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Introduction to Pseudoternary Transmission Codes

Abstract: This paper describes many of the pseudoternary (PT) codes (twinned, bipolar, partial response, etc.) used in data transmission.
In these, binary information is transmitted through three-level rather than binary pulse codes for controlling the power distribution
in the frequency spectrum, improving clock recovery, allowing error detection or for just increasing the binary data rate. Linear and
nonlinear PT codes are considered, the latter being divided into alphabetic and nonalphabetic codes. Among the nonalphabetic codes,
emphasis is given to the modified bipolar codes used in pulse code modulation systems. Two recently developed codes of this type are
described: High Density Bipolar (HDB) and Compatible High Density Bipolar (CHDB). They are particularly suitable for PCM

transmission on repeatered lines.

Another nonalphabetic code, the Transparent Interleaved Bipolar (TIB) is presented for the first time. This code features all the ad-
vantages of partial-response (or Interleaved Bipolar) signalling and, in addition, guarantees a minimum density of pulses, regardless

of the data.

Introduction

Most of the digital information transmitted today is either
pure binary data or data that have been encoded in
binary digits. It thus seems advantageous to construct
line signals with 2° levels, each signal element representing
n binary digits. Although this approach is usually used
in the design of high-efficiency modems (modulator-
demodulators), we find an increasing number of designs
based on three-level pulse-amplitude modulation. A set
of rules assigning a three-level signal to a binary message
is called a pseudoternary code (or sometimes pseudoternary
transmission plan).

One of the best known PT codes, the bipolar code'
was introduced by AT & T for the multiplex transmission
of telephone signals by pulse code modulation (PCM)
on cables. This code is now an almost universal standard
to which cable repeaters are produced by the hundreds
of thousands.

Another much discussed code is A. Lender’s duobinary,”®
generated by binary signal elements which interfere with
each other. The ability of duobinary to reduce the band-
width requirement of baseband transmission has been the
subject of much controversy and has thus created much
interest for this class of codes (including the bipolar code),
which we term linear pseudoternary codes.

Ternary partial response® is another important example
of a linear PT code that is used in many recent data
sets.

On the other hand, there is an infinite variety of pseudo-
ternary codes that are not created by interfering binary

The author is at the IBM Centre d’Etudes et de Recherches, La Gaude,
France.

elements. These nonlinear PT codes are less tractable math-
ematically and more difficult to derive systematically, but
they often present unique advantages and cannot be ig-
nored. Some of them increase the information rate of a
given channel, while others guarantee a minimum num-
ber of transitions from which bit timing can be retrieved
regardless of the data sequence. A good example is the
B6ZS code chosen by AT & T for the 6.3-Mbps digital
repeatered lines of the T2 system.’

The present paper is mainly a compilation of many
known PT codes and an attempt to present them system-
atically in such a way that the reader may easily check
their relative merits with regard to his own needs. The
section on nonlinear PT codes ends, however, with the
description of some of our own developments (HDB,
CHDB, TIB), one of which is published here for the
first time (TIB).

Generally speaking, there are four reasons one might
prefer pseudoternary to binary transmission. They are
listed here in order of decreasing frequency of practical
usage:

1) Improving the frequency spectrum (in particular
through dc removal).

2) Making clock recovery easier.

3) Introducing redundancy for error checking.

4) Increasing the data rate.

The most important of these properties is undoubtedly
the frequency spectrum shaping; therefore, this paper will
be mostly concerned with spectral (or, more generally,
statistical) properties. The first Section will briefly recall
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some spectral properties of digital codes in general. We
shall then present the principal pseudoternary codes and
examine their construction—linear codes first and then
nonlinear codes. The latter will include the new material
on TIB codes.

Important properties of pulse amplitude modulation
(PAM)

o Definitions, Nyquist band
A multilevel pulse-amplitude-modulated (PAM) signal
can be described by the formula

S = [ a, 6t — nT)] * Sy(r), (1

where * denotes the operation of convolution in the time
domain, a, is the amplitude assigned to pulse n, § is
Dirac’s distribution and Sy(r) the shape of the elementary
pulse. In our case, a, will be assumed to take the values
—1, 0, +1 exclusively.

The Fourier transform of S(z) is

S) = [ a7 Solw). %))

We see that

1) The effect of So(f) amounts to a simple filtering in
the frequency domain, which is independent of the code
transmitted. The spectral properties of pulse codes are
thus best described by assuming that Dirac’s impulses
are transmitted. The choice of another pulse shape will
affect all codes in the same way.

2) As the reader may easily verify,

%0 <w + k ?) = % () (where k is any integer)  (3)
and

S (= _ s* (1 _ >

S[,<T+w>_SO T © “)

In other words, as Nyquist discovered in 1928,° the
frequency spectrum of any modulated impulse train is
entirely described by its segment 0 < w < 7/T; all other
segments can be deduced by symmetry or repetition.
Hence the “Nyquist bandwidth” Af = 1/27, the minimum
bandwidth for the error-free transmission of the ampli-
tudes a,. (In particular, any code free of dc components
will have no frequency component at the signalling rate
1/T.) This result is used in the design of PAM signalling.

If we consider an ideal low-pass filter of bandwidth

Fnax = 1/2T, its impulse response is
sin <7th>
T,
So(t) = ———- (3)
i
T

JULY 1970

Amplitude ——»
(=]

Time

Figure 1 Ideal low-pass filter impulse response (Fmax =
1/2T).

Figure 2 (a) Minimum bandwidth signalling method. (b)
Unfavorable data sequence and filtered waveform.
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This well-known type of pulse, represented in Fig. 1,
has zero crossings at all multiples of T except T = 0,
so that pulses transmitted at the rate 1/7 do not interfere
with each other.

The ideal PAM signalling method is depicted in Fig. 2(a).
A coder delivers amplitude coded impulses at the rate
1/T to a low-pass filter of bandwidth 1/27. The output
of this filter is a smooth waveform, the amplitudes of
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Figure 3 Coupling networks.

which, at the times ¢+ = nT, are proportional to the
amplitudes of the coded impulses. The impulse train may
thus be reconstructed by sampling the received signal.
(In this ideal case, channel distortions are assumed to
be properly compensated.)

A basic difficulty with this signalling method is that
the sum Zk }So(t + kT)] does not converge if ¢ = nT.
It follows that the PAM signal may take unbounded
amplitudes between the sampling points as illustrated in
Fig. 2(b). Obviously, a signal of this type requires a very
accurate definition of its sampling instants if it is to be
demodulated correctly.

This problem is usually solved by giving some roll-off
to the low-pass filter as shown by the dotted line in
Fig. 2(a). If the roll-off is antisymmetric, the signal ele-
ment will still have the desired zero crossings and it will
decrease more rapidly in the time domain than ¢ *. We
shall discuss this point again in the chapter on linear
PT codes. The reader interested in a more thorough
treatment of PAM is referred to Lucky, Salz and Weldon’s
excellent textbook’ or Gibby and Smith’s paper on the
Nyquist telegraph theory.®

o Frequency spectrum

The average spectral power density generated by a given
code may be obtained by computing the coded signal’s
autocorrelation function and taking its Fourier transform.

The method of calculating the autocorrelation function
is to represent the code by a Markov diagram and com-
pute the successive powers of the transition probability
matrix.””'* It is not our purpose here to describe this
known process in any detail but we shall give a few results
for the codes studied. These results will be based on the
assumption that the binary data digits are independent
and that zeros and ones are equiprobable.

For the practical design of transmission systems, it
may also be useful to find the spectral envelope, defined
as the absolute maximum signal power at any frequency.
In some simple cases, such a function can actually be
defined, but it is not generally true. “Worst case” low-
frequency components in particular are not easily related
to the signal distortion produced by an ac coupling net-
work. The concept of digital sum explained below has
proven much more tractable.

o Digital sum variation

Let us consider the simple ac coupling networks shown
in Fig. 3. Such networks, which do not transmit direct
current, are necessary in most transmission systems. In
either case of Fig. 3, we have:

(1) = 55:() ~— %f Sq(1) dt, (6)

where 7 = 2RC or 7= 2L/R.

The second term on the right-hand side of (6) is the
distortion introduced by the coupling network; if this
distortion is small (or S; = S,), we see that it is propor-
tional to a primitive of the applied signal.

Since we are interested in the properties of codes inde-
pendently of the pulse shapes used, we prefer to say that
the ac coupling distortion suffered by a coded signal is
proportional to the digital sum'? of the code. By defini-
tion, the digital sum is

N
oy = ; ay, (7)

where M is arbitrary, but fixed, and N numbers the last
transmitted impulse at the time considered. As we limit
our study to codes with stationary properties, o, may
be either bounded or allowed to grow at the most linearly
with N.

In the first case, the average of the signal decreases to
zero as the averaging interval increases and the code
spectrum has no dc component. This property is shared
by most pseudoternary codes and very often is the basic
reason for the choice of such a code. When studying a
code without a dc component, it is very important to
know the maximum digital sum variation (DSV) of this
code. The DSV, defined as the difference between the
upper and lower bounds of oy, limits the distortion of
any coded signal. In the design of transmission codes,
we shall thus try to have the smallest possible DSV.

Linear pseudoternary (PT) codes

o Basic linear PT codes
We call a pseudoternary code “linear” if it can be linearly
derived from the binary message:

K
a, = Z bn_kak, (8)
k=0
where the coefficients «,, define the code, while a, = —1,
0, +1 is the ternary code level and b, = —1, 1 is the

binary encoded data. In this case, the coded sequence
can be written:

+ K
S@ = 2. 2 bastSo(t — nT) )

n=—0 k=0
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or S(t) = f} bn O 0iSolt — (m + K)TL.  (9a)

me=—o k=0

Thus, a linear pseudoternary code is actually a particular
case of a binary code in which the signal element Su(7)
has been replaced by

S5 = Sy * So(®), (10)

where S;(?) is the sequence of impulses

Si(t) = > a; 8¢t — KT). 11)

A linear PT encoding is thus equivalent to a filtering
operation. The frequency response of the equivalent filter
is given by the Fourier transform of S,

K
Si@) = D e M (12)
k=0

In order for the a, to have only three possible values
for any sequence, it is necessary that there be only two
o, # 0 and that they be either equal or opposite. We
thus have two basic linear PT codes, each containing
two pulses in its signal element:

a) Twinned binary

a=—}% o=-+} (13)
b) Duobinary
@ =4} a=+} (14)

Another example would be three-level partial-response,
in which @y = —1/2, &, = 0, ap, = 4-1/2, but this code
can be deduced from twinned binary by interleaving, a
general method for modifying pulse code properties,
which will be explained later.

Twinned binary" is free of dc since each binary signal
element S,(f) is composed of a positive and a negative
pulse of equal amplitudes. If one constructs coded se-
quences, it becomes obvious that the zero level can be
maintained indefinitely, but the first pulse that follows
a positive pulse is always negative (see Fig. 4). The DSV
of twinned binary equals one unit, the smallest possible
value for any three-level code; therefore, twinned binary
is very insensitive to low-frequency removal. This is one
of the reasons for which the bipolar code, a modified
twinned binary, is so widely used for PCM transmission
on cables. The other reason is the ease of clock recovery
from the full-wave rectified and clipped signal. In addi-
tion, a single transmission error will always create a
“bipolar violation,” i.e., a pulse of the same polarity
as the preceding one. This property does not give a good
error-detection scheme, but it allows one to monitor
the average error rate without having any information
on the transmitted data.
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Figure 4 Construction of linear PT-coded sequences from
the composite signal elements.

Duobinary,” on the contrary, has a dc component that
is the same as the corresponding binary code. It is char-
acterized by the absence of direct transitions between
levels +1 and —1.

The spectral density functions of linear PT codes are
easy to compute since we know that the frequency re-
sponse of the equivalent filter is given by (12). The spectral
density is then simply |S,(w)|”.

These well-known results are shown in Fig. 5. Both
functions are periodic in the frequency domain, but for
any transmitted sequence only the cross-hatched area in
Fig. 5 is not redundant. Hence only this area needs to
be transmitted.

Note that the nonredundant frequency range depends
only upon the signalling frequency and is the same for
duobinary, twinned binary, straight binary or ternary
coding. The claim once made® that duobinary reduces
by a factor of two the minimum bandwidth requirements
may have resulted from a confusion between the contri-
butions of the code and those of the signal element to
the shape of the frequency spectrum. By choosing Dirac
impulses as signal elements, we isolate the code properties
and the confusion disappears. We shall, however, briefly
go back to bandlimited signal elements in order to show
which new kind of tradeoff is introduced by the linear
pseudoternary codes.
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Figure 5 Signal elements and spectral density functions of
linear PT codes.

If we consider the ideal system of Fig. 2 in the case of
binary, twinned binary and duobinary codes we have the
bandlimited signal elements:

Binary
sin <7—r£>
T
Sp(t) = o (14)
T
Twinned binary
sin < ) sin <7rt )
- T T
T
Sp(t) = —
0 = —, —
T T
sin <7r_t>
T/ |1 1
= - N -+ T 1 s (16)
T T
Duobinary
sin ( ) sin (ﬂ >
T Y T T
T T
Sp(t) = +
t Tt _
T r 7
sin <7r—t>
T i
= — || (17)

|Sz| and |Sp(s)| both decrease asymptotically as 1/z,
while |Sp(r)| decreases as 1/¢°. The integrals of |S;| and
|Sz| do not converge. Practically, this means that with
unfavorable data sequences, the binary and twinned binary
signals may take very large values between sampling
points, which is not the case for duobinary.

It is thus possible to transmit any duobinary sequence
in exactly the Nyquist bandwidth for binary symbols
while twinned binary, like straight binary or ternary,
signalling always needs a litile more than the Nyquist
bandwidth. How much more depends on the precision
with which we can design the circuits, particularly the
output filter. In practice, an excess bandwidth of about
25 percent has been achieved, for example, with digital
echo modulation techniques.'® '* Since duobinary requires
three-level signalling, a fair comparison of bandwidths
must be made with ternary rather than binary trans-
mission. With two ternary digits, one can represent three
bits. The ratio of the bandwidths of duobinary and straight
signalling is thus

._.—._3 J—
23X 1.25

in favor of the straight ternary system.*

We see that the use of duobinary (or partial response)
actually decreases the absolute performance limits of
three-level pulse transmission. However, some designers
may rightfully choose these schemes for their simplicity
of realization.

1.2 (18)

e Precoded linear PT codes
The basic linear codes described in the previous Section
suffer a common drawback: in either case the erroneous
reception of one ternary element may result in a chain
of errors when it is decoded back into the binary form.
This effect can be avoided by precoding the binary data.

In the case of twinned binary, we see that pulses are
generated whenever the coded signal switches from a
logical zero to a logical oNE condition and vice versa.
Let us transform the input data in such a way that there
is a transition in the transformed data for each oNE in
the input. After encoding in twinned binary we get a pulse
(either positive or negative) for each data one and an
empty slot for each data zero. This construction defines
the bipolar code widely used for PCM transmission on
cables.

The bipolar code can be directly generated from the
input data with the following rules:

1) Each data zEro is represented by an empty slot.

2) Each data ong is represented by a pulse.

3) Positive and negative pulses alternate regardless of the
number of empty slots between them.

* The same conclusion applies to interleaved bipolar or ternary partial
response as described in the section on interleaved linear PT codes.
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Decoding of the bipolar signal is easily achieved by
full-wave rectification and clipping at one-half the peak
amplitude. There is no error propagation. The same pre-
coding operation applies to duobinary, which also allows
decoding by full-wave rectification.

Encoders for all four cases are shown in Fig. 6. As we
can see from these circuit diagrams, precoding is a very
inexpensive operation and is entirely justified by the sim-
plification it brings in the decoding process.

& Interleaved linear PT codes

Another interesting modification of transmission codes in
general is inferleaving. This operation is described by
Fig. 7. We see from this diagram that odd bits and even
bits are coded separately and interleaved. Usually both
coders are identical.

The purpose of interleaving is to modify the signal
frequency spectrum. In random binary data there is no
correlation between odd and even bits; consequently,
the code autocorrelation function is just twice that of a
single coder. On the other hand, in interleaving, each
coder operates at one-half of the total rate. Consequently,
each spectral component of the original code has its
frequency reduced by a factor of two when interleaving
is used.

Interleaved linear PT codes are most easily generated
by the circuits of Fig. 6 in which the delay element dura-
tion is increased from T to 27T. Figure 8 shows the effect
of interleaving on the frequency spectrum of the bipolar
code. The advantage of interleaving in this case is obviously
to create a spectral zero at the Nyquist rate in order to
make filtering easier and to make it possible to transmit
at exactly the Nyquist rate. The interleaved bipolar code
thus combines the practical advantages of both bipolar
and duobinary.

Interleaving can be pursued to a higher degree in order
to create spectral “holes” within the Nyquist bandwidth,
but this possibility does not yet seem to have found a
practical application.

The most publicized application of interleaving is
Becker, Kretzmer and Sheehan’s three-level partial re-
sponse technique,* which is simply a form of interleaved
twinned binary. This code, which has been described
several times by unrelated authors,"”'® has of course
the same spectrum as interleaved bipolar.*

Partial response is attractive because of its simplicity,
but it cannot perform as well as straight ternary signalling
combined with highly efficient transmission (such as digital
echo modulation) for the same reasons as were invoked
for duobinary.

* The name “partial response” does not apply only to the three-level variety
with which we are concerned here. A more general description will be found
in Ref. 17 and 18.
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Figure 6 Encoders for linear pseudoternary codes. D =
one bit delay; N = inverter; Xor = exclusive or; = = sum-
ming amplifier.

Figure 7 Arrangement for interleaved coding.
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Figure 8 Effect of interleaving on the bipolar code spec-
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A drawback of interleaving is the doubling of the
digital sum variation (DSV). In other words, interleaved
signals suffer twice as much distortion as their noninter-
leaved counterparts when transmitted through coupling
transformers. The DSV of partial response is two, which
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Figure 9 Relations among linear pseudoternary codes.

is still reasonable, but interleaving codes with a higher
DSV might be quite difficult.

o Summary of linear PT codes

The codes just reviewed are displayed in Fig. 9. This
graph is self-explanatory. It recalls the various options
that lead to a particular code. The position of the spectral
zeros and the DSV appear under each code name.

Nonlinear pseudoternary codes

The domain of nonlinear pseudoternary codes is much
wider than that of the preceding linear codes; we shall
therefore limit ourselves to codes with practical significance
in data communications. The first distinction to make
is between alphabetic and nonalphabetic codes.

o Alphabetic PT codes
By the designation “alphabetic PT codes” we mean those
pseudoternary codes whose digits are grouped in “char-
acters” of n consecutive digits, encoding being done one
character at a time. If a ternary character is n digits
long, there are 3" possible characters. For coding, the
binary data are divided into binary characters of m bits
each; to each binary character corresponds one or several
possible ternary characters. Obviously, 2" < 3%, orm <
1.58n.

We see that alphabetic pseudoternary codes may poten-
tially increase the data rate up to 58 percent over straight
binary. On the other hand, alphabetic coding requires

character synchronization and thus synchronization re-
covery circuits, which can be complex and may not work
on every coded sequence.

o Alphabetic codes without rate increase

The most publicized of these codes is Paired Selected
Ternary'® (PST), in which a group of two bits is repre-
sented by a group of two ternary digits. The purpose of
this type of encoding is to simultaneously eliminate dc
and the ternary character 00. The characters to use in
each case are defined in the following table:

Binary Ternary
00 -+
01 0+ or 00—
10 +0 or —0
11 + —

We see that there are two possible ternary characters
encoding the binary combinations 01 and 10. In either
case one of the characters gives a positive contribution
to the digital sum, while the other gives a negative con-
tribution. The dc is balanced by alternating the two kinds
of optional characters.

PST has found practical use in very-high-speed PCM
systems.”® The drawbacks of PST relative to bipolar trans-
mission are a factor-of-three increase in the DSV and a
factor-of-1.5 increase in the average transmitted power.
We shall see that the design goals of PST are better
reached with nonalphabetic codes.
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There are some variations of the PST code, but we do
not know of a fundamentally different alphabetic PT code
that is not designed to provide a data rate increase.

o Alphabetic PT codes with rate increase

If we wish to approach the maximum possible increase
in speed, the best (yet comparatively simple) method is
to use two ternary digits to encode three bits of data.
The transmission rate is then 1.5 that of binary, which is
about 95 percent of the theoretical limit. In fact, only
one of the nine combinations of two ternary digits is not
used. Depending on the type of transmission hardware,
the choice of the unused character may not be arbitrary;
very often the character 00 may be undesirable. This
3B-2T code is the most efficient three-level transmission
scheme when dc is not objectionable.

But we may also be more ambitious and attempt to
eliminate dc while transmitting at an increased data rate.
This idea has brought the development of two very inter-
esting codes which represent four binary digits with three
ternary digits. Both are based on the following decom-
position of the 27 possible three-digit ternary characters.

1) Character 000 is eliminated from the code.

2) The following six characters have a balanced digital
sum and can be used without restriction to represent six
binary characters:

04 — +0— + -0
0—+ —0+ — 40

3) The remaining 20 ternary characters have a nonzero
digital sum (ten positive and ten negative). They can be
paired to represent ten different binary characters. With
each binary character, one will associate either the posi-
tive or the negative ternary character so as to best com-
pensate the current digital sum.

We see that a total of 6 + 10 = 16 binary characters
can be represented, which corresponds exactly to the
number of combinations of four binary digits

The first such code is the British-developed 4B-3T
(Ref. 21) in which the characters in each pair are inverses
of each other; e.g.,

++ + and - - -
4+ 00 and — 0 0, etc.

This 4B-3T code fulfills its purpose of balancing dc
and increasing the transmission rate; however, its digital
sum can vary over seven units (DSV = 7), which means
a dc removal distortion seven times that of bipolar. A
very similar code, described by Franaszek, uses a more
sophisticated attribution of ternary code words and is
able to reduce the DSV to 5 units, which is a little better.
Franaszek’s MS43 code is generated under constant mon-
itoring of the digital sum, which is brought back to only
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Table 1 MS43 coding table. (From Ref. 12).

Digital sum

Binary Egquivalent

~

20r3

BN

0000
0001
0010
0100
1000
0011
0101
1001
1010
1100
0110
1110
1101
1011
o111
1111

|
|

l +o++

+lot+ |l tool otot++
+++ol +totoo!

l+ 1l coocott++t++taot
+l ottt l ool ot ool
I+t ol t+totocol | ol oF
I+l l cocottt+t+tool

F+lot+l ol | | ol | o8
'+l +l ol ol | ol | -+
I+l ool |l o++ 1 Po

one of four possible levels at the end of each code word.
Table 1, which is taken from Ref. 12, gives the choice of
the code words in each case of binary input and digital
sum level at the beginning of the code word. Franaszek’s
paper gives a method for the derivation of both these
codes and variable-length codes (see below).

As stated before, the digital sum can take only four
different “‘terminal” levels at the end of a code word,
but two additional levels may be reached within the code
words with such characters as +—0 or +~—— when
starting from extreme terminal levels. This gives a total
of six levels; hence, a DSV of 5.

Another class of alphabetic codes has been developed
by Gorog® for the transmission of information in r-ary
(in particular ternary) systems with constraints in the
frequency spectrum.

o Variable-length alphabetic codes
In these sophisticated coding schemes, the code words
may have several different lengths. To be practical, vari-
able-length codes must transmit data at a constant rate;
i.e., each code word must carry a number of data bits
proportional to its length

In Franaszek’s VL43 code,'” for instance, data is en-
coded in blocks of 4 or 8 bits represented with code
words of 3 or 6 ternary digits, respectively.

The algorithm for VL43 encoding can be summarized
as follows:

1) Compute the running digital sum.

2) Examine the next 4 bits.

3) Look in the table for a 3-digit code word corresponding
to these 4 bits and the digital sum.
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4) If no code word is found, increase the number of bits
examined to 8 and look for a suitable 6-digit code
word.

5) Record the selected word and go back to 1).

The VL43 code is claimed to have two advantages over
MS43: a digital sum variation of 4 instead of 5 and a
higher density of transitions from which timing may be
recovered.”

It must be emphasized here that many codes which
have a state dependent encoding like 4B-3T, MS43 and
VL43 can actually be decoded without this state depend-
ence. This is a very important point since, otherwise,
errors would tend to propagate.

o Filled bipolar codes (nonalphabetic)

Many designs for nonalphabetic, nonlinear PT codes
have been proposed.”'***™*" The only ones to have
found important applications seem to be of the “filled
bipolar” type. They have the same purpose as paired
selected ternary (PST), namely to eliminate a basic defi-
ciency of the bipolar code, which is to represent a binary
ZERO by an empty time slot.* Usually, these codes are
not designed for sharp filtering before transmission and
do not have a spectral zero at f = 1/27. This property
may, however, be obtained by interleaving as with linear
PT codes.

If a long sequence of zeros is encoded in bipolar
form, it will result in an equally long time interval without
any transmitted energy, and clock recovery from the signal
will become impossible. Therefore, the bipolar code is
said not to be “data transparent.” With practically realized
receivers, the maximum “empty interval’ allowed for con-
secutive ZEros is about 15, an unacceptable restriction in
many cases.

The immediate answer to this problem is to fill the
long, empty intervals with a special ternary sequence
that will maintain the receiving clock in operation. The
“filling” sequence must be recognized and eliminated by
the receiver. For this reason filling sequences must con-
tain a bipolar violation (i.e., a pulse whose polarity is the
same as that of the last previous pulse).

In order to simplify the presentation of filled bipolar
codes, we shall adopt the following conventions:

The symbol B represents a normal bipolar coded pulse.
The symbol V represents a bipolar violation pulse.
The symbol 0 represents a bipolar zero.

1 and ¢ represent binary oNEs and ZEROS.

The normal bipolar encoding law can thus be written:

1— B; ¢— 0.

* See Section entitled Precoded linear PT codes, p. 358.

Johannes et al.?® consider modal and nonmodal codes.
With our convention, a nonmodal code is one in which
the filling sequence is the same regardless of the pre-
viously transmitted data. Johannes et al. demonstrate
that a nonmodal filling sequence must contain at least
four pulses. As an example, they describe the bipolar-
with-six-zero-substitution (B6ZS) code whose 6-bit filling
sequence is BOVBOV. B6ZS was also disclosed as part
of the T2 PCM multiplex system,’ the reason for choosing
it over a modal code is not indicated.

In our opinion a modal scheme would have brought
a greater efficiency. Before entering this discussion, let
us briefly note that the zeros in the BOVBOV sequence
are there to prevent two adjacent pulses of the same
polarity from occurring. This is because many PCM cable
repeaters could not generate such signals.

o Some recent developments in filled bipolar codes (HDB,
CHDB)

The digital sum variation for B6ZS is 3, against 1 for
pure bipolar. We have asked ourselves whether a filled
bipolar code with a DSV of 2 was possible, and this
has led us to design the High Density Bipolar,®® the Com-
patible High Density Bipolar®™ and the Transparent Inter-
leaved Bipolar* codes (HDB, CHDB and TIB).

The last is not exactly a filled bipolar code and will be
discussed separately. HDB and CHDB are characterized
by their filling sequences whose length » - 1 (which
may be chosen arbitrarily) defines the maximum number
n of consecutive zeros in the coded message. (We call
this last number the order of the HDB or CHDB code,
and the code of order n is called HDBr or CHDB#).

These sequences are:

HDB BOO, -,V
or 000, ---,V

CHDB 00,---,BO0V
or 00,---,007V.

As we see, these codes are modal, i.e., they each have
more than one possible filling sequence.
The rule for choosing the proper sequence is:

The number of B pulses between two consecutive V pulses
must always be odd.

The reader may easily verify that this rule produces
violation pulses of alternate polarities and that, conse-
quently, the DSV is only 2. At the same time, HDB and
CHDB have fewer pulses (about 1.5, on the average) in
the filling sequence and thus require less transmitter
power and produce less crosstalk than nonmodal codes.

* Unpublished.
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HDB and CHDB are very similar; CHDB may be con-
sidered as an improvement of HDB (which was developed
first). CHDB coding and decoding hardware is somewhat
simpler. In particular the decoder is always the same,
regardless of the order of the CHDB code.

Another strong point for HDB and CHDB codes is
that single transmission errors are easily detected by
checking whether the polarities of the violation pulses
effectively alternate.

It is interesting to note that filled bipolar codes can
also be described as variable-length alphabetic codes, but
this type of description does not highlight their inter-
esting features. This point is illustrated by Table 2, which
presents HDB2 as a variable-length alphabetic codes.

o A new development: the transparent interleaved bipolar
codes (TIB)

We have seen in the second section of this paper that
any code without dc is also free of spectral components
at the signalling rate 1/7. We have also seen that inter-
leaving two independently coded sequences would modify
the frequency spectrum homotetically, reducing the fre-
quency of each component by a factor of two. Conse-
quently, any interleaved dc free code has a spectral zero
at the Nyquist rate (f = 1/2T).

It would seem attractive to use this property and inter-
leave, for instance, two CHDB codes in order to combine
the filtering facility of partial response with the data
transparency of CHDB.

The scheme obviously works, but produces a digital
sum variation (DSV) of 4, against 2 for either CHDB
or partial response.

The next idea would be to interleave a CHDB and a
bipolar message. The DSV would be only 3 and the de-
coder would not have to know which is the CHDB
message; it would just assume both to be CHDB.

This scheme would already be an improvement, but
we intend to show that a family of codes can be con-
structed which has the following properties:

1) No dc component.

2) No component at the Nyquist rate f = 1/27T.
3) A digital sum variation = 2.

4) A bound on the number of consecutive zeros.

In other words, the advantages of partial response and
filled bipolar can be combined without increasing the
DSV.
The new codes, which we name Transparent Inter-
leaved Bipolar of order n (TIBn) are defined as follows.
Each code of the family is composed of two interleaved
pseudoternary sequences or ‘‘subchannels.”

a) Each sequence normally follows the bipolar encoding
law (successive pulses have opposite polarities).

JuLy 1970

Table 2 A variable-length alphabetic coding table for
HDB 2

Last violation
+ -
Digital sum Digital sum

Binary +1 0 0 —1

1 - + - +

01 0— 0+ 0— 0+
001 00— 00+ 00— 00+
000 ~-0— 00— 004 +0+

Table 3 TIB filling sequences

Polarity of Polarity of last

last transmitted pulse in
violation in
first Ist 2nd
subchannel |subchannel subchannel Filling sequence
+ + 00,---, —0—-+
+ + - —+—+
- + 00—+
- - 0+—-+
+ + 0—+-
+ — 00+—
- - + +—4—
- - +0+—

b) When a number # 4+ 1 of consecutive zeros is found
in the composite pulse train, they are replaced by a
special “filling” sequence terminated with a bipolar viola-
tion in each subchannel. This filling sequence is:

00,---,00XXVYV,

where V represents a pulse in bipolar violation (in its
respective subchannel) and X is either a zErRO or a normal
bipolar pulse chosen in such a way that the number of
B pulses between two successive ¥ pulses is odd in each
subchannel.

c) The two V pulses in the same filling sequence have
opposite polarities.

Depending on the polarity of the last violation and
the last pulse in each subchannel, we find the eight possible
filling sequences listed in Table 3.

The operation of the TIB codes will be best under-
stood from Fig. 10, which represents a particular message
encoded in TIBS (i.e., the TIB code which generates at
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“Filling” zones

Pulse sequences (V = violation)
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T I
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| | }
! | I
[ { i
i 1 !
| I [
i | |
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Subchannel B JI; T { R
| ! | T
| | |
| : |
i ! i
| i
] ! [
i 0 0 | |
| | |
! ‘ !
| : |
} r

gIB 5 i X I I
‘omposite signa
[ 1 l

Data 0 1 1 1 1 0 0 0 0 1

Digital sums

Subchannel A

Subchannel B

TIB S

Figure 10 TIB 5 encoding example.

Figure 11 TIB 5 encoder. FF = flip-flop; other symbols as in Figure 6.

A
Binary
input A
Data — FF1 — FF2 FF3 FF 4 FFs
o 0 0 0 0 f
Clock
Clock
< -
Bipolar
output (TIB)
FF6 FE7 I Positive pulse
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XOR
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N XOR
r Clock
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most 5 consecutive zEros). Figures 11, 12 and 13 represent
encoding, decoding and error monitoring circuits for the
TIBS code. (In fact, only the encoder is particular to
TIBS; the other two circuits work with any TIB code).

o Summary of nonlinear PT codes

Figure 14 groups the codes just described. As in Fig. 9,
the positions of the spectral zeros and the DSV appear
under each code name. The rate increase factor (relative
to binary) has been added when applicable. The spectral
densities of the PST, B6ZS, MS43 and the various CHDB
codes are displayed in Fig. 15. They have been computed
from the autocorrelation functions as described earlier
in this paper. (The spectrum of TIB has not yet been
computed; spectra of HDB codes will be found in Ref. 26).

Conclusions

There is obviously a great variety of pseudoternary codes.
The choice of the proper design depends on such par-
ticular requirements as freedom from dc, ease of filtering
at the Nyquist rate, simple encoding and decoding, and
so on. Generally speaking, it seems to us that nonlinear
codes offer more possibilities than the linear ones; they
allow one to simultaneously control the position of spec-
tral zZEROS, minimize the effects of low-frequency removal,
guarantee a minimum pulse density and even increase
the data rate in a given bandwidth (relative to binary
transmission).

Alphabetic codes, like MS43 or VL43, allow data
transmission at greater than the binary Nyquist rate
while removing the dc component; they should be used
whenever efficient use of the bandwidth can be paid in
design complexity.

Modal filled bipolar codes, on the other hand, have
statistical properties (digital sum variation, average power,
minimum pulse density) which make them easy to detect
by simple means; they are particularly suited for PCM
transmission on lines with repeaters.

Figure 13 Universal TIB decoder.

Positive pulse

Positive violations

Bipolar input (TIB)

Positi s
ositive pulse — Data
_OJ AM{FF1 FEF2 A

Negative

Clock
pulse r r
Violations
A
o .
A Binary

tput
outpu
0
FF 3 FF 4
N A

Clock Clock

Figure 12 Error monitoring device for any TIB code.
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