P. Nicolau

I. Bunget

M. Rosenberg

I. Belciu

Transport Properties of Iron-nickel Ferrites

Abstract: The mechanism of electrical conduction in the magnetic semiconductors $Ni_xFe_{3-x}O_4$ with $0.6 < x \le 1$ was investigated. The electrical properties of these compounds are extremely sensitive to the presence of α -Fe₂O₃ as a second phase. The exponential temperature dependence of the electrical resistivity ρ and the temperature-independent thermoelectric power θ are in good agreement with an electron-hopping model. The electrical conduction occurs by thermally activated electron hopping between octahedral Fe²⁺ and Fe³⁺ ions with an activation energy q. The values of ρ , q and θ depend on the Fe²⁺ concentration only, and are not sensitive to small deviations from stoichiometry due to the presence of cation or anion vacancies.

Introduction

The electrical properties of NiFe₂O₄ and of other compositions of the Ni_xFe_{3-x}O₄ system have been investigated and reported by several authors. Although many of these favor a hopping mechanism for conduction within the composition range $0.6 < x \le 1$, the lack of information concerning the chemical composition of the investigated samples leaves much doubt whether the experimental data are in better agreement with a hopping or a band model. On the other hand, some Hall-effect data^{5,9,11} provide support for a band-conduction mechanism, and this type of model was used recently by Jefferson and Baker¹¹ for Ni_{0.6}Fe_{2.4}O₄.

This paper deals with the investigation of the electrical properties of 13 chemically well-defined compositions in the Ni_xFe_{3-x}O₄ system (0.6 $< x \le 1$). The results are in fairly good agreement with an electron-hopping mechanism of conduction.

Experimental technique

Polycrystalline samples of 13 compositions (Table 1) in the $Ni_xFe_{3-x}O_4$ system were sintered from oxydic powders prepared in three ways: a) ball-milling of mixtures of NiO and α -Fe₂O₃ (samples 5, 8, 11 and 12); b) co-precipitation of hydroxides followed by firing at 500°C (samples 1 and 9); and c) co-precipitation of mixed oxalates followed by firing at 500°C (samples 2, 3, 4, 6, 7, 10 and 13).

The powders were isostatically pressed at 2000 kg/cm² and sintered in the temperature range 1400 to 1450°C in air (samples 1 through 10) or argon (samples 11 through

13), and slow cooled in air (samples 1 through 8) or argon (samples 9 through 13). All 13 compositions were monitored metallographically as well as by x-ray diffraction, and all were identified as single-phase, cubic spinel structures. The "concentrations" (numbers of ions for the Ni_xFe_{3-x}O₄ formula unit) of the divalent iron, [Fe²⁺], the total iron, [Fe], and the nickel, [Ni], were determined chemically ¹⁵ and the resulting valency formulas are given in Table 1. The densities of the samples varied from 82 to 94% of the theoretical values; the best results (> 90%) were obtained for the samples prepared from co-precipitated oxalates. The temperature dependences of the dc electrical resistivities ρ and Seebeck coefficients θ (against platinum) were investigated in the interval 20 to 400°C.

Results and discussion

For all the samples the temperature dependence of the electrical resistivity was exponential, described by $\rho = \rho_{\infty} \exp{(q/kT)}$. The dependence of ρ , q and θ on the concentration of divalent iron ions is shown in Fig. 1.

In all cases the Seebeck coefficient θ was temperature independent, in disagreement with the results of Samokhvalov and Rustamov, who reported a small decrease in θ with increasing temperature. We did observe this weak temperature dependence of θ in all cases in which the sample was not single phase and in which some α -Fe₂O₃ was detected. Probably the presence of α -Fe₂O₃ as a second phase could explain the anomalous results.

Figure 1 shows that the electrical parameters depend very strongly on the concentration of Fe²⁺ ions. Some scatter of the values due to the presence of oxygen or metallic vacancies in the samples does not severely affect the dependence on [Fe²⁺].

P. Nicolau is located at the Institute of Physics, Calea Victoriei 114 Bucharest, Romania; I. Bunget and M. Rosenberg are in the Physics Department at the University of Bucharest, Romania; and I. Belciu is at the Politechnical Institute of Bucharest, Romania.

Table 1 Electrical properties of samples in the Ni_xFe_{3-x}O₄ system.

Sample	Composition (valence formula)	Mobility μ (cm ² /V-sec)	Carrier concentration N $(10^{20}/cm^3)$	Transition frequency vo (THz)
1	$Fe^{3+}(Ni^{2+}\ Ni^{3+}_{0.002}\ Fe^{3+}_{0.998})\ O_4^{\ a}$	4.08×10^{-9}	1.87	21
2	$\mathrm{Fe}^{3+}(\mathrm{Ni}_{1.04}^{2+}~\mathrm{Fe}_{0.007}^{2+}~\mathrm{Fe}_{0.953}^{3+})~\mathrm{O}_{3.977}^{a}$	1.37×10^{-8}	0.96	48
3	$Fe^{3+}(Ni_{1.03}^{2+}\ Fe_{0.035}^{2+}\ Fe_{0.935}^{3+})\ O_{3.968}^{a}$	2.97×10^{-5}	4.8	2.04
4	$\mathrm{Fe}^{3+}(\mathrm{Ni}^{2+}\ \mathrm{Fe}^{2+}_{0.04}\ \mathrm{Fe}^{3+}_{0.96})\ \mathrm{O}_{3.98}$	1.22×10^{-5}	5.5	2.68
5	$\operatorname{Fe}^{3+}(\operatorname{Ni}_{0.918}^{2+} \operatorname{Fe}_{0.049}^{2+} \square_{0.011} \operatorname{Fe}_{1.022}^{3+}) \operatorname{O}_4$	2.44×10^{-5}	6.74	1.16
6	$\mathrm{Fe}^{3+}(\mathrm{Ni}_{0.98}^{2+}\ \mathrm{Fe}_{0.053}^{2+}\ \mathrm{Fe}_{0.967}^{3+})\ \mathrm{O}_{3.974}$	2.92×10^{-5}	7.28	1.66
7	$\operatorname{Fe}^{3+}(\operatorname{Ni}_{0.88}^{2+}\operatorname{Fe}_{0.06}^{2+} \square_{0.02} \operatorname{Fe}_{1.04}^{3+}) \operatorname{O}_4$	1.825×10^{-4}	7.98	1.67
8	$\mathrm{Fe}^{3+}(\mathrm{Ni}_{0.84}^{2+}\;\mathrm{Fe}_{0.115}^{2+}\;\Box_{0.015}\;\mathrm{Fe}_{1.03}^{3+})\mathrm{O_4}$	3.1×10^{-4}	15.8	2
9	$\mathrm{Fe}^{3+}(\mathrm{Ni}_{0.99}^{2+}~\mathrm{Fe}_{0.12}^{2+}~\mathrm{Fe}_{0.89}^{3+})~\mathrm{O}_{3.945}$	5.04×10^{-4}	16.5	1.57
10	$\mathrm{Fe}^{3+}(\mathrm{Ni}_{0.89}^{2+}\ \mathrm{Fe}_{0.142}^{2+}\ \mathrm{Fe}_{0.968}^{3+})\ \mathrm{O}_{3.986}$	5.12×10^{-4}	19.85	1.8
11	$\mathrm{Fe}^{3+}(\mathrm{Ni}_{0.856}^{2+}\ \mathrm{Fe}_{0.144}^{2+}\ \mathrm{Fe}^{3+})\ \mathrm{O_4}$	5.6×10^{-4}	19.8	1.37
12	$\mathrm{Fe}^{3+}(\mathrm{Ni}_{0.92}^{2+}\ \mathrm{Fe}_{0.205}^{2+}\ \mathrm{Fe}_{0.875}^{3+})\ \mathrm{O}_{3.94}$	1.23×10^{-3}	28.1	1.78
13	$\mathrm{Fe}^{3+}(\mathrm{Ni}_{0.637}^{2+}\ \mathrm{Fe}_{0.38}^{2+}\ \mathrm{Fe}_{1.017}^{3+})\ \mathrm{O}_{3.992}$	7.45×10^{-3}	60	1.72

a Calculated from the Seebeck coefficient.

The exponential temperature dependence of ρ and the lack of any temperature dependence of θ can be explained using an electron-hopping mechanism of conduction. In this model an Fe²⁺ ion contributes, above room temperature, a mobile electron that moves among the octahedral-site iron atoms and has a thermally activated mobility. Under such an assumption the values of θ can be correlated with those of the concentrations of the octahedral Fe²⁺ and Fe³⁺ ions of the spinel lattice by means of the formula

$$\theta = \frac{k}{e} \left(\log_e \frac{[Fe^{3+}]}{[Fe^{2+}]} + a \right), \tag{1}$$

where a is the kinetic term that takes values in the range 0 to 1. In the case of high-resistivity and low-mobility semiconductors the value of a is small and in most cases can be neglected. Indeed, good agreement between experimental and calculated values of θ was obtained (Fig. 1) for $0 < [\text{Fe}^{2+}] \le 0.2$ by neglecting a.

If the Fe²⁺ concentration is assumed to be the carrier concentration (Table 1, column 4), the room-temperature values of the mobility (Table 1, column 3) can be obtained from the relation $\sigma = ne\mu$ for a diffusion-like hopping process; here

$$\mu = (eS\nu_0/kT) \exp(-q/kT), \tag{2}$$

S is the average surface for carrier diffusion, and ν_0 is the maximum frequency of the transition between two neighboring octahedral sites. Taking for S a value corresponding to the crystallographic data of NiFe₂O₄, we also computed the frequency ν_0 (Table 1, column 5).

For all of the n-type samples the values of ν_0 are concentrated in a narrow range between 1.16 THz and 2.68 THz. These values are close to the first two vibrational frequencies of 1.8 THz and 7.2 THz detected by Waldron in the infrared absorption spectrum of NiFe₂O₄. This narrow range of ν_0 values corresponds to a basic requirement of the theory of the hopping mechanism of conduction. The very weak dependence of ν_0 on [Fe²⁺] is probably due to the fact that the total concentration of the divalent ions, [Ni²⁺] + [Fe²⁺], on octahedral sites is the same for all the n-type samples investigated, so that the interaction coefficients are not strongly affected by changes in composition.

As ν_0 is relatively constant, the composition dependence of the carrier mobility is basically due to changes in the activation energy q with the carrier concentration. The most dramatic decrease of q occurs for $0 < [{\rm Fe}^{2^+}] < 0.2$. It is to be expected that q is less sensitive to changes in carrier concentration above that concentration for which, on the average, there is at least one carrier in the first metallic coordination sphere of an ${\rm Fe}^{2^+}$ ion. This con-

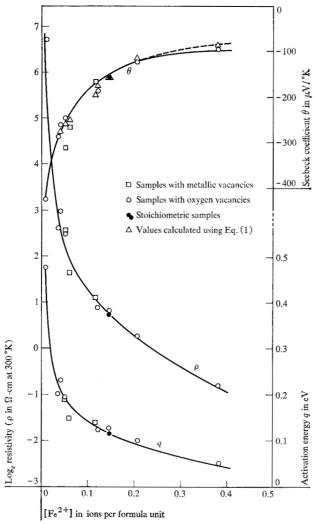


Figure 1 Electrical resistivity ρ , activation energy q, and Seebeck coefficient θ plotted as functions of the concentration [Fe²⁺] of the iron ions.

centration corresponds to a value of $[Fe^{2^+}]$ of about 0.3, which is close to the value above which the composition dependence of θ begins to differ from that given by Eq. (1). This disagreement probably indicates that, above the range of concentration $0.2 < [Fe^{2^+}] < 0.3$, the conditions for applicability of small polaron theory are no longer fulfilled.

It should be pointed out that a difference of an order of magnitude exists between our drift mobility and the Hall mobility reported by Lavine⁵ for Ni_{0.75}Se_{2 25}O₄. This discrepancy can be understood in the frame of the theory of the Hall effect in the polaron model.¹⁷

Sample 1 (see Table 1) has a positive but very small Seebeck coefficient, $\theta \approx +550 \ \mu\text{V/}^{\circ}\text{K}$. The plus sign can be ascribed to electron jumps between the Ni²⁺ and Ni³⁺ ions; the low value of the mobility is characteristic of a hopping process involving localized holes in ferrites.¹⁴

Summary

The results of the investigation of the electrical properties of the $Ni_xFe_{3-x}O_4$ system in the composition range $0.6 < x \le 1$ can be explained with a hopping mechanism of conduction and a small polaron model for the more limited range $0.8 < x \le 1$. Preliminary results show that for 0 < x < 0.6 one does not find satisfactory agreement with hopping-model theory; the discrepancy increases for lower values of x, i.e., as the composition approaches that of Fe_3O_4 .

References

- F. J. Morin and T. H. Geballe, Phys. Rev. 99, 467 (1955).
- L. G. van Uitert, J. Chem. Phys. 23, 1883 (1955); 24, 306 (1956).
- P. A. Miles, A. Westpahl and A. von Hippel, Rev. Mod. Phys. 29, 279 (1957).
- 4. N. Menyuk and K. Dwight, Phys. Rev. 112, 397 (1958).
- 5. J. M. Lavine, Phys. Rev. 123, 1273 (1961).
- 6. N. Miyata, J. Phys. Soc. Japan 16, 206 (1961).
- T. Kohane and B. D. Silverman, J. Phys. Soc. Japan 17, 249 (1962).
- D. Elwell, R. Parker and A. Sharkey, J. Phys. Chem. Solids 24, 1325 (1963).
- A. A. Samokhvalov and A. G. Rustamov, Fiz. Tverd. Tela 7, 1198 (1965).
- D. Elwell, B. A. Griffith and R. Parker, Brit. J. Appl. Phys. 17, 587 (1966).
- C. F. Jefferson and C. K. Baker, IEEE Trans. Magnetics, MAG-4, 460 (1968).
- J. K. Burkey and R. Poplawski, J. Appl. Phys. 39, 5813 (1968).
- J. Baszyński, Acta Phys. Polon. XXI, 351 (1962);
 XXXV, 631 (1969).
- G. H. Jonker and S. van Houten, Halbleiterprobleme edited by F. Sauter, Vol. 6, Friedr. Vieweg and Son, Braunschweig, Germany 1961, p. 118.
- 15. E. Varzaru and A. Cormosh, Rev. Roumaine Chim. (to be published).
- 16. R. D. Waldron, Phys. Rev. 99, 1727 (1955).
- L. Friedman and P. Holstein, Ann. Phys. (N.Y.) 21, 494 (1963).

Received November 3, 1969