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Band  Structure of Magnetic  Semiconductors* 

Abstract: The  band  structure of materials  in  which both localized and itinerant  outer  electrons  are  simultaneously  present  is  discussed. 
The  Franck-Condon  Principle  is  applied, and small and large  polaron  formation  is  taken into account. A scheme  for  estimating the 
densities-of-states  of  perfect  crystals and doped or non-stoichiometric  crystals  is  suggested,  based on the  ionic  many-body  states as a 
starting  point.  Screening,  covalency,  crystalline-field  and  overlap  effects are quantitatively  considered.  In  particular, the band  structures 
of both pure and  Li-doped  NiO are derived and  found to be in agreement  with the  experimental  observations. It is  shown that con- 
clusions  which are based on ordinary  donor  and  acceptor  techniques  fail to account  for  the  effects  of  doping  even  in a qualitatively 
correct  manner,  due to the neglect  of important  correlation effects. 

1. Introduction 
The subject of magnetic semiconductors is a relatively 
new one, as solid state disciplines go. This is somewhat 
surprising, since magnetism has been known for over 
2500 years,' and  the oldest magnet, lodestone' (Fe304), 
is indeed semiconducting. Nevertheless, even in terms of 
the present-day theory of solids, it  is  not easy to see why 
magnetic semiconductors exist. We are familiar with 
magnetic insulators,  ionic materials in which all the 
electrons are  taken  to be completely localized on their 
respective ions. If some of the ions comprising the material 
contain unpaired d or f electrons, the  ion  has a  permanent 
magnetic moment and  the solid is magnetic. We are  not 
usually concerned with the  band structure of such a 
material since the energy gap is so large that  no measurable 
electronic conduction  occurs in  pure samples. On the 
other hand, we are familiar with magnetic metals, such 
as most of the transition metals and  rare earths, in which 
outer electrons that  form wide bands are present. These 
bands are partially filled and  thus lead to metallic con- 
ductivity. For such materials, band structure calcula- 
tions  can be performed, and  the results are  in good 
agreement with a wide range of experimental data.3 
But the concept of a magnetic semiconductor  requires 
either  a filled band of electrons possessing a nonvanishing 
magnetic moment or else the simultaneous existence in 
a crystalline solid of both localized and itinerant outer 
electrons. Neither of these possibilities is as  intuitive  as 
are  the simple cases of magnetic insulators and magnetic 
metals. 
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It is worthwhile to pay some attention  to  the  band 
structure of the more well-known metals and insulators, 
before attempting to analyze the semiconductors. Let us 
first consider a transition  metal, such as  Ni. Atoms of 
Ni contain,  outside of the closed-shell argon configuration, 
eight 3d electrons and two 4s electrons. In  the solid, the 
3d and 4s electrons both overlap sufficiently to  form energy 
bands. Since the 4s electrons are considerably farther 
spread out  around their ion cores than  are  the 3d elec- 
trons, the 4s band is much wider than  the 3d band. But 
since the 4s and 3d electrons  have  almost the same energies 
on a Ni  atom,4 these bands overlap in  the solid. The 
combined 3d and 4s bands contain 12 states per atom, 
and since only ten 3d and 4s electrons are present on 
each Ni  atom,  Ni must be a metal. The  band structure 
of metallic Ni  has been calculated from first principles,' 
and is in agreement with a large collection of experimental 
data. Although  some  problems still remain,  most of us 
feel that  the main  features of the magnetic metals are 
understood in principle. 

But what about  an insulator, such as  NiF2? If we insist 
on maintaining  a  band approach,  it  at first seems difficult 
to account for  the absence of partially filled bands. We 
can consider the crystal to be  made up of  Ni'' ions and 
F- ions. The F- ions have the closed-shell Ne configura- 
tion,  but a  Ni2' ion  has eight electrons  outside of the 
closed-shell argon configuration. Why should we not be 
left with a 2/3 filled 3d-4s band, and have metallic con- 
ductivity? The explanation of this invokes two separate 
effects, neither of which is especially obvious. Firstly, the 
energy levels of the 3d and 4s electrons of Ni2' are  not 
approximately the same, as they are  in Ni. In Ni2', the 
4s electrons have much higher energy than  the 3d elec- 261 
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t r o n ~ . ~  This means that in solid Ni2+ compounds, the 4s 
band is  considerably  above the 3d band. But this is still 
insufficient to explain the insulating nature of NiF,,  since 
the 3d band should  remain  partially (4/5) filled. 

The explanation of the second point has been contro- 
versial for the last 20 years,  since it was  first  proposed by 
M ~ t t . ~ , '  Mott pointed out that for the case of a partic- 
ularly  narrow band, the reduction in energy brought about 
by band formation might not overcome the increase in 
electronic  electrostatic  repulsion which  necessarily  arises 
from the itinerant nature of electrons  moving in Bloch 
states. Since the latter effect is an electronic correlation, 
neglected in the Hartree-Fock approximation used in all 
band calculations, it cannot be  analyzed from the results 
of a band  calculation.  However, the appearance of  very 
narrow,  partially filled bands in any  calculated  band struc- 
ture can alert us to a possible  lack of validity of the results. 

Why should the 3d band of NiF,  be  sufficiently  narrow 
so that the 3d electrons  remain  localized on the Ni2' 
ions? The answer to this seems to be  primarily a com- 
bination of the decreased  size  of the Ni2' ion relative 
to the Ni atom taken in conjunction  with the much larger 
Ni-Ni nearest-neighbor separation in the compound than 
in the metal.  However, a third condition  is  also  necessary, 
that the lattice be  strongly  ionic,  since  covalency effects 
between the Ni2+ and F- ions could  effectively  increase 
the width of the Ni2'  3d  band.' 

Since  NiF, is almost  totally  ionic, the result is that the 
3d band  is  simply too narrow to support metallic  conduc- 
tion, and it is a more accurate starting point to assume 
that the 3d electrons are localized on the nickel ion cores. 
The eight  3d  electrons on each  Ni2' ion then give the 
crystal its magnetic  properties. We can  estimate the energy- 
band structure of magnetic insulators such as NiF, by 
an extreme  tight-binding appro~imation.~  In this approach 
we  begin  with the ionic  energy  levels  of  Ni", F-, Ni', 
and F, take into account the Madelung potential, elec- 
tronic screening,  crystalline  field, and covalency  effects, 
and then allow the resulting levels to broaden into bands 
of  widths  consistent  with the direct  overlap of their respec- 
tive  wave functions. We can look at the creation of free 
carriers as the band generalization of free ion processes 
such as 

Ni2' + F- -+ Ni' + F, (1) 

or 

Ni" + Ni2' -+ Ni' + Ni3'.  (2) 

Process (1) creates a hole in the fluorine 2p band and 
an electron in either the nickel  3dg  band or the nickel 
4s band. Process  (2)  leaves a hole in the nickel  3ds  band 
and creates an electron in either the nickel  3dg or the 
nickel 4s band. Even if we assume  sizeable  bandwidths, 
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such  intrinsic  electron-hole pairs is of the order of several 
eV. Thus even if the carriers in these bands are quite 
mobile in an applied  electric  field, we should not get a 
sizeable intrinsic electronic contribution to conductivity 
at ordinary temperatures. This type of analysis is in accord 
with e~periment.~ 

Thus we can, in a relatively straightforward manner, 
obtain the band structure of magnetic insulators. There 
are a few additional rules we need to impose in order to 
use a diagrammatic  representation of this type of band 
structure to predict the electrical and optical proper tie^.^"^ 
For example, in order to analyze  photoconductivity  exper- 
iments,  localized states must  be  carefully  distinguished 
from itinerant states.  Within the set of localized states, 
states corresponding to excitations which  leave the number 
of electrons on the ion core invariant must  be  distinguished 
from states of the ion core  with an extra electron  present, 
or else  nonexistent transitions will appear to be  possible, 
and the Fermi level  will  be  set incorrectly.  Nevertheless, 
we can claim that the main  features of magnetic insulators 
are understood in principle. 

The important question that remains  is,  How do we 
bridge the gap  between  magnetic  metals and insulators? 
Can we interpolate between  localized and itinerant states 
and between the large correlation and small  correlation 
limits? A comforting  answer to this question was  given 
by M ~ t t , ~  who  suggested that we don't even have the 
problem. Mott presented  several  convincing  reasons why 
the transition from localized to itinerant states in periodic 
crystals  must be sharp. Although the existence of  such 
a Mott transition has not been  universally  accepted, there 
is  now strong theoretical" and experimental"  evidence 
in  its favor. 

A quantitative model  has  been  presented  by Hub- 
bard,13-15  who introduced short-range electronic  correla- 
tions,  i.e.,  correlations between electrons on the same ion 
core  only, into the ordinary band equations. Hubbard15 
found some  evidence for a Mott transition, but the tran- 
sition was not at all sharp. However, the neglect  of inter- 
ionic correlations  could well have  suppressed the sharpness 
of the transition. 

We have not yet  considered interactions between the 
electrons and the ions. In ionic  materials, it is clear that 
this coupling  must be strong, since the electrons attract 
positive ions electrostatically but repel  negative ions. Since 
longitudinal optical lattice vibrations induce alternating 
regions of  excess positive and negative  charge  density in 
an ionic  crystal, the coupling  between  electrons and LO 
phonons is particularly  large.  Such interactions are unim- 
portant in both  magnetic  metals and magnetic insulators, 
since the metals are not ionic and the insulators have 
essentially  no  free  electrons.  On the other hand, electron- 
phonon interactions are particularly important in mag- 
netic  semiconductors. 
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In cases  where the electron-phonon  coupling is large, 
it is  more accurate to use a basis of eigenstates of a part 
of the Hamiltonian which includes the electron-phonon 
interaction term.16 These states can be looked at  as those 
of a quasiparticle  called a polaron, essentially an electron 
moving  with an associated lattice deformation. Two  limits 
of polaron theory  have  been  considered  quantitatively. 
In large-polaron theory,17 the extent of the associated 
lattice deformation is sufficiently large that the lattice can 
be treated as an elastic  continuum.  Calculations  within 
this model  show that  the polaronic band structure of a 
material  resembles the electronic  band structure in  the 
absence  of lattice interactions,  except that the effective 
mass  increases and the energy  levels of the states decrease 
somewhat.  On the other hand, in the limit of small-polaron 
theory," in which the electronic  bandwidth is small  com- 
pared to the electron-phonon interaction energies,  major 
modifications of the electronic band structure result.  Above 
a critical temperature, small polarons can participate in 
electrical  conduction  only with the assistance of phonons, 
a process  known as thermally  activated  hopping.  This  con- 
duction process  differs from ordinary semiconduction in 
that the mobility  must  be an exponentially  increasing  func- 
tion of temperature. 

One further point must be borne in mind. Formation 
of a small polaron requires a lattice deformation around 
a free  electron or hole.  The Franck-Condon principle 
suggests that the lattice cannot respond to excitations at 
optical  frequencies. Thus, if the small-polaron  binding 
energy  is  significant, the energies  necessary to excite certain 
electronic transitions optically  must exceed the thermal 
excitation  energies. Thus the optical  energy-band structure 
can differ considerably from the electrical  energy-band 
structure for narrow  band  ionic  materials. 

In this paper, the optical and electrical  densities-of- 
states of magnetic  semiconductors are discussed. In sec- 
tion 2, pure  stoichiometric  single  crystals are considered. 
In section 3, the major effects that doping or nonstoi- 
chiometry can have on this class  of  materials are quan- 
titatively  estimated. The conclusions are summarized  in 
section 4. 

2. Band  structure of perfect  crystals 
In principle, we can  envision three classes of magnetic 
semiconductors. A particularly  simple  type  is just a semi- 
conducting variation of a magnetic  metal. It is  well  known 
that a ferr~magnetic'~ or antiferromagnetic2'  alignment 
of spins  induces an extra splitting of all the energy  bands, 
due to the removal of the spin  degeneracy. It has also 
been  suggested  recently that a localized  magnetic  moment, 
without  any  long-range order, can bring about the same 
splitting.'l It is  certainly a possibility that such a splitting 
could introduce a real  energy  gap into the density-of-states, 
thus producing an ordinary semiconductor.  Spin-polar- 

ized band calculations  have  indeed  predicted that the 
materials MnOZ2 and NiOZ3 are examples  of this class 
of magnetic  semiconductors. There is some  evidence that 
NiS is a member of the class.24  However,  these con- 
clusions  are, at best, controver~ia1.~~'~~ Any materials that 
are magnetic  semiconductors of this type  can  be  completely 
understood in terms of elementary  band theory, and should 
be as similar to magnetic  metals as, say, Ge is similar 
to Zn. 

A second  type  of  magnetic  semiconductor is very similar 
to a magnetic insulator. The magnetic  electrons  can  be 
treated as completely  localized on their ion cores.  When 
made  non-stoichiometric or doped with  specific  impurities, 
such a material  can  be  left  with excess  localized  electrons 
or holes.  These  excess  carriers can be  expected to form 
small polarons and hop through the lattice with phonon 
as~istance.'~ If the thermally  activated  small polarons are 
reasonably  mobile, the hopping contribution to conduc- 
tivity  will  be  sufficiently  large to classify the material as a 
semiconductor rather than  an insulator. There is some 
evidence that LaCoO, '' and Prz03,2g among others, are 
magnetic  semiconductors of this type. Once again, this 
class can be understood in principle, using a consistent, 
localized-electron approach. 

Unfortunately, a third type of magnetic  semiconductor 
can  exist. It is possible for the magnetic  electrons to be 
extremely  localized and still  have ordinary semiconduction 
occur in a given material,  provided that there are wide 
bands, corresponding to non-magnetic  electrons, in the 
vicinity  of the Fermi energy.  This  class  of  materials  is 
the most  ditlicult to analyze  theoretically,  since  localized 
and itinerant outer electrons are simultaneously  present, 
and a consistent approach cannot be  used. A large  group 
of rare-earth compounds3' appears to fall into this class, 
and it has been s~ggested"'~' that many transition metal 
compounds do also. The existence of these  materials  forces 
us to bridge the gap  between  insulating and metallic states. 

The only quantitative starting point that we have is 
the model  of  Hubbard,13-15  who  suggested the approxi- 
mate Hamiltonian. 

H = ~ ~ ~ c , , ~  cir + u nitnil .  

The first term in Eq. (3) is just the one-electron  energy, 
and the second term adds the intraionic Coulomb  repul- 
sion U whenever a spin-up and a spin-down  electron are 
simultaneously  present on the same ion core. The Hamil- 
tonian, (3), has the advantage of being  exact in both 
the zero  bandwidth  (atomic) and the purely itinerant 
(U = 0) limits. Thus, it may  be a reasonable  approxima- 
tion to use for the analysis of magnetic  semiconductors. 

Hubbard found that  the problem  could  be  handled 
quantitatively  only for the case of a single s band, and 
even then  only  by  using  some ad  hoc approximation 
pr0ced~res.l~ His final result was then quite simple. 

* , i  Q 

MAY 1970 



Table 1 Conduction  properties  and  estimated  range of optical  absorption  energies for low-energy  excitations  in  perfect  NiO  crystals. 
An asterisk  refers  to the excited  crystalline-field  levels. 

Range of optical 
Process  Type of conduction absorption erlergies 

3d8 + 3d8* non-conducting 1-4 eV 

3d8 + 3d8 + 3d7 + 3d9 
3d8 + 3d8 + 3d7 + 3d9* 
3d8 + 3d8 -+ 3d7* + 3d9 
3d8 + 3d8 + 3d7* + 3d9* 

3d* + 3d7 + (electron  in 4s band) 
3d8 + 3d7* + (electron in 4s band) 

3d8 + (electron  in 2p band) + 3d9 
3d8 + (electron in 2p band) + 3d9* 

hopping  conduction 
hopping  conduction 
hopping  conduction 
hopping  conduction 
n-type  semiconduction 
n-type  semiconduction 
p-type  semiconduction 
p-type  semiconduction 

13 eV 
14 eV 
14-19 eV 
15-20 eV 

4-10 eV 
5-1 6 eV 

14-18 eV 
15-1 9 eV 

(electron  in 2p band) + (electron in 4s band) n- and p-type  semiconduction 5-16 eV 

In the zero-bandwidth  limit, the quasiparticle  spectrum 
was just two zero-width  bands, separated in energy by U. 
As the ratio of bandwidth to U increases,  these  two 
bands begin to spread  symmetrically, then overlap, and 
finally  merge into one. This result  implies a smooth 
transition between  localized and itinerant states. 

We shall adopt this  conclusion in order to analyze 
the band structure of magnetic  semiconductors. The 
major  implication, for our purposes, is that we can 
begin our analysis with the known  atomic and ionic 
energy  levels, and obtain reasonable  estimates of the 
structure of the itinerant bands by allowing a symmetric 
spread around the  atomic levels until the proper band- 
width is obtained. The correct  bandwidths  can  be  de- 
termined from ordinary band  calculations.  On the other 
hand, this method  guarantees that  the localized states 
are handled  accurately,  since  only  slight  spreading from 
the atomic  limit  is  expected. It should be remarked that 
this procedure gives  excellent  results  when  applied to 
non-magnetic  insulators, such as MgO and TiOz, even 
when  some  relatively  wide ( ~ 1 2  eV) bands are present.' 

We shall restrict our analysis to one  material, NiO, 
simply  because it is the only  material for which  sufficient 
experimental data exist on good  single  crystals for us 
to compare  theory with reality.  Although  NiO  is not 
completely  ionic  (the  covalency  parameters3' are 493, 
it is sufficiently ionic that the best starting point is a 
periodic  arrangement of free  Ni2' and 0'- ions. The 
important bands of NiO are the 3d and 4s bands of the Ni2' 
ions and the 2p band of the 0'- ion. Just as in the case 
of NiF2, discussed in section  1, Ni'' has a 3ds  configuration 
in  its ground state. There is by  now considerable evi- 
d e n ~ e ' ~ ' ' ~  that the 2p and 4s bands of NiO are ordinary 
itinerant states, so that the ratio of the bandwidth to U 
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3d electrons appear to be near the atomic limit.33 The 
latter fact  is  somewhat  depressing,  since a localized 3d 
band breaks up into over lo6 quasiparticle bands. How- 
ever, the silver  lining  is that the energies of virtually all 
of these  bands are known in the atomic limit,4 and the 
vast  majority are at sufficiently  high  energies to be  un- 
interesting to all but x-ray  spectroscopists. 

Starting with the free-ion  energy  levels, and taking 
into account the Madelung potential, screening  and 
covalency  effects,  crystalline-field  splittings, and band- 
width  effects, it is  possible to make  reasonable  estimates 
for the energies of the important elementary  excitations 
requiring  less than 20 eV.27 The results are shown  in 
Table 1. We must add the spin wave and excitonic transi- 
tions to the single  particle  excitations of Table l.27 It is 
then found that these  predictions are in excellent  agreement 
with optical  experiments in the 1-20  eV The 
band  calculation of Wilsonz3 attributes the 3.8  eV edge 
to 2p - 3d transitions, rather than to 3ds - 3d7 4s transitions, 
as implied  here.  However, it  is clear from Table 1 that 
2p - 3d intrinsic transitions require  significantly larger 
energy  unless the Coulomb interaction U is  screened to a 
sufficiently large extent that  it would  be  difficult to explain 
the absorption below  3.8  eV.33 

It can also be  seen that Table 1 predicts that a photo- 
conductivity edge  exists at about 4 eV, and one has 
indeed  been  observed at 3.8 eV.38  These  results further 
imply that intrinsic  conduction  should appear in NiO 
with an activation  energy of about 2 eV. The electrical 
activation  energy should be about 0.1-0.2 eV less than 
half the optical  edge,  because of the large polaron binding 
energy." There is some  experimental indication that 
such conduction exists. In a relatively pure epitaxially 
grown  crystal, an activation  energy of 1.9 eV  was observed 
between  700°K and 1200°K,38 and in several  heavily 
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compensated samples, activation energies in the vicinity 
of 1.8 eV were found above 1000°K.39 

Similar estimates of the  band  structure of perfect 
crystals of magnetic semiconductors can be made whenever 
the screening and covalency effects can be obtained from 
experiment and  the bandwidths of the itinerant  states 
have been calculated. Thus far, only NiO  can be discussed 
with any degree of confidence, and  the results appear  to 
be in agreement with experiment. 

As has been pointed out," the energy-band structure of 
magnetic semiconductors can be represented on an effec- 
tive one-electron density-of-states diagram by separating 
the localized from the itinerant states, and adopting  a 
procedure in which impossible excitations can be excluded. 
Such a  diagram  is shown in Fig. 1 for the optical density- 
of-states of perfect NiO.  Itinerant  states are drawn to  the 
left, localized states to  the right. The states which are 
occupied at T = 0 are shaded. States that  are shown as 
dashed lines are available for excitations only from occu- 
pied localized states. By bearing these rules in mind, 
Fig. 1 can be used to  obtain the optical absorption energies 
given in Table 1. 

We can  obtain the electrical density-of-states of perfect 
NiO crystals from Fig. 1 by invoking the Franck-Condon 
principle. The energy reduction from relaxation of the 
lattice around the excess charge density must then be 
calculated. Using estimates of the small-polaron and 
large-polaron binding energie~,'~ we find that  the electrical 
density-of-states is easily obtained from Fig. 1 by raising 
the energies of the 2p states by 0.25  eV and lowering the 
energies of the 4s states by 0.2 eV relative to  the 3d states. 

3. Band  structure of doped or non-stoichiometric 

The electrical density-of-states of perfect crystals is of 
academic interest only in these materials, since the single 
crystals that have thus  far been grown are seldom stoi- 
chiometric, have large concentrations of random impurities 
and are replete with defects. In wide-band semiconductors, 
defects, non-stoichiometry and impurities are all easily 
handled. Once the energies necessary to  trap one or more 
electrons in the vicinity of each type of  flaw are known, 
and  the energies necessary to remove one or more electrons 
from  the various impurity centers and interstitials are 
also known, we need only to modify the density-of-states 
calculated for perfect crystals by adding localized donor 
and acceptor levels at their  proper energies. Once these 
levels are added and  the statistics are properly taken  into 
account, good agreement with experiment is obtained. No 
modifications of the valence and conduction  bands are 
necessary. It is  important to bear in mind that this is not 
the case for magnetic semiconductors and insulators. 

To illustrate  this  point, let us consider the case of 
Li-doped NiO. We already have estimated the optical and 

material 

Energy in eV 

3d7+3d9* 

ii 
1 3d7+3d9 

I" 13.0 
4s* Y 

3d8* 

1.1 

0.0  3d8 

- 1.5 

-5.5 

Figure 1 Optical density-of-states of perfect NiO. States 
which are occupied at T = 0 are shaded. 

electrical densities-of-states of perfect NiO, and many 
electrical and optical studies have been carried out  on 
NiO doped with Li. Li enters the lattice substitutionally 
for Ni. Since the second ionization potential of Li is much 
larger than the third ionization potential of Ni4,  all Li 
centers are singly ionized. To preserve charge neutrality, 
a Ni3' must be formed for each Li' in  the crystal. In 
reality, some compensation appears to be always pres- 
ent.40'41 This could be brought about either by the presence 
of trivalent cations, such as A13+ or Fe3', or  the self-com- 
pensation provided by formation of anion vacancies or 
Li interstitials. Thus,  the  concentration of Ni3+ is somewhat 
less than the Li' concentration. 

The lowest energy state of the doped material is that  in 
which all uncompensated Li' ions have a  Ni3+ ion for 
a nearest neighbor. This comes about because a Li+-Ni3+ 
pair on  the cation sublattice forms an effective electron- 
hole pair, which electrostatically binds just like an exciton. 
The binding energy can be estimated as of the  order of 
0.4 eV.42 These bound Li'-Ni3'  complexes lead to new 265 
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Table 2 Conduction  properties,  estimated  range of  optical absorption  energies, and estimated  minimum  thermal  excitation  energies 
for impurity-induced  transitions in NiO  which has been  doped  with  Li.  The  symbol  [3d7] stands for a Ni3+  ion  bound to a Li+  impurity 
center. An asterisk  refers to the excited  crystalline-field  levels. 

Range of optical  Electrical 
Process  Type of conduction absorption energies excitation  energy 

(3d7] + [3d7*] non-conducting 1-6 eV - 

[3d7] + 3d7 hopping conduction 0.4 eV 0.4 eV 
[3d7] + 3d7* hopping  conduction 2-7 eV 2 eV 

[3d7] + [3de] + (4s electron) n-type  semiconduction 12-18 eV 12 eV 
[3d7] [3d6*] + (4s electron) n-type  semiconduction 14-24 eV 14 eV 

[3d7] + (2p electron) "-f 3d8 p-type  semiconduction 0.7-5 eV 0.5 eV 
[3d7] + (2p electron) + 3dE* p-type  semiconduction 2-9 eV 2 eV 

optical  transitions.  These include freeing of the  bound 
hole from  the Li' impurity center, the crystalline-field 
excitations of the  bound Ni3' ion, and excitation of a 2p 
electron onto a Ni3' ion, leaving a Ni2' ion  and a hole in 
the 2p  band. The additional  optical excitations induced 
by Li-doping are summarized in  Table 2. The energies 
were estimated in  the same way as were those of excitations 
in perfect NiO crystals, as discussed in Section 2. 

The optical absorption  in Li-doped NiO  has been 
measured, and there is clear evidence for a peak at 0.43 
eV.43  This  absorption is most likely due  to  the freeing of 
bound holes from Li' centers. There is also evidence for a 
background  absorption  induced by Li  doping in  the 
range 0.2-2.0 eV.44'45 It can be shown that a series of 
excitations in  the 0.2-0.4  eV range, representing transitions 
from strongly-bound Li'-Ni3+ pairs to more weakly bound 
pairs, in which the Ni" is farther  than a nearest-neighbor 
distance from  the Li+  center.27 These excitations overlap 
in energy with the excitonic transitions of a bound hole 
into  the oxygen 2p  band, so that  the background absorp- 
tion is easily explained. 

The interesting features, however, do  not concern the 
optical  transitions, but rather  the electronic excitations 
induced by Li-doping. When the small- and large-polaron 
binding energies are  taken  into account, we can obtain 
the minimum energies necessary to thermally excite the 
transitions  listed in  Table 2. These  minimum  excitation 
energies are given in  the last  column of Table 2. The 
transitions which free the hole from  the Li' center lead to 
electrical conductivity. The minimum energy necessary 
to create a carrier is 0.4 eV, which frees a hole in  the 
3ds band.  This  hole forms a small polaron, which can then 
contribute to conduction by means of thermally activated 
hopping. The  important  point  is  that a minimum energy 
of only 0.5 eV is necessary to free a hole from a Li' center 
and place it  in  the relatively wide 2p  band. The much 
larger mobility that can  be expected from band-like 
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to  the hopping mobility, implies that 2p-band conduction 
should dominate 3d hopping conduction except at very 
low temperatures. This is a simple resolution of the 
problem of the band-like semiconduction that  is experi- 
mentally observed in NiQ,40'41'43'46 a known Mott 
insulator. 

The conductivity observed in Li-doped NiO  is  quantita- 
tively what  can be estimated from large-polaron  hole 
conduction in  the  2p  band, with optical phonon scattering 
predominating." Although  small-polaron  hopping in 
the 3ds band should  dominate 2p-band conduction at 
sufficiently low temperatures, the hopping itself is domi- 
nated by impurity  conduction in  the partially  compensated 
acceptor levels below 100°1<.47 Bound  small-polaron 
hopping  among the nearest neighbors to a Li' center, 
however, dominates the  ac conductivity at low  tempera- 
tures  and high f r e q u e n c i e ~ , ~ ~ ' ~ ~  and  has  the expected 
temperature dependen~e.'~ 

An electrical density-of-states diagram for Li-doped 
NiO  is given in Fig. 2. Once  again,  itinerant  states are 
drawn  to  the left, localized states to  the right. All states are 
referred to the  Fermi energy, drawn  here by assuming 
that  partial compensation occurs, as appears to be the 
case. The density-of-states of Fig. 2 is in agreement with 
the vast quantity of experimental data  on Li-doped and 
non-stoichiometric  NiO. 

A  comparison of Fig. 1 with Fig.  2 reveals a  surprising 
feature. The 2p band  has moved up over 1 eV relative to 
the 3ds band  in  the Li-doped density-of-states. The reason 
for this is  that  the presence of  Li' in  NiO crystals produces 
large concentrations of  Ni3' ions, and  it is much easier to 
excite a 2p  electron onto a Ni3' ion  than  onto a Ni" ion, 
the electron affinity Ni3+ being about twice that of Ni". 
When localized and itinerant outer electrons are simul- 
taneously present, effects such as these must carefully be 
taken  into account. We would have dismissed 2p-band 
conduction as negligible has we just introduced the Li 
acceptor levels 0.4 eV above the 3dS band in  the density- 
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can ordinarily be calculated or obtained from experiment. 
Such estimates for  the cases of both  pure and Li-doped 
NiO are  in agreement with the experimental data. 
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