from state ui to ui. If it is not  possible to go 
from ui to ui with one digit (i.e., if dii = 0), then aii = 8, 
where 0 denotes the null symbol.  Powers of A are formed 
by the operations of disjunction, +, and concatenation. 
The concatenation of the null  symbol 8 with  any  symbol 
results in 0. 

As an example,  consider the transition matrix 

A = 1; 0) , (12) 

which corresponds to (d, k )  = (0, 1). 
The outputs of length two are given  by 

11 + 01 10 

A 2 =  [ 11 1 J .  
(1 3) 

Code words in W(ui) may  be obtained from xi [ANIii, 
where the operation, +, is taken over the principal  states. 

A state-independently  decodable  code may  be  obtained 
as followss: 

1) List the principal states umx, urn,, * * , ump, where 
ml < m2 < < mu. 
2) Assign a binary  word of length a to each of the 2" 
words from W(um,). 
3) If w, E W(u,,) n W(umi), where i < j ,  assign the 
same  binary  word to w, for coding from urn, as from 
urn;. If w, E W(umi) but w, W(umi), assign the binary 
word to a w,, E W(u,,) such that w,, W(umi). 

Theorem 1 assures the success  of the procedure. 

Example 
Consider (d, k )  = (1, 3). D and D2 are given by 

0 1 0 0  

D = [ :  : 
1 0 0 0  

p o l o  

D 2 = l  1 1 0 1  

1 1 0 0  

0 1 0 0 -  

Table 2 shows that a bit-per-symbol  value of 3 represents 
over 90 percent of the channel  capacity. 

Use of the search  algorithm  described in  the subsection 
on fixed-length  codes of minimum  length  indicates that 
the shortest  existing  code  with this bit-per-symbol  value 
has the parameters CY = 1, N = 2. The principal states 
are ul,  u2, u3. Code  words  may  be  obtained from 

10 8 O0 I .  

The alphabets available for encoding are the word  sets 
associated with the principal  states: 

A state-independently  decodable  code may  be constructed 
with the following  binary  assignments: 

Binary symbols State Channel code words 

1 fJ1 01 
u2 01 
fJ3 01 

0 00 
10 
10 

This code  is well known and is usually  referred to as 
MFM (modified  frequency  modulation). It is of interest 
to note that  it results  almost  automatically from the 
application of the above  techniques to the (d, k )  = (1, 3) 
sequence. 

4. Variable-length synchronous  binary codes 

General 
The codes  discussed in the previous  section  have the 
property that the code may  be a function of the state 
occupied by the sequence. This permits a minimization 
of word  length  over the class of ked-length codes  with 
a given bit-per-symbol  value. In this  section, an additional 
degree  of  freedom is introduced by allowing the word 
length to vary. The result is often a significant  decrease 
in the required  code  word  length. The rate of information 379 
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Table 3: Shortest variable-length  codes of given bit-per- 
symbol values for a selection of (d ,  k )  constraints. 

d k 01 N M E 

2  8 1 2  4 
2 11 1 2 

0.945 
4 

3  7  2  5  8 
0.917 

3 
0.985 

1 1  2 5 
3 

3 
15 

0.885 
2  5 3 

4  9 1 3 
0.866 

4 14 4 11 3 
3 0.921 

0.917 
5 12 3 10 3 
5 17 1 

0.890 
3 

6 
6 

13 3 11 3 0.906 
0.843 

6 17 3 11 
6 20 10 4 

2 
3 

0.858 

7 15 1 
0.926 

4 
7 

3 
23 1  4 3 

0.896 

8 
0.839 

17 1 4  8  0.962 
8 26 1 4 5 0.906 

a = number of bits per word 
N = word length 
N M  = maximum word length 

transmission is kept constant by fixing the bit-per-symbol 
value for each  word. That is,  words of length N carry 
half as many  bits as those of length 2N. Algorithms 
described in a recent report' are used to construct variable- 
length fixed-rate (synchronous) codes that  are optimal  in 
the sense that  the maximum word length is minimized. 
Procedures are developed to find codes with error-propa- 
gation-limiting properties. 

Variable-length codes of minimum length 
A recursive search and optimization  method to determine 
whether there exists a variable-length code with a given 
bit-per-symbol value and maximum word length is de- 
scribed in Ref. 7. To apply the procedure, a basic channel 
word length Nand number a of bits  per N channel symbols 

words always lead to states from which coding is possible. 
The shortest  maximum  word lengths for a number of 

(d, k )  constraints and bit-per-symbol values were com- 
puted with the  above  technique and  are shown in  Table 3. 
A  comparison of the variable-length codes with the fixed- 
length codes of Table 2 shows that  the extra degree of 
freedom in variable-length coding often yields a very 
significant decrease in word length. For example, the 
(d, k )  = (4, 9) constraints, with a bit-per-symbol value 
of 3, result in fixed-length codes with a minimum of 9 
bits per word. Thus,  at least 2' = 512 words are required 
for fixed-length coding, while a variable-length code 
(illustrated in an example given later  in this section) 
exists with a maximum word length corresponding to 
3 bits, and which has a total of 6 words. Since coding is 
done by table  look-up, the advantage of the variable- 
length code is clear. Further benefits resulting from  the 
shorter word length are discussed below. 

Error propagation limitation 
Consider the fixed-length codes of Section 3. It was 
shown that if a fixed-length code exists, then it is possible 
to code so that decoding can be performed  without  a 
knowledge of the  state occupied by the channel at the 
beginning of the transmitted  word.  This  property implies 
that  an  error  in  the detection of a symbol in a given 
word does not affect the decoding of the next word. 
However, the property is not sufficient to limit error 
propagation in codes of variable word length since an 
error  in detection may cause the decoder to treat  the 
received symbol as part of a word of length different 
from  that which was transmitted, possibly resulting in 
serious error propagation. Thus,  error propagation  in 
variable-length codes may result from improper blocking 
of the received sequence into words (misframing), as well 
as from code state dependency. 

Suppose it were possible to  mark word endings with, 
for example, a special sequence of symbols. Misframing 
as a result of an  error  in detection  could  then be eliminated 

are chosen, along with a maximal word length M N .  after the correct reception of at most one word. For 
Words may be of length i N ,  i = 1 ,  2, . . , M. The  pro- channels with finite memory [of which the (d, k )  con- 
cedure involves operations on powers of the D matrix. straints are  an example] it is possible to achieve essen- 
If the search is successful, the results are a set of states tially this result by an appropriate choice of code  paths, 
from which coding may be  performed (termed the principal as shown below. Since the method depends in part  on 
states) and,  for each such state uz, a set of  paths  that identification of the sequence state,  it overcomes error 
maximizes the quantity propagation  due to state dependence as well as to mis- 

Let S, be the subset of the principal  states in which 

code words are required to terminate when a state  that is 
where L,(ui> is the number of available code words of a member of S ,  is entered  after rN symbols, where r is 
length i N .  It is required that *(mi) 2 2" for a code to  an integer. Since words may end only  after an integer 
exist. Terminal  states are specified for  the paths.  These multiple of N symbols, this  restriction is sufficient to 

380 terminal  states are  in  turn principal states, so that channel permit the decoder to determine word endings by tracking 

*(mi) = L l ( U i )  + 2-"L2(.,) + . . . framing. 

+ 2-"(J'J-1)LM(cTJ, (20) code words actually terminate.  Consider a code such that 
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the  state of the sequence. Knowledge of the  state also 
resolves ambiguities resulting from code-state dependence. 

Let L be the maximum number of channel symbols 
that  are required to identify such a state. In general, 
L is less than  the channel memory, 3K. The decoder may 
identify the first word termination occurring after at most 
L correctly received symbols. Note  that this is equivalent 
to marking word endings with any one of a number of 
special sequences, some of which may  be longer than 
code words. An advantage of this approach over that 
of using a single sequence to mark word terminations is 
that  it may result in a larger number of available code 
words of a given length, and  thus in a shorter  code for 
a given bit-per-symbol value. 

A search routine for a class of error-propagation-limiting 
codes 
In  order  to implement the error-propagation-limiting (EPL) 
procedure discussed in  the previous section, it is necessary 
to find a set of states S ,  (termed an  EPL set) and  paths 
connecting them that have the following properties: 

1) The set S ,  is a subset of S,, the set of principal states. 
This is due to  the necessity of starting words from principal 
states. 
2 )  A word that enters a state ai E S, after rN symbols, 
r = 1, 2, . . . , M ,  terminates there. All words  terminate 
in  states that  are members of S, .  
3) Associated with each u, E S ,  there is a set of words 
of length rN,  r = 1 ,  2 ,  . . . , M ,  such that 

It follows from these properties that there may be 
instances when one  or more  states must be eliminated 
from S ,  in  order to form a set S, ,  if it exists. 

Let Vi be an r-tuple of states that may be elided from 
S ,  while the possibility of encoding is maintained. That is, 
from each state ui E (S ,  - V @  there is available a 
sufficient number of words terminating  in  states belonging 
to (S ,  - V i )  to satisfy Eq. (21). Such subsets of the 
principal state set are termed principal subsets. Let Qr be 
the set of Vi  r-tuples. 

The set 3' can be found by using the optimization 
procedure of Ref. 7 to determine whether ( S ,  - ai) is 
a principal subset of states for each ai E S,. The dimen- 
sionality of the search for all principal subsets of S ,  may 
be reduced by noting that if an r-tuple of states is a 
member of Or, then all combinations of (r - 1) members 
of the r-tuple are members of 

Each principal subset SE may be tested to determine 
whether it forms an  EPL set. The subset S; is an EPL 
set if, for each U( E S;, qe(ui) 2 2". 

where the S, = S:[rN, ui] are those members of S: that 
are reachable from u, with rN symbols. 

The available code words can be obtained from  the 
channel-transition matrix A. Let WT(ui) be the words of 
length rN available from  state ut. Using the operations 
defined in Section 3 we construct the words 

Examples of codes for (d, k )  = (4, 9) and (d, k )  = (7, 15) 
are given  below. 

Example: a variable-length code for (d, k)  = (4, 9) 
Consider the sequence with (d, k )  = (4, 9). There  are 
ten states: ul, u2, . . , ul0. Using the procedure discussed 
in  the second subsection of Section 4 a set of principal 
states  can  be found  for coding with a = 1,  N = 3 and 
M = 3. These are u4, u6, u6 and u7. In this case, S, is 
an EPL set. Moreover, { u4, u5,  u6, u 7 }  is  the only principal 
subset of states; elimination of one  state  from this subset 
eliminates the possibility of coding with the above a, N 
and M parameters.  Channel  words  corresponding to the 
EPL  paths  for  the principal  states,  obtained from  Eq. (23), 
are shown in Fig. 2. 

Table 4 shows an assignment of binary digits to  the 
channel  words such that decoding may be performed 
without recourse to  state information as long as there 
are  no errors. 

Words that enter principal states  after 3 ,  6 or 9 symbols 
terminate  there.  Word endings may be found  through 
state identification. Since n symbols are required to iden- 
tify u,,, the correct  reception of any  word except 000 is 
sufficient to determine word termination. In the  latter 
case, this can be done after  reception of the next word, 
so that  at worst, code  words  corresponding to  four bits 
must be correctly received in  order  to identify word ter- 
mination  after an  error  in detection. 

Table 2 shows that fixed-length coding with the same 
bit-per-symbol value as in  the current example would 
require  channel words of minimum length 27, each  rep- 
resenting 9 bits. Here  table  look-up coding and decoding 



Table 4 A ( d ,  k )  = (4, 9) code for ~1 = 1, N = 3 and 
M = 3 .  

q$“$&Z 000 

% 
000 

00 1 000 

Figure 2 EPL coding paths for ( d ,  k )  = (4, 9 ) ,  a: = 1, 
N = 3 and M = 3. The principal  states are u4, u5, ue, 
u,; R = 5, 6 and 7 for the paths  corresponding to u5, u6 
and u,, respectively. 

might not be  practical.  Moreover, a single error in detec- 
tion could  result in the incorrect  decoding of nine  bits. 

Example: Variable-length  code for (d, k )  = (7, 15) 
The (d, k )  = (7, 15) channel has sixteen states. A variable- 
length  code  with a = 1, N = 4 and M = 3 exists,  as 
can be  seen in Table 3. The principal states for such 
encoding are u5, f769 , ~ 1 3 .  These do not form an EPL 
set.  However, there exist  principal  subsets that have the 
EPL property. The smallest  such  set  is {us, go, u,, u8, ul0, 
u , ~ ,  uI3). A code with these as terminal states can  be 
formed as shown in Table 5. 

Word termination may  be  detected by channel state 
identification. That is,  words terminate when a state in 
the principal  subset is entered after rN symbols,  where 
r is an integer.  Once the detected  sequence has been 
partitioned into words,  decoding may  proceed  without 
further recourse to state information. Misframing as a 
result of an error in detection  is  corrected after the detec- 
tion of at most 16 channel  symbols,  which  correspond to 
4 bits. 

5. Conclusions 
Methods have  been  described for the systematic  construc- 

382 tion of run-length-limited  codes. The techniques are based 

State Binary symbols Channel code words 

u4 0 000 
10  001 000 
11  010 000 

u5r m6, 7 10 001 000 
11  010 OOO 
01 100 OOO 

001 OOO 100 000 
000 100 001 OOO 

Table 5 A ( d ,  k )  = (7, 15) code for a: = 1, N 4 and 
M = 3. 

State Binary symbols Channel code words 

u5 010 00 

100 11 
01 1 

101 

1 
00 
01 

00 
01 
10 
11 

u 6 ,  ul 

US, u10 9 811, 4 1 3  

0001 0000 
0000 0100 OOOO 
0000 1000 m 
0000 0000 
0000 0001 m 
0000 0010 OOOO 

m 
0001 m 
0010 OOOO 

0001 OOOO 
0010 OOOO 
0100 OOOO 
1000 0000 

on modeling the sequence constraints by finite-state  ma- 
chines, and are thus applicable to any constraints that can 
be  described in this form. It was shown that varying the 
code  word  length often yields codes with superior error- 
propagation-limiting  properties that are simpler and easier 
to implement than the corresponding  codes of  fixed  word 
length. 
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