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Introduction to Pseudoternary  Transmission  Codes 

Abstract: This  paper  describes  many  of  the  pseudoternary (PT) codes  (twinned, bipolar, partial  response,  etc.)  used in data transmission. 
In these,  binary  information  is  transmitted  through  three-level  rather than binary  pulse  codes  for  controlling  the  power  distribution 
in the frequency  spectrum,  improving  clock  recovery,  allowing  error  detection or for just  increasing  the  binary data rate.  Linear and 
nonlinear  PT  codes  are  considered, the latter being  divided into alphabetic  and  nonalphabetic  codes. Among the  nonalphabetic  codes, 
emphasis  is  given to the modified  bipolar  codes  used  in  pulse  code modulation systems.  Two  recently  developed  codes of this  type are 
described:  High  Density  Bipolar  (HDB)  and  Compatible  High  Density  Bipolar  (CHDB).  They  are  particularly  suitable for PCM 
transmission on repeatered  lines. 

Another  nonalphabetic  code,  the  Transparent  Interleaved  Bipolar  (TIB) is presented for the  first  time.  This  code  features all the ad- 
vantages of partial-response (or Interleaved  Bipolar)  signalling and, in  addition,  guarantees a minimum  density of pulses,  regardless 
of the data. 

Introduction 
Most of the digital information  transmitted  today is either 
pure binary data or data  that have been encoded in 
binary digits. It thus seems advantageous to construct 
line signals with 2" levels, each signal element representing 
n binary digits. Although  this approach is usually used 
in  the design of  high-efficiency modems (modulator- 
demodulators), we find an increasing number of designs 
based on three-level pulse-amplitude modulation.  A set 
of rules assigning a three-level signal to a binary message 
is called a pseudoternary code (or sometimes pseudoternary 
transmission plan). 

One of the best known PT codes, the bipolar code' 
was introduced by AT & T for  the multiplex transmission 
of telephone signals by pulse code  modulation (PCM) 
on cables. This code is now an almost universal standard 
to which cable repeaters are produced by the hundreds 
of thousands. 

Another much discussed code is A. Lender's d ~ o b i n a r y , ~ ' ~  
generated by binary signal elements which interfere with 
each other. The ability of duobinary to reduce the band- 
width requirement of baseband transmission has been the 
subject of much controversy and  has  thus created much 
interest for this class of codes (including the bipolar code), 
which we term linear pseudoternary codes. 

Ternary partial response4 is another  important example 
of a  linear PT code that is used in many recent data 
sets. 

On  the  other  hand, there is an infinite variety of pseudo- 
ternary codes that  are  not created by interfering binary 
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elements. These nonlinear PT codes are less tractable math- 
ematically and more difficult to derive systematically, but 
they often present unique  advantages and  cannot be ig- 
nored.  Some of them increase the information rate of a 
given channel, while others guarantee  a minimum num- 
ber of transitions from which bit  timing  can be retrieved 
regardless of the  data sequence. A  good example is the 
B6ZS code chosen by AT & T for  the 6.3-Mbps digital 
repeatered lines of the  T2 system.' 

The present paper is mainly a compilation of many 
known PT codes and  an  attempt  to present them system- 
atically in such a way that  the reader may easily check 
their relative merits with regard to his own needs. The 
section on nonlinear PT codes ends, however, with the 
description of some of our own developments (HDB, 
CHDB, TIB),  one of which is published here for  the 
first time (TIB). 

Generally speaking, there are  four reasons one might 
prefer pseudoternary to binary transmission. They are 
listed here in  order of decreasing frequency of practical 
usage: 

1) Improving  the frequency spectrum (in particular 

2) Making clock recovery easier. 
3) Introducing  redundancy for  error checking. 
4) Increasing the data rate. 

The most important of these properties is undoubtedly 
the frequency spectrum shaping; therefore, this paper will 
be mostly concerned with spectral (or, more generally, 
statistical) properties. The first Section will  briefly recall 

through dc removal). 
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some spectral  properties of digital codes in general. We 
shall then present the principal pseudoternary codes and 
examine their construction-linear codes first and then 
nonlinear codes. The latter will include the new material 
on  TIB codes. 

Important properties of pulse amplitude modulation 
(PAM) 

Definitions, Nyquist band 
A multilevel pulse-amplitude-modulated (PAM) signal 
can be described by the formula 

where * denotes the operation of convolution in the time 
domain, a, is the amplitude assigned to pulse n, 6 is 
Dirac's distribution and &(t) the shape of the elementary 
pulse. In our case, a, will  be assumed to take  the values 
- 1 ,  0, +1 exclusively. 

The Fourier  transform of S(t)  is 

S(w)  = [ a,e-'w"T]. S0(w). (2) 

We  see that 

1) The effect of &(t) amounts  to a simple filtering in 
the frequency domain, which is independent of the code 
transmitted. The spectral  properties of pulse codes are 
thus best described by assuming that Dirac's impulses 
are transmitted. The choice of another pulse shape will 
affect all codes in  the same way. 
2) As the reader may easily verify, 

(w) (where k is any integer) (3) 

and 

In  other words, as Nyquist discovered in 1928,fi the 
frequency spectrum of any modulated impulse train is 
entirely described by its segment 0 < w < ?r/T; all other 
segments can be deduced by symmetry or repetition. 
Hence the "Nyquist bandwidth" Af = 1/2T, the minimum 
bandwidth for  the error-free transmission of the ampli- 
tudes a,. (In particular, any code free of dc components 
will have no frequency component at  the signalling rate 
l/T.) This result is used in  the design of PAM signalling. 

If  we consider an ideal low-pass filter of bandwidth 
F,,, = 1/2T, its impulse response is 

I 1 I I I I I 
-37' -2T -T 0 1 2T 3T 

rime 

Figure 1 Ideal low-pass filter  impulse  response (Fmax = 
1 / 2 T ) .  

Figure 2 (a) Minimum  bandwidth  signalling  method. (b) 
Unfavorable data sequence  and  filtered  waveform. 
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This well-known type of pulse, represented in  Fig. 1,  
has zero crossings at all multiples of T except T = 0, 
so that pulses transmitted at  the  rate 1/T do not  interfere 
with each other. 

The ideal PAM signalling method is depicted in Fig. 2(a). 
A coder delivers amplitude coded impulses at  the  rate 
1/T to a low-pass filter of bandwidth 1/2T. The  output 
of this filter is a  smooth waveform, the amplitudes of 355 
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q-;T2 s l q ~ ~ ~ 2  Digital sum variation 
Let us consider the simple ac coupling networks shown 
in Fig. 3. Such networks, which do  not transmit direct 
current, are necessary in most transmission systems. In 
either case of Fig. 3, we have: 

Sl ’L 

Figure 3 Coupling networks. 
S,(t) = $S, ( t )  - - S,(t)  dt, (6) 

7 ‘ S  

which, at  the times t = nT, are  proportional to the 
amplitudes of the coded impulses. The impulse train may 
thus be reconstructed by sampling the received signal. 
(In  this ideal case, channel distortions are assumed to 
be properly compensated.) 

A basic difficulty  with this signalling method is that 
the sum ck ISo(t + kT)]  does not converge if t # nT. 
It follows that  the PAM signal may take unbounded 
amplitudes between the sampling points as illustrated in 
Fig. 2(b). Obviously, a signal of this type requires a very 
accurate definition of its sampling instants if it is to be 
demodulated correctly. 

This  problem is usually solved by giving some roll-of 
to  the low-pass filter as shown by the  dotted line in 
Fig. 2(a). If the roll-off is antisymmetric, the signal ele- 
ment will still have the desired zero crossings and it will 
decrease more rapidly in the  time  domain than t”. We 
shall discuss this  point again in  the chapter on linear 
PT codes. The reader interested in a more  thorough 
treatment of PAM is referred to Lucky, Salz and Weldon’s 
excellent textbook7 or Gibby and Smith’s paper on the 
Nyquist telegraph theory.’ 

Frequency spectrum 
The average spectral power density generated by a given 
code may be obtained by computing the coded signal‘s 
autocorrelation function and taking  its  Fourier transform. 

The method of calculating the autocorrelation  function 
is to represent the code by a  Markov  diagram and com- 
pute  the successive powers of the transition probability 

It is not  our purpose  here to describe this 
known process in any detail but we shall give a few results 
for the codes studied. These results will  be based on the 
assumption that the binary data digits are independent 
and  that zeros and ones are equiprobable. 

For  the practical design of transmission systems, it 
may also be useful to find the spectral envelope, defined 
as  the  absolute maximum signal power at any frequency. 
In some simple cases, such a function can actually be 
defined, but it is not generally true.  “Worst case” low- 
frequency components in particular  are not easily related 
to the signal distortion produced by an  ac coupling net- 
work. The concept of digital sum explained below has 
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where r = 2RC  or T = 2L/R. 
The second term  on  the right-hand side of (6) is the 

distortion introduced by the coupling network; if this 
distortion is small (or S ,  M S,), we see that it is propor- 
tional to a primitive of the applied signal. 

Since we are interested in the properties of codes inde- 
pendently of the pulse shapes used, we prefer to say that 
the ac coupling distortion suffered by a coded signal is 
proportional to the digital sum” of the code. By defini- 
tion,  the digital sum is 

N 

g N  = an, (7) 

where M is arbitrary, but fixed, and N numbers the last 
transmitted impulse at  the time considered. As we limit 
our study to codes with stationary properties, u, may 
be either bounded or allowed to grow at the most linearly 
with N.  

In  the first case, the average of the signal decreases to 
zero as  the averaging interval increases and the code 
spectrum has no dc component. This property is shared 
by most pseudoternary codes and very often is the basic 
reason for the choice of such a code. When studying a 
code without a  dc component, it is very important  to 
know the maximum digital sum variation (DSV) of this 
code. The DSV, defined as the difference between the 
upper and lower bounds of C T ~ ,  limits the  distortion of 
any coded signal. In  the design of transmission codes, 
we shall thus  try  to have the smallest possible DSV. 

7k=M 

Linear  pseudoternary (PT) codes 

Basic linear PT codes 
We call a pseudoternary code “linear” if it can be linearly 
derived from the binary message: 

where the coefficients ak define the code, while a, = - 1, 
0, +1 is the ternary code level and b, = - 1, + 1 is the 
binary encoded data.  In this case, the coded sequence 
can be written: 
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Thus, a linear  pseudoternary  code is actually a  particular 
case of a binary code  in which the signal element &(t) 
has been replaced by 

SL(t> = Sl(t) * Sn(t), (1 0) 

where S,(r) is the sequence of impulses 

A linear PT encoding is thus equivalent to a filtering 
operation. The frequency response of the equivalent filter 
is given by the  Fourier transform of S ,  

K 

Sl(0) = CYke-jOkT 
k=O 

In  order  for  the a, to have only three possible values 
for any sequence, it is necessary that there  be only two 
f f k  # 0 and  that they  be either equal  or opposite. We 
thus  have two basic linear PT codes, each containing 
two pulses in its signal element: 

a) Twinned binary 

b) Duobinary 

(Yo = ++, CY1 = ++. (14) 

Another example would be three-level partial-response, 
in which a0 = - 1/2, 0 1 ~  = 0, = +1/2, but this  code 
can be deduced from twinned binary by interleaving, a 
general method for modifying pulse code properties, 
which will  be explained later. 

Twinned binary’ is free of dc since each binary signal 
element Sl(r) is composed of a positive and a negative 
pulse of equal amplitudes. If one constructs  coded se- 
quences, it becomes obvious that  the zero level can be 
maintained indefinitely, but the first pulse that follows 
a positive pulse is always negative (see Fig. 4). The DSV 
of twinned binary equals one unit, the smallest possible 
value for any three-level code; therefore, twinned binary 
is very insensitive to low-frequency removal. This is one 
of the reasons for which the  bipolar  code,  a modified 
twinned binary, is so widely used for  PCM transmission 
on cables. The  other reason is the ease of clock recovery 
from  the full-wave rectified and clipped signal. In  addi- 
tion, a single transmission error will always create a 
“bipolar violation,” i.e., a pulse of the same  polarity 
as the preceding one.  This  property  does not give a good 
error-detection scheme, but  it allows one  to monitor 
the average error  rate without having any information 
on  the transmitted data. 

I 1 I 
I w Time 

0, 1 1 1 
0, 
0, 
0, 0, 1 

0, 
0, 

( a )  Twinned  binary A 

--b Time - 0 
,1, 

LL 
,1, 

0 - 0 
- 0  - 0 

-1, 
0 - 0 - L 

(b) Duobinary ,1, 
Figure 4 Construction of linear PT-coded sequences from 
the composite  signal  elements. 

Duobinary,’ on  the contrary, has a dc component that 
is the same as the corresponding  binary code. It is char- 
acterized by the absence of direct transitions between 
levels +1 and - 1. 

The spectral density functions of linear PT codes are 
easy to compute since we know that  the frequency re- 
sponse of the equivalent filter is given  by  (12). The spectral 
density is then simply IS1(w)J2. 

These well-known results are shown in Fig. 5. Both 
functions are periodic in  the frequency domain, but  for 
any  transmitted sequence only the cross-hatched area  in 
Fig. 5 is not  redundant. Hence only this area needs to 
be transmitted. 

Note  that  the  nonredundant frequency range  depends 
only upon  the signalling frequency and is the same for 
duobinary, twinned binary,  straight  binary or ternary 
coding. The claim once made3 that  duobinary reduces 
by a  factor of two the minimum bandwidth  requirements 
may have resulted from a confusion between the contri- 
butions of the code and those of the signal element to 
the shape of the frequency spectrum. By choosing Dirac 
impulses as signal elements, we isolate the code  properties 
and  the confusion disappears. We shall, however, briefly 
go back to bandlimited signal elements in  order  to show 
which new kind of tradeoff is introduced by the linear 
pseudoternary codes. 357 
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(a) Twinned  binary 

2 1  I .- 

(b)Duobinary 

Figure 5 Signal  elements and spectral  density functions of 
linear PT codes. 

If we consider the ideal system of Fig. 2 in the case of 
binary, twinned binary and duobinary codes we have the 
bandlimited signal elements: 

Binary 

Twinned binary 

Duobinary 

sin &) sin & - n-) 
S,(t) = ___ + ___- 

a t   a t  - - _  
T T 

a 

while IS,(t)l decreases as l / t z .  The integrals of IS,[ and 
lSTl do  not converge. Practically, this means that with 
unfavorable data sequences, the binary and twinned binary 
signals may take very large values between sampling 
points, which is not  the case for duobinary. 

It  is  thus possible to transmit  any  duobinary sequence 
in exactly the Nyquist  bandwidth for binary symbols 
while twinned binary, like straight  binary or ternary, 
signalling always needs a little more than the Nyquist 
bandwidth. How much more depends on  the precision 
with which we can design the circuits, particularly the 
output filter. In practice, an excess bandwidth of about 
25 percent has been achieved, for example, with digital 
echo  modulation  technique^.^^"^ Since duobinary requires 
three-level signalling, a  fair  comparison of bandwidths 
must be made with ternary rather  than binary trans- 
mission. With two ternary digits, one can represent three 
bits. The  ratio of the bandwidths of duobinary and straight 
signalling is thus 

5 

2 X 1.25 
= 1.2 

in favor of the straight  ternary system.* 
We see that  the use  of duobinary (or partial response) 

actually decreases the absolute  performance limits of 
three-level pulse transmission. However, some designers 
may rightfully choose these schemes for their simplicity 
of realization. 

Precoded linear PT codes 
The basic linear codes described in  the previous Section 
suffer a  common drawback: in  either case the erroneous 
reception of one  ternary element may result in a chain 
of errors when it is decoded back into  the binary  form. 
This effect can be avoided by precoding the binary data. 

In  the case of twinned binary, we see that pulses are 
generated whenever the coded signal switches from a 
logical ZERO to a logical ONE condition and vice versa. 
Let us transform the  input  data  in such a way that there 
is a transition in  the transformed data  for each ONE in 
the  input. After encoding in twinned binary we get a pulse 
(either positive or negative) for each data ONE and  an 
empty slot for each data ZERO. This  construction defines 
the bipolar code widely used for  PCM transmission on 
cables. 

The bipolar  code  can be directly generated from  the 
input  data with the following rules: 

1) Each data ZERO is represented by an empty  slot. 
2 )  Each data ONE is represented by a pulse. 
3) Positive and negative pulses alternate regardless of the 

number of empty slots between them. 

response as described in the section on intedeirced linear PT codes. 
* The same conclusion applies to interleaved bipolar or ternary partial 
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Decoding of the bipolar signal is easily achieved by 
full-wave rectification and clipping at one-half the peak 
amplitude.  There is no error  propagation. The same pre- 
coding operation applies to duobinary, which also allows 
decoding by full-wave rectification. 

Encoders for all four cases are shown in Fig. 6. As we 
can see from these circuit diagrams, precoding is a very 
inexpensive operation and is entirely justified by the sim- 
plification it brings in the decoding process. 

Interleaved linear PT codes 
Another interesting modification of transmission codes in 
general is interleaving.' This  operation is described by 
Fig. 7. We see from this  diagram that  odd bits and even 
bits are coded separately and interleaved. Usually both 
coders are identical. 

The purpose of interleaving is to modify the signal 
frequency spectrum. In  random binary data there is no 
correlation between odd  and even bits; consequently, 
the code autocorrelation  function is just twice that of a 
single coder. On  the other hand,  in interleaving, each 
coder  operates at one-half of the  total rate. Consequently, 
each spectral  component of the original  code has its 
frequency reduced by a factor of two when interleaving 
is used. 

Interleaved linear PT codes are most easily generated 
by the circuits of Fig. 6 in which the delay element dura- 
tion is increased from T to 2T. Figure 8 shows the effect 
of interleaving on  the frequency spectrum of the bipolar 
code. The advantage of interleaving in this case is obviously 
to create a spectral zero at  the Nyquist rate  in  order  to 
make filtering easier and  to make it possible to transmit 
at exactly the Nyquist  rate. The interleaved bipolar code 
thus combines the practical advantages of both bipolar 
and duobinary. 

Interleaving can  be pursued to a higher degree in  order 
to create  spectral "holes" within the Nyquist  bandwidth, 
but this possibility does  not yet seem to have found a 
practical application. 

The most publicized application of interleaving is 
Becker, Kretzmer and Sheehan's three-level partial re- 
sponse t e~hnique ,~  which is simply a form of interleaved 
twinned binary. This  code, which has been described 
several times by unrelated a ~ t h o r s , ' ~ ' ~ ~  has of course 
the same spectrum as interleaved bipolar.* 

Partial response is attractive because of its simplicity, 
but  it  cannot perform as well as  straight  ternary signalling 
combined with highly efficient transmission (such as digital 
echo  modulation) for  the same reasons as were invoked 
for duobinary. 

* The  name  "partial response" does  not  apply only to  the three-level variety 
with which we are concerned  here. A more general description will be  found 
in Ref. 17 and 18. 
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Figure 6 Encoders for linear  pseudoternary  codes. D = 
one bit  delay; N = inverter; XOR = exclusive or; Z = sum- 
ming  amplifier. 

Figure 7 Arrangement for interleaved  coding. 
Commutator - 

Odd bit coder 
output 
Coded 

Data * 
l p  
I Even bit codcr 

I 
I I 
I 

""__I """"""""""""" 1 

? I  

Clock I 

Figure 8 Effect of interleaving on the bipolar code spec- 
trum. 

I Frequency "c 

A drawback of interleaving is the doubling of the 
digital sum variation (DSV). In  other words, interleaved 
signals suffer twice as much distortion as their  noninter- 
leaved counterparts when transmitted through coupling 
transformers. The DSV of partial response is two, which 359 
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pseudoternary 
codes 

1 I 

Figure 9 Relations among linear pseudoternary  codes. 

is still reasonable, but interleaving codes with a higher 
DSV might be quite difficult. 

Summary of linear PT codes 
The codes just reviewed are displayed in Fig. 9.  This 
graph is self-explanatory. It recalls the various  options 
that lead to a  particular code. The position of the spectral 
zeros and  the DSV appear under each code name. 

Nonlinear  pseudoternary  codes 
The domain of nonlinear  pseudoternary codes is much 
wider than  that of the preceding linear codes; we shall 
therefore limit ourselves to codes with practical significance 
in data communications. The first distinction to make 
is between alphabetic and nonalphabetic codes. 

character  synchronization and  thus synchronization  re- 
covery circuits, which can  be complex and may not work 
on every coded sequence. 

Alphabetic codes without rate increase 
The most publicized of these codes is Paired Selected 
Ternary’’ (PST), in which a group of two  bits is repre- 
sented by a group of two ternary digits. The purpose of 
this  type of encoding is to simultaneously eliminate dc 
and  the ternary  character 00. The characters to use in 
each case are defined in  the following table: 

Binary Ternary 
0 0  - +  
0 1  O +  or 0 -  
1 0  + O  or - 0  
1 1  + -  

We  see that there are two possible ternary  characters 
encoding the binary  combinations 01 and 10. In either 
case one of the characters gives a positive contribution 
to  the digital sum, while the  other gives a negative con- 
tribution. The  dc is balanced by alternating  the  two  kinds 
of optional characters. 

PST  has  found practical use in very-high-speed PCM 
systems.” The drawbacks of PST relative to bipolar  trans- 
mission are a  factor-of-three increase in  the DSV and a 
factor-of-1.5 increase in  the average transmitted power. 
We shall see that  the design goals of PST are better 
reached with nonalphabetic codes. 

Alphabetic PT codes 
By the designation “alphabetic PT codes” we mean those 
pseudoternary codes whose digits are grouped in “char- 
acters” of n consecutive digits, encoding being done  one 
character at a time. If a  ternary  character is n digits 
long,  there are 3” possible characters. For coding, the 
binary data  are divided into binary  characters of m bits 
each; to each binary  character  corresponds one  or several 
possible ternary  characters. Obviously, 2” 5 3”, or m 5 
1.581~. 

We see that alphabetic  pseudoternary codes may poten- 
tially increase the  data  rate up to 58 percent over straight 
binary. On  the  other  hand, alphabetic coding requires 
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There are some  variations of the PST code, but we do 
not  know of a fundamentally different alphabetic PT code 
that is not designed to provide a data  rate increase. 

Alphabetic PT codes with rate increase 
If we wish to approach  the maximum possible increase 
in speed, the best (yet comparatively simple) method is 
to use two  ternary digits to encode  three  bits of data. 
The transmission rate is then 1.5 that of binary, which is 
about 95 percent of the theoretical limit. In fact, only 
one of the nine combinations of two ternary digits is not 
used. Depending on  the type of transmission hardware, 
the choice of the unused character may not  be  arbitrary; 
very often the character 00 may be undesirable. This 
3B-2T code is the most efficient three-level transmission 
scheme when dc is not objectionable. 

But we may also be more  ambitious and  attempt  to 
eliminate dc while transmitting at  an increased data rate. 
This  idea has brought the development of two very inter- 
esting codes which represent four binary digits with three 
ternary digits. Both are based on  the following decom- 
position of the 27 possible three-digit ternary  characters. 

1) Character 000 is eliminated from  the code. 
2) The following six characters have a balanced digital 
sum  and can be used without  restriction to represent six 
binary characters: 

0 + -  + 0 -  + - 0  
0 ° C  - O t  - + 0. 

Table 1 MS43 coding table. (From Ref. 12). 

Digital sum 

I 4 2 or 3 
Binary  Equivalent - 

0000 

lo00 
0100 

0 -  0 0 -  0 + o +  0010 
00 - 0 0 -  + +  0 OOO1 
- + -  - + -  + + +  

o + +  - 0 0  - 0 0  + - +   + - +  - - -  
001 1 0 - +   0 - +  0 - +  
0101 - o +  - o +  - o +  
1001 

0110 
1100 

- 0 -  o +  0 o +  0 1010 
- -  0 o o +  o o +  

+ o o   + o o  0” 
1110 

- +  0 - +  0 - +  0 

1101 
+ - 0  + - 0  + - 0  + 0 -  + 0 -  + 0 -  

1011 
0111 

o + -  o + -   o + -  - + +  - + +  - -  + 
1111 + + -  + - -  + - -  

one of four possible levels at  the end of each code word. 
Table 1, which is taken  from Ref. 12, gives the choice of 
the code words in each case of binary input  and digital 
sum level at  the beginning of the code word. Franaszek’s 
paper gives a method for  the derivation of both these 
codes and variable-length codes (see below). 

As stated before, the digital sum  can take only four 
different “terminal” levels at  the end of a code word, 

3) The remaining 20 ternary  characters have a  nonzero 
digital sum (ten positive and ten negative). They  can be 
paired to represent ten different binary  characters. With of six levels; hence, a DSV of 5 .  
each binary character,  one will associate either the posi- 
tive or  the negative ternary  character so as to best com- 
pensate the current digital sum. 

but two  additional levels may be reached within the code 
words with such characters  as +-0 or +- - when 
starting from extreme terminal levels. This gives a total 

Another class of alphabetic codes has been developed 
by GorogZ2  for  the transmission of information  in n-ary 
(in  particular  ternary) systems with constraints in  the 

We see that a total of 6 + 10 = 16 binary characters 
can be represented, which corresponds exactly to  the 
number of combinations of four binary digits 

The first such code is the British-developed 4B-3T 
(Ref. 21) in which the characters  in each pair are inverses 
of each other; e.g., 

+ + +  and 
+ o  0 and - 0 0 ,  etc. 

_” 

This 4B-3T code fulfills its  purpose of balancing dc 
and increasing the transmission rate; however, its digital 
sum  can vary over seven units (DSV = 7), which means 
a dc removal distortion seven times that of bipolar. A 
very similar code, described by Franaszek, uses a more 
sophisticated attribution of ternary code words and is 
able to reduce the DSV to 5 units, which is a little better. 
Franaszek’s MS43 code is generated under  constant  mon- 
itoring of the digital sum, which  is brought back to only 

frequency spectrum. 

Variable-length alphabetic codes 
In these sophisticated coding schemes, the code words 
may have several different lengths. To be practical, vari- 
able-length codes must transmit data  at a  constant rate; 
i.e., each code word must  carry  a  number of data bits 
proportional  to  its length 

In Franaszek’s V U 3  code,12 for instance, data is en- 
coded in blocks of 4 or 8 bits represented with code 
words of 3 or 6 ternary digits, respectively. 

The algorithm for VL43 encoding can be summarized 
as follows: 

1) Compute the running digital sum. 
2) Examine the next 4 bits. 
3) Look  in  the table for a 3-digit code word corresponding 

to these 4  bits and  the digital sum. 361 
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4)  If no code word is found, increase the number of bits Johannes et al.25 consider modal and nonmodal codes. 
examined to 8 and look for a suitable 6-digit code With our convention, a nonmodal code is one in which 
word. the filling sequence is the same regardless of the pre- 

5) Record  the selected word and go back to 1). viously transmitted data. Johannes  et al. demonstrate 

The V U 3  code is claimed to have two advantages over 
MS43: a digital sum variation of 4 instead of 5 and a 
higher density of transitions  from which timing may  be 
recovered.12 

It must be emphasized here that many codes which 
have a state dependent encoding like 4B-3T,  MS43 and 
VL43 can actually be decoded without this state depend- 
ence. This is a very important point since, otherwise, 
errors would tend to propagate. 

that a nonmodal filling sequence must contain at least 
four pulses. As an example, they describe the bipolar- 
with-six-zero-substitution (B6ZS) code whose 6-bit filling 
sequence is BOVBOV. B6ZS  was also disclosed as part 
of the  T2  PCM multiplex ~ y s t e m , ~  the  reason  for choosing 
it over a modal code is not indicated. 

In  our opinion a modal scheme would have brought 
a greater efficiency. Before entering this discussion, let 
us briefly note that the ZEROS in  the BOVBOV sequence 
are  there to prevent two adjacent pulses  of the same 

Filled bipolar codes (nonalphabetic) 
Many designs for nonalphabetic, nonlinear PT codes 

polarity from occurring. This is because many PCM cable 
repeaters could not generate such signals. 

have been p r o p o ~ e d . ~ ’ ~ ~ * ~ ~ - ~ ~  The only ones to have 
found  important applications seem to be of the “filled 
bipolar” type. They have the same purpose as paired 
selected ternary (PST), namely to eliminate a basic defi- 
ciency of the  bipolar code, which is to represent a binary 
ZERO by an empty time slot.* Usually, these codes are 
not designed for sharp filtering before transmission and 
do  not have a spectral ZERO at f = 1/2T. This property 
may, however, be obtained by interleaving as with linear 
F T  codes. 

If a long sequence of ZEROS is encoded in bipolar 
form, it will result in  an equally long time interval without 
any  transmitted energy, and clock recovery from  the signal 
will become impossible. Therefore, the bipolar code is 
said not  to be “data transparent.” With practically realized 
receivers, the maximum “empty interval” allowed for con- 
secutive ZEROS is about 15, an unacceptable restriction in 
many cases. 

The immediate answer to this problem is to fill the 
long, empty intervals with a special ternary sequence 
that will maintain the receiving  clock in operation. The 
“filling” sequence must be recognized and eliminated by 
the receiver. For this  reason filling sequences must con- 
tain a bipolar violation (i.e., a pulse whose polarity is the 
same as that of the last previous pulse). 

In order to simplify the presentation of  filled bipolar 
codes, we shall adopt  the following conventions: 

The symbol B represents a normal bipolar coded pulse. 
The symbol V represents a bipolar violation pulse. 
The symbol 0 represents a bipolar ZERO. 

1 and 4 represent binary ONES and ZEROS. 

The normal bipolar encoding law can  thus be written: 

1- B; 4 + 0 .  

8 Some recent deljelopments in jilled bipolar codes (HDB, 
CHDB) 
The digital sum variation  for B6ZS is 3, against 1 for 
pure bipolar. We have asked ourselves whether a filled 
bipolar code with a DSV  of 2 was possible, and  this 
has led us to design the High  Density  Bipolar,26 the Com- 
patible High Density Bipolar” and  the Transparent Inter- 
leaved Bipolar* codes (HDB, CHDB  and TIB). 

The last is not exactly a filled bipolar code and will  be 
discussed separately. HDB  and  CHDB are characterized 
by their filling sequences whose length n + 1 (which 
may be chosen arbitrarily) defines the maximum number 
n of consecutive ZEROS in the coded message.  (We call 
this last number the order of the  HDB  or  CHDB code, 
and the code of order n is called HDBn or CHDBn). 

These sequences are: 

HDB B O O ,  . * .  , v 
or 0 0 0 ,  ... , V 

CHDB 0 0 ,  . . .  , B O  V 
or 0 0 ,  . . .  , 0 0  V. 

As we see, these codes are  modal, i.e., they each have 

The rule  for choosing the  proper sequence is: 
more than one possible filling sequence. 

The number of B pulses between two consecutive V pulses 
must always be odd. 

The reader may  easily  verify that this rule produces 
violation pulses of alternate polarities and  that, conse- 
quently, the DSV is only 2. At the same time, HDB  and 
CHDB have fewer pulses (about 1.5, on  the average) in 
the filling sequence and  thus require less transmitter 
power and produce less crosstalk than nonmodal codes. 

362 * See Section entitled Precoded linear PT codes, p. 358. 
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HDB  and  CHDB  are very similar; CHDB may be con- 
sidered as  an improvement of HDB (which  was developed 
first). CHDB coding and decoding hardware is somewhat 
simpler. In particular the decoder is always the same, 
regardless of the  order of the  CHDB code. 

Another  strong point for  HDB  and  CHDB codes is 
that single transmission errors  are easily detected by 
checking whether the polarities of the violation pulses 
effectively alternate. 

It is interesting to  note  that filled bipolar codes can 
also be described as variable-length alphabetic codes, but 
this  type of description does not highlight their  inter- 
esting features. This  point is illustrated by Table 2, which 
presents HDB2  as a variable-length alphabetic codes. 

A new development: the transparent interleaved bipolar 

We have seen in  the second section of this paper  that 
any  code  without dc is also free of spectral  components 
at  the signalling rate 1/T. We have also seen that inter- 
leaving two independently coded sequences would modify 
the frequency spectrum homotetically, reducing the fre- 
quency of each component by a factor of two. Conse- 
quently, any interleaved dc free code has a spectral zero 
at the Nyquist rate (f = 1/2T). 

It would seem attractive to use this  property and inter- 
leave, for instance, two CHDB codes in  order  to combine 
the filtering facility of partial response with the  data 
transparency of CHDB. 

The scheme obviously works, but produces a digital 
sum  variation (DSV) of 4, against 2 for  either CHDB 
or  partial response. 

The next idea would be to interleave a CHDB  and a 
bipolar message. The DSV would be only 3 and  the de- 
coder would not have to know which is the  CHDB 
message; it would just assume both to be CHDB. 

This scheme would already be an improvement, but 
we intend to show that a family of codes can be con- 
structed which has  the following properties: 

1) No dc component. 
2) No component at  the Nyquist rate f = 1/2T. 
3) A digital sum  variation = 2. 
4) A bound  on  the number of consecutive zeros. 

In  other words, the advantages of partial response and 
filled bipolar  can be combined without increasing the 
DSV. 

The new codes, which we name Transparent Inter- 
leaved Bipolar of order n (TIBn) are defined as follows. 

Each code of the family is composed of two interleaved 
pseudoternary sequences or “subchannels.” 

a) Each sequence normally follows the bipolar encoding 
law  (successive pulses have opposite polarities). 

codes (TZB) 

JULY 1970 

Table 2 A variable-length alphabetic coding table for 
HDB 2 

Last  violatiou 

+ - 

Digital sum Digital sum 

Binary 

0- O+ 01 

+ + 
0 -1 +1 0 

0- O+ 

001 00- 00 + 00 - oo+ 
000 -0- 00- 00+ +O+ 

1 - - 

Table 3 TIB filling  sequences 

Polarity of 

subchannel  subchannel subchannel 
1st  2nd first 

violation in 
transmitted  pulse in last 

Polarity of last 

+ + 
+ + + - 

- 

- - 

+ + + + 
- 

- - 
- - 

” 

Filling  sequence 

0 0 ,  “ .  , - 0 - +  -+-+ 
0 0 - +  
0 - t -+  

0 - + -  
0 o + -  
f-+- 
+ O + -  

b) When a number n + 1 of consecutive ZEROS is found 
in the composite pulse train, they are replaced by a 
special “filling” sequence terminated with a bipolar viola- 
tion  in each subchannel.  This filling sequence is: 

OO;.. ,ooxxvv ,  
where V represents a pulse in bipolar violation (in its 
respective subchannel) and X is either a ZERO or a normal 
bipolar pulse chosen in such a way that  the number of 
B pulses between two successive V pulses is odd  in each 
subchannel. 
c) The two V pulses in the same filling sequence have 
opposite polarities. 

Depending on  the polarity of the last violation and 
the last pulse in each subchannel, we find the eight possible 
filling sequences listed in Table 3. 

The  operation of the  TIB codes will be best under- 
stood from Fig. 10, which represents a particular message 
encoded in TIB5 (i.e., the  TIB code which generates at 363 
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"Filling"  zones 
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I 

Pulse scquenccs (V=violation) I I ! I  ! 

Figure 11 TIB 5 encoder. FF = flip-flop; other symbols as in Figure 6. 
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most 5 consecutive ZEROS). Figures 11,12 and 13 represent 
encoding, decoding and  error monitoring circuits for  the 
TIBS code.  (In  fact,  only the encoder is particular to 
TIBS; the  other two circuits work with any TIB code). 

Summary of nonlinear PT codes 
Figure 14 groups the codes just described. As in Fig. 9, 
the positions of the spectral ZEROS and  the DSV appear 
under each code name. The  rate increase factor (relative 
to binary)  has been added when applicable. The spectral 
densities of the PST, B6ZS, MS43 and  the various CHDB 
codes are displayed in Fig. 15. They have been computed 
from  the autocorrelation  functions as described earlier 
in this  paper.  (The  spectrum of TIB  has  not yet been 
computed; spectra of HDB codes will be found in Ref. 26). 

Conclusions 
There is obviously a  great variety of pseudoternary codes. 
The choice of the  proper design depends on such par- 
ticular requirements as freedom from dc, ease of filtering 
at  the Nyquist rate, simple encoding and decoding, and 
so on. Generally speaking, it seems to us that nonlinear 
codes offer more possibilities than  the linear ones; they 
allow one to simultaneously control the position of spec- 
tral ZEROS, minimize the effects of low-frequency removal, 
guarantee  a minimum pulse density and even increase 
the  data  rate  in a given bandwidth (relative to binary 
transmission). 

Alphabetic codes, like MS43 or VL43, allow data 
transmission at greater than  the binary  Nyquist rate 
while removing the  dc component; they should be used 
whenever efficient  use of the bandwidth  can be paid  in 
design complexity. 

Modal filled bipolar codes, on  the other hand, have 
statistical properties (digital sum  variation, average power, 
minimum pulse density) which make them easy to detect 
by simple means; they  are particularly suited for  PCM 
transmission on lines with repeaters. 

Bipolar input (TIB) 

Negative 
pulse 

Clock 

Data * 

I, 7 Violations 

FF3 ”FF4 - 

r r 

Figure 12 Error monitoring device for any TIB code 

Binary 
output 

Clock - 
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