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Band Structure of Magnetic Semiconductors™

Abstract: The band structure of materials in which both localized and itinerant outer electrons are simultaneously present is discussed.,
The Franck-Condon Principle is applied, and small and large polaron formation is taken into account. A scheme for estimating the
densities-of-states of perfect crystals and doped or non-stoichiometric crystals is suggested, based on the ionic many-body states as a
starting point. Screening, covalency, crystalline-field and overlap effects are quantitatively considered. In particular, the band structures
of both pure and Li-doped NiO are derived and found to be in agreement with the experimental observations. It is shown that con-
clusions which are based on ordinary donor and acceptor techniques fail to account for the effects of doping even in a qualitatively

correct manner, due to the neglect of important correlation effects.

1. Introduction

The subject of magnetic semiconductors is a relatively
new one, as solid state disciplines go. This is somewhat
surprising, since magnetism has been known for over
2500 years,’l and the oldest magnet, lodestone’ (Fe;O,),
is indeed semiconducting. Nevertheless, even in terms of
the present-day theory of solids, it is not easy to see why
magnetic semiconductors exist. We are familiar with
magnetic insulators, ionic materials in which all the
electrons are taken to be completely localized on their
respective ions. If some of the ions comprising the material
contain unpaired d or f electrons, the ion has a permanent
magnetic moment and the solid is magnetic. We are not
usually concerned with the band structure of such a
material since the energy gap is so large that no measurable
electronic conduction occurs in pure samples. On the
other hand, we are familiar with magnetic metals, such
as most of the transition metals and rare earths, in which
outer electrons that form wide bands are present. These
bands are partially filled and thus lead to metallic con-
ductivity. For such materials, band structure calcula-
tions can be performed, and the results are in good
agreement with a wide range of experimental data.’
But the concept of a magnetic semiconductor requires
either a filled band of electrons possessing a nonvanishing
magnetic moment or else the simultaneous existence in
a crystalline solid of both localized and itinerant outer
electrons. Neither of these possibilities is as intuitive as
are the simple cases of magnetic insulators and magnetic
metals.
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It is worthwhile to pay some attention to the band
structure of the more well-known metals and insulators,
before attempting to analyze the semiconductors. Let us
first consider a transition metal, such as Ni. Atoms of
Ni contain, outside of the closed-shell argon configuration,
eight 3d electrons and two 4s electrons, In the solid, the
3d and 4s electrons both overlap sufficiently to form energy
bands. Since the 4s electrons are considerably farther
spread out around their ion cores than are the 3d elec-
trons, the 4s band is much wider than the 3d band. But
since the 4s and 3d electrons have almost the same energies
on a Ni atom,* these bands overlap in the solid. The
combined 3d and 4s bands contain 12 states per atom,
and since only ten 3d and 4s electrons are present on
each Ni atom, Ni must be a metal. The band structure
of metallic Ni has been calculated from first principles,’
and is in agreement with a large collection of experimental
data. Although some problems still remain, most of us
feel that the main features of the magnetic metals are
understood in principle.

But what about an insulator, such as NiF,? If we insist
on maintaining a band approach, it at first seems difficult
to account for the absence of partially filled bands. We
can consider the crystal to be made up of Ni*" jons and
F~ ions. The F~ ions have the closed-shell Ne configura-
tion, but a Ni’* jon has eight electrons outside of the
closed-shell argon configuration. Why should we not be
left with a 2/3 filled 3d-4s band, and have metallic con-
ductivity? The explanation of this invokes two separate
effects, neither of which is especially obvious. Firstly, the
energy levels of the 3d and 4s electrons of Ni°" are not
approximately the same, as they are in Ni. In Ni**, the
4s electrons have much higher energy than the 3d elec-
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trons.* This means that in solid Ni** compounds, the 4s
band is considerably above the 3d band. But this is still
insufficient to explain the insulating nature of NiF,, since
the 3d band should remain partially (4/5) filled.

The explanation of the second point has been contro-
versial for the last 20 years, since it was first proposed by
Mott.>” Mott pointed out that for the case of a partic-
ularly narrow band, the reduction in energy brought about
by band formation might not overcome the increase in
electronic electrostatic repulsion which necessarily arises
from the itinerant nature of electrons moving in Bloch
states. Since the latter effect is an electronic correlation,
neglected in the Hartree-Fock approximation used in all
band calculations, it cannot be analyzed from the results
of a band calculation. However, the appearance of very
narrow, partially filled bands in any calculated band struc-
ture can alert us to a possible lack of validity of the results.

Why should the 3d band of NiF, be sufficiently narrow
so that the 3d electrons remain localized on the Ni**
ions? The answer to this seems to be primarily a com-
bination of the decreased size of the Ni** ion relative
to the Ni atom taken in conjunction with the much larger
Ni-Ni nearest-neighbor separation in the compound than
in the metal. However, a third condition is also necessary,
that the lattice be strongly ionic, since covalency effects
between the Ni** and F~ jons could effectively increase
the width of the Ni** 3d band.®

Since NiF, is almost totally ionic, the result is that the
3d band is simply too narrow to support metallic conduc-
tion, and it is a more accurate starting point to assume
that the 3d electrons are localized on the nickel ion cores.
The eight 3d electrons on each Ni** jon then give the
crystal its magnetic properties. We can estimate the energy-
band structure of magnetic insulators such as NiF, by
an extreme tight-binding approximation.’ In this approach
we begin with the ionic energy levels of Ni**, F~, Ni',
and F, take into account the Madelung potential, elec-
tronic screening, crystalline field, and covalency effects,
and then allow the resulting levels to broaden into bands
of widths consistent with the direct overlap of their respec-
tive wave functions. We can look at the creation of free
carriers as the band generalization of free ion processes
such as

Ni** + F — Ni" 4 F, 6))
or
Ni** 4 Ni** — Ni* + Ni**. @

Process (1) creates a hole in the fluorine 2p band and
an electron in either the nickel 3d° band or the nickel
4s band. Process (2) leaves a hole in the nickel 3d® band
and creates an electron in either the nickel 3d° or the
nickel 4s band. Even if we assume sizeable bandwidths,
it turns out that the minimum energy necessary to

such intrinsic electron-hole pairs is of the order of several
eV. Thus even if the carriers in these bands are quite
mobile in an applied electric field, we should not get a
sizeable intrinsic electronic contribution to conductivity
at ordinary temperatures. This type of analysis is in accord
with experiment.’

Thus we can, in a relatively straightforward manner,
obtain the band structure of magnetic insulators. There
are a few additional rules we need to impose in order to
use a diagrammatic representation of this type of band
structure to predict the electrical and optical properties.”*°
For example, in order to analyze photoconductivity exper-
iments, localized states must be carefully distinguished
from itinerant states. Within the set of localized states,
states corresponding to excitations which leave the number
of electrons on the ion core invariant must be distinguished
from states of the ion core with an extra electron present,
or else nonexistent transitions will appear to be possible,
and the Fermi level will be set incorrectly. Nevertheless,
we can claim that the main features of magnetic insulators
are understood in principle.

The important question that remains is, How do we
bridge the gap between magnetic metals and insulators?
Can we interpolate between localized and itinerant states
and between the large correlation and small correlation
limits? A comforting answer to this question was given
by Mott,” who suggested that we don’t even have the
problem. Mott presented several convincing reasons why
the transition from localized to itinerant states in periodic
crystals must be sharp. Although the existence of such
a Mott transition has not been universally accepted, there
is now strong theoretical'' and experimental'® evidence
in its favor.

A quantitative model has been presented by Hub-
bard,®*"*® who introduced short-range electronic correla-
tions, i.e., correlations between electrons on the same ion
core only, into the ordinary band equations. Hubbard"®
found some evidence for a Mott transition, but the tran-
sition was not at all sharp. However, the neglect of inter-
ionic correlations could well have suppressed the sharpness
of the transition.

We have not yet considered interactions between the
electrons and the ions. In ionic materials, it is clear that
this coupling must be strong, since the electrons attract
positive ions electrostatically but repel negative ions. Since
longitudinal optical lattice vibrations induce alternating
regions of excess positive and negative charge density in
an ionic crystal, the coupling between electrons and LO
phonons is particularly large. Such interactions are unim-
portant in both magnetic metals and magnetic insulators,
since the metals are not ionic and the insulators have
essentially no free electrons. On the other hand, electron-
phonon interactions are particularly important in mag-
netic semiconductors.

IBM J. RES, DEVELOP.




In cases where the electron-phonon coupling is large,
it is more accurate to use a basis of eigenstates of a part
of the Hamiltonian which includes the electron-phonon
interaction term.® These states can be looked at as those
of a quasiparticle called a polaron, essentially an electron
moving with an associated lattice deformation. Two limits
of polaron theory have been considered quantitatively.
In large-polaron theory,'” the extent of the associated
lattice deformation is sufficiently large that the lattice can
be treated as an elastic continuum. Calculations within
this model show that the polaronic band structure of a
material resembles the electronic band structure in the
absence of lattice interactions, except that the effective
mass increases and the energy levels of the states decrease
somewhat. On the other hand, in the limit of small-polaron
theory,'® in which the electronic bandwidth is small com-
pared to the electron-phonon interaction energies, major
modifications of the electronic band structure result. Above
a critical temperature, small polarons can participate in
electrical conduction only with the assistance of phonons,
a process known as thermally activated hopping. This con-
duction process differs from ordinary semiconduction in
that the mobility must be an exponentially increasing func-
tion of temperature.

One further point must be borne in mind. Formation
of a small polaron requires a lattice deformation around
a free electron or hole. The Franck-Condon principle
suggests that the lattice cannot respond to excitations at
optical frequencies. Thus, if the small-polaron binding
energy is significant, the energies necessary to excite certain
electronic transitions optically must exceed the thermal
excitation energies. Thus the optical energy-band structure
can differ considerably from the electrical energy-band
structure for narrow band ionic materials.

In this paper, the optical and electrical densities-of-
states of magnetic semiconductors are discussed. In sec-
tion 2, pure stoichiometric single crystals are considered.
In section 3, the major effects that doping or nonstoi-
chiometry can have on this class of materials are quan-
titatively estimated. The conclusions are summarized in
section 4.

2. Band structure of perfect crystals

In principle, we can envision three classes of magnetic
semiconductors. A particularly simple type is just a semi-
conducting variation of a magnetic metal. It is well known
that a ferromagnetic’® or antiferromagnetic®® alignment
of spins induces an extra splitting of all the energy bands,
due to the removal of the spin degeneracy. It has also
been suggested recently that a localized magnetic moment,
without any long-range order, can bring about the same
splitting.?" It is certainly a possibility that such a splitting
could introduce a real energy gap into the density-of-states,
thus producing an ordinary semiconductor. Spin-polar-
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ized band calculations have indeed predicted that the
materials MnO** and NiO** are examples of this class
of magnetic semiconductors. There is some evidence that
NiS is a member of the class.”* However, these con-
clusions are, at best, controversial.>*** Any materials that
are magnetic semiconductors of this type can be completely
understood in terms of elementary band theory, and should
be as similar to magnetic metals as, say, Ge is similar
to Zn.

A second type of magnetic semiconductor is very similar
to a magnetic insulator. The magnetic electrons can be
treated as completely localized on their ion cores. When
made non-stoichiometric or doped with specific impurities,
such a material can be left with excess localized electrons
or holes. These excess carriers can be expected to form
small polarons and hop through the lattice with phonon
assistance.”” If the thermally activated small polarons are
reasonably mobile, the hopping contribution to conduc-
tivity will be sufficiently large to classify the material as a
semiconductor rather than an insulator. There is some
evidence that LaCoO; 2* and Pr,0,,” among others, are
magnetic semiconductors of this type. Once again, this
class can be understood in principle, using a consistent,
localized-electron approach.

Unfortunately, a third type of magnetic semiconductor
can exist. It is possible for the magnetic electrons to be
extremely localized and still have ordinary semiconduction
occur in a given material, provided that there are wide
bands, corresponding to non-magnetic electrons, in the
vicinity of the Fermi energy. This class of materials is
the most difficult to analyze theoretically, since localized
and itinerant outer electrons are simultaneously present,
and a consistent approach cannot be used. A large group
of rare-earth compounds®® appears to fall into this class,
and it has been suggested'®®! that many transition metal
compounds do also. The existence of these materials forces
us to bridge the gap between insulating and metallic states.

The only quantitative starting point that we have is
the model of Hubbard,'*>** who suggested the approxi-
mate Hamiltonian.

H = Z Z Tii'cia* Cio + U Z Rapngy. (3)

v 3
The first term in Eq. (3) is just the one-electron energy,
and the second term adds the intraionic Coulomb repul-
sion U whenever a spin-up and a spin-down electron are
simultaneously present on the same ion core. The Hamil-
tonian, (3), has the advantage of being exact in both
the zero bandwidth (atomic) and the purely itinerant
(U = 0) limits. Thus, it may be a reasonable approxima-
tion to use for the analysis of magnetic semiconductors.
Hubbard found that the problem could be handled
quantitatively only for the case of a single s band, and
even then only by using some ad hoc approximation
procedures.’® His final result was then quite simple.
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Table 1 Conduction properties and estimated range of optical absorption energies for low-energy excitations in perfect NiO crystals.
An asterisk refers to the excited crystalline-field levels.

Range of optical

Process Type of conduction absorption energies
3ds — 3ds* non-conducting 1-4 eV
3ds + 3d& — 3d” + 3d¢ hopping conduction 13 eV
3d® 4 3d® — 3d7 4 3d** hopping conduction 14 eV
3d® + 3d8 — 3d™* + 3d? hopping conduction 14-19 eV
3ds + 3d® — 3d"™* 4 3do* hopping conduction 15-20 eV
3ds — 3d7 + (electron in 4s band) n-type semiconduction 4-10 eV
3d8 — 3d™* 4 (electron in 4s band) n-type semiconduction 5-16 eV
3d8 + (electron in 2p band) — 3d® p-type semiconduction 14-18 eV
3d8 4 (electron in 2p band) — 3d®* p-type semiconduction 15-19 eV
(electron in 2p band) — (electron in 4s band) n- and p-type semiconduction 5-16 eV

264

D. ADLER

In the zero-bandwidth limit, the quasiparticle spectrum
was just two zero-width bands, separated in energy by U.
As the ratio of bandwidth to U increases, these two
bands begin to spread symmetrically, then overlap, and
finally merge into one. This result implies a smooth
transition between localized and itinerant states.

We shall adopt this conclusion in order to analyze
the band structure of magnetic semiconductors. The
major implication, for our purposes, is that we can
begin our analysis with the known atomic and ionic
energy levels, and obtain reasonable estimates of the
structure of the itinerant bands by allowing a symmetric
spread around the atomic levels until the proper band-
width is obtained. The correct bandwidths can be de-
termined from ordinary band calculations. On the other
hand, this method guarantees that the localized states
are handled accurately, since only slight spreading from
the atomic limit is expected. It should be remarked that
this procedure gives excellent results when applied to
non-magnetic insulators, such as MgO and TiO,, even
when some relatively wide (=212 V) bands are present.’

We shall restrict our analysis to one material, NiO,
simply because it is the only material for which sufficient
experimental data exist on good single crystals for us
to compare theory with reality. Although NiO is not
completely ionic (the covalency parameters®’ are 49),
it is sufficiently ionic that the best starting point is a
periodic arrangement of free Ni** and O jons. The
important bands of NiO are the 3d and 4s bands of the Ni**
ions and the 2p band of the O®” jon. Just as in the case
of NiF,, discussed in section 1, Ni’* has a 3d® configuration
in its ground state. There is by now considerable evi-
dence®>* that the 2p and 4s bands of NiO are ordinary
itinerant states, so that the ratio of the bandwidth to U
is quite large for these bands. On the other hand, the

3d electrons appear to be near the atomic limit.** The
latter fact is somewhat depressing, since a localized 3d
band breaks up into over 10° quasiparticle bands. How-
ever, the silver lining is that the energies of virtually all
of these bands are known in the atomic limit,* and the
vast majority are at sufficiently high energies to be un-
interesting to all but x-ray spectroscopists.

Starting with the free-ion energy levels, and taking
into account the Madelung potential, screening and
covalency effects, crystalline-field splittings, and band-
width effects, it is possible to make reasonable estimates
for the energies of the important elementary excitations
requiring less than 20 eV.”” The results are shown in
Table 1. We must add the spin wave and excitonic transi-
tions to the single particle excitations of Table 1.” It is
then found that these predictions are in excellent agreement
with optical experiments in the 1-20 eV range.**”*" The
band calculation of Wilson®® attributes the 3.8 eV edge
to 2p - 3d transitions, rather than to 3d® - 3d” 4s transitions,
as implied here. However, it is clear from Table 1 that
2p - 3d intrinsic transitions require significantly larger
energy unless the Coulomb interaction U is screened to a
sufficiently large extent that it would be difficult to explain
the absorption below 3.8 eV.*

It can also be seen that Table 1 predicts that a photo-
conductivity edge exists at about 4 eV, and one has
indeed been observed at 3.8 eV.*® These results further
imply that intrinsic conduction should appear in NiO
with an activation energy of about 2 eV. The electrical
activation energy should be about 0.1-0.2 eV less than
half the optical edge, because of the large polaron binding
energy.”” There is some experimental indication that
such conduction exists. In a relatively pure epitaxially
grown crystal, an activation energy of 1.9 eV was observed
between 700°K and 1200°K,*® and in several heavily
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compensated samples, activation energies in the vicinity
of 1.8 eV were found above 1000°K.*

Similar estimates of the band structure of perfect
crystals of magnetic semiconductors can be made whenever
the screening and covalency effects can be obtained from
experiment and the bandwidths of the itinerant states
have been calculated. Thus far, only NiO can be discussed
with any degree of confidence, and the results appear to
be in agreement with experiment.

As has been pointed out,'® the energy-band structure of
magnetic semiconductors can be represented on an effec-
tive one-electron density-of-states diagram by separating
the localized from the itinerant states, and adopting a
procedure in which impossible excitations can be excluded.
Such a diagram is shown in Fig. 1 for the optical density-
of-states of perfect NiO. Itinerant states are drawn to the
left, localized states to the right. The states which are
occupied at T = 0 are shaded. States that are shown as
dashed lines are available for excitations only from occu-
pied localized states. By bearing these rules in mind,
Fig. 1 can be used to obtain the optical absorption energies
given in Table 1.

We can obtain the electrical density-of-states of perfect
NiO crystals from Fig. 1 by invoking the Franck-Condon
principle. The energy reduction from relaxation of the
lattice around the excess charge density must then be
calculated. Using estimates of the small-polaron and
large-polaron binding energies,”” we find that the electrical
density-of-states is easily obtained from Fig. 1 by raising
the energies of the 2p states by 0.25 eV and lowering the
energies of the 4s states by 0.2 eV relative to the 3d states.

3. Band structure of doped or non-stoichiometric
material

The electrical density-of-states of perfect crystals is of
academic interest only in these materials, since the single
crystals that have thus far been grown are seldom stoi-
chiometric, have large concentrations of random impurities
and are replete with defects. In wide-band semiconductors,
defects, non-stoichiometry and impurities are all easily
handled. Once the energies necessary to trap one or more
electrons in the vicinity of each type of flaw are known,
and the energies necessary to remove one or more electrons
from the various impurity centers and interstitials are
also known, we need only to modify the density-of-states
calculated for perfect crystals by adding localized donor
and acceptor levels at their proper energies. Once these
levels are added and the statistics are properly taken into
account, good agreement with experiment is obtained. No
modifications of the valence and conduction bands are
necessary. It is important to bear in mind that this is not
the case for magnetic semiconductors and insulators.

To illustrate this point, let us consider the case of
Li-doped NiO. We already have estimated the optical and
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Figure 1 Optical density-of-states of perfect NiO. States
which are occupied at T — 0 are shaded.

electrical densities-of-states of perfect NiO, and many
electrical and optical studies have been carried out on
NiO doped with Li. Li enters the lattice substitutionally
for Ni. Since the second ionization potential of Li is much
larger than the third ionization potential of Ni*, all Li
centers are singly ionized. To preserve charge neutrality,
a Ni*' must be formed for each Li’ in the crystal. In
reality, some compensation appears to be always pres-
ent.*’*! This could be brought about either by the presence
of trivalent cations, such as AI*" or Fe®*, or the self-com-
pensation provided by formation of anion vacancies or
Li interstitials. Thus, the concentration of Ni’* is somewhat
less than the Li* concentration.

The lowest energy state of the doped material is that in
which all uncompensated Li* jons have a Ni** ion for
a nearest neighbor. This comes about because a Li*-Ni**
pair on the cation sublattice forms an effective electron-
hole pair, which electrostatically binds just like an exciton.
The binding energy can be estimated as of the order of
0.4 eV.*? These bound Li'-Ni*" complexes lead to new
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Table 2 Conduction properties, estimated range of optical absorption energies, and estimated minimum thermal excitation energies
for impurity-induced transitions in NiO which has been doped with Li. The symbol [3d"] stands for a Ni3* ion bound to a Lit* impurity
center. An asterisk refers to the excited crystalline-field levels.

Range of optical Electrical
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Process Type of conduction absorption energies excitation energy

{3d7] — [3d7*] non-conducting 1-6 eV -

[3d7] — 3d7 hopping conduction 0.4eV 0.4ev

[3d7] — 3d7* hopping conduction 2-7 eV 2eV

[3d"] — [3d%] 4 (4s electron) n-type semiconduction 12-18 eV 12eV

[3d7] — [3d®*] + (4s electron) n-type semiconduction 14-24 eV 14 eV

[3d"] 4 (2p electron) — 3d8 p-type semiconduction 0.7-5eV 0.5eV

[3d7] + (2p electron) — 3ds* p-type semiconduction 2-9eV 2eV

optical transitions. These include freeing of the bound
hole from the Li" impurity center, the crystalline-field
excitations of the bound Ni** ion, and excitation of a 2p
electron onto a Ni** ion, leaving a Ni** jon and a hole in
the 2p band. The additional optical excitations induced
by Li-doping are summarized in Table 2. The energies
were estimated in the same way as were those of excitations
in perfect NiO crystals, as discussed in Section 2.

The optical absorption in Li-doped NiO has been
measured, and there is clear evidence for a peak at 0.43
eV.*® This absorption is most likely due to the freeing of
bound holes from Li" centers. There is also evidence for a
background absorption induced by Li doping in the
range 0.2-2.0 eV.***® 1t can be shown that a series of
excitations in the 0.2-0.4 eV range, representing transitions
from strongly-bound Li"-Ni** pairs to more weakly bound
pairs, in which the Ni®* is farther than a nearest-neighbor
distance from the Li" center.”” These excitations overlap
in energy with the excitonic transitions of a bound hole
into the oxygen 2p band, so that the background absorp-
tion is easily explained.

The interesting features, however, do not concern the
optical transitions, but rather the electronic excitations
induced by Li-doping. When the small- and large-polaron
binding energies are taken into account, we can obtain
the minimum energies necessary to thermally excite the
transitions listed in Table 2. These minimum excitation
energies are given in the last column of Table 2. The
transitions which free the hole from the Li" center lead to
electrical conductivity. The minimum energy necessary
to create a carrier is 0.4 eV, which frees a hole in the
3d® band. This hole forms a small polaron, which can then
contribute to conduction by means of thermally activated
hopping. The important point is that a minimum energy
of only 0.5 eV is necessary to free a hole from a Li* center
and place it in the relatively wide 2p band. The much
larger mobility that can be expected from band-like
conductivity of large polarons in the 2p band, as compared

to the hopping mobility, implies that 2p-band conduction
should dominate 3d hopping conduction except at very
low temperatures. This is a simple resolution of the
problem of the band-like semiconduction that is experi-
mentally observed in NiQ,*"+0454 3 known Mott
insulator.

The conductivity observed in Li-doped NiO is quantita-
tively what can be estimated from large-polaron hole
conduction in the 2p band, with optical phonon scattering
predominating.”” Although small-polaron hopping in
the 3d® band should dominate 2p-band conduction at
sufficiently low temperatures, the hopping itself is domi-
nated by impurity conduction in the partially compensated
acceptor levels below 100°K.*” Bound small-polaron
hopping among the nearest neighbors to a Li' center,
however, dominates the ac conductivity at low tempera-
tures and high frequencies,*®* and has the expected
temperature dependence.”’

An electrical density-of-states diagram for Li-doped
NiQO is given in Fig. 2. Once again, itinerant states are
drawn to the left, localized states to the right. All states are
referred to the Fermi energy, drawn here by assuming
that partial compensation occurs, as appears to be the
case. The density-of-states of Fig. 2 is in agreement with
the vast quantity of experimental data on Li-doped and
non-stoichiometric NiO.

A comparison of Fig. 1 with Fig. 2 reveals a surprising
feature. The 2p band has moved up over 1 eV relative to
the 3d® band in the Li-doped density-of-states. The reason
for this is that the presence of Li" in NiO crystals produces
large concentrations of Ni** ions, and it is much easier to
excite a 2p electron onto a Ni*" ion than onto a Ni’" ion,
the electron affinity Ni®* being about twice that of Ni*'.
When localized and itinerant outer electrons are simul-
taneously present, effects such as these must carefully be
taken into account, We would have dismissed 2p-band
conduction as negligible has we just introduced the Li
acceptor levels 0.4 eV above the 3d® band in the density-
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Figure 2 Electrical density-of-states of Li-doped NiO. States
which are occupied at T — 0 are shaded. Partial self-
compensation by means of oxygen vacancies is assumed.
V., and V.” refer to singly and doubly ionized x vacancy
levels, respectively.

of-states of perfect NiO, as given in Fig. 1. This relative
variation of band energies brought about by doping or
non-stoichiometry is the price we must pay for correctly
dealing with the localized outer electrons of magnetic
semiconductors.

4. Conclusions

When localized and itinerant outer electrons are simul-
taneously present in magnetic semiconductors, we cannot
continue to employ one-electron methods for determining
the effects of impurities or non-stoichiometry on optical
absorption and electrical conductivity. A more accurate
procedure is to construct the many-body energy-band
structure beginning with the free-ion energies and taking
into account the effects of the Madelung potential, screen-
ing, covalency, crystalline-field stabilizations, magnetic
ordering, and electronic overlap. Quantitative estimates
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can ordinarily be calculated or obtained from experiment.
Such estimates for the cases of both pure and Li-doped
NiO are in agreement with the experimental data.
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