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Thermal  Problems of the Pulsed  Injection  Laser 

Abstract: Heat is  produced  in short periods of time  during  pulsed  operation of an  injection  laser.  The  temperature of the laser at the 
beginning of any pulse due to the  heating  caused by preceding pulses is calculated for several  simple  model cases. The  results  are applied 
in the description of performance  deterioration  caused by heating. 

1. Introduction 
In  an earlier publication’ (hereafter referred to  as I) we 
considered the  thermal problems involved in operating 
an  injection laser  continuously and  in obtaining  a single 
pulse of energy from lasers whose thermal properties 
are such that they cannot be  operated continuously. 
Similar models and problems were considered indepen- 
dently at  about  the same  time by Engeler and Garfinkel.2 
Somewhat different calculations relating to pulsed energy 
output were presented by Lasher and Smith.3  Lasers that 
cannot be operated  continuously are usually operated 
periodically; they are excited by short pulses of current 
applied at regular time intervals. The purpose of this 
paper is to consider the  thermal problems associated with 
pulsed periodic operation of an  injection laser. 

The problem is as follows. The threshold  current of a 
laser increases rapidly and  the pulse energy obtainable 
at a fixed value of current decreases as  the temperature 
of the laser increases. The temperature of a periodically 
pulsed injection laser at the beginning of a pulse is raised 
above that of its environment by the heat generated by 
preceding pulses. In  this paper we present calculations of 
the temperature of the laser at time zero  that results from 
an infinite series of pulses at preceding times - ks (k = 
1, 2 ,  . . e ) .  (Notation  and symbols are defined in Table 1.) 
It is assumed that  the pulse duration is small compared 
with all other times of interest, in particular, the time 
interval between pulses and  the characteristic thermal 
diffusion time of the structure, so that  the heat pulses 
may be considered as being instantaneous. This  problem 
is sensitive to a greater variety of details of the physical 
configuration of the laser than was the previous one, so 
that a general treatment encompassing all relevant de- 
tails is not possible. A number of limiting cases of various 
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types are treated, however, and provide  a guide to  the 
evaluation of more complex configurations. 

The power density at a laser junction is high and  the 
heat generated at  the junction  must flow away through 
the semiconductor to a much larger interface with a fluid 
that eventually carries the  heat  out of whatever apparatus 
is involved; in so doing the  heat current passes through a 
thermal spreading resistance. In many situations, however, 
the  heat current flows in  one dimension through a cylin- 
drical  structure before passing through the spreading 
resistance of the heat  sink, which reduces the thermal 
current density. The first division of the problem is into 
the case in which the cylindrical or one-dimensional 
resistance is negligible and  the spreading or three-dimen- 
sionaI resistance dominates, and  the opposite case in 
which the spreading resistance is negligible and  the one- 
dimensional resistance dominates. The time-dependent 
heat conduction  problem differs between these two cases. 

A second separation of the problem into limiting cases 
is based on  the time scale. As pointed out  in I, phenomena 
that  take place on a very short time scale are essentially 
one-dimensional, even though the three-dimensional 
features are  important  in a general treatment encompassing 
all time scales. The results obtained for the one-dimen- 
sional  problem can be carried over into  the three-dimen- 
sional  problem for “short” time scales, which means in 
this context that,  for any  time t of interest, the  thermal 
diffusion length ( D t y ,  where D is the thermal diffusivity, 
is much smaller than any  linear dimension of the problem. 

The short-time-scale approximation is never completely 
applicable in the problems  treated  here; since an infinite 
sequence of pulses is involved, account  must be taken of 
arbitrarily  large times. Nevertheless, a significant part of 
the solution of the  thermal problem can be  obtained from 
the very-short-time approximation if the interval between 
pulses is short.  The first approximation to  the temperature 
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of the laser is obtained in this case simply by allowing the Table 1 Summary of notation. 
average production of heat to be regarded as a continuous 
thermal current of constant value flowing from  the laser A Area 

through the  thermal resistance to  the heat sink. The next Soecific heat 13er unit volume 
b Summation index; width 

approximation, which takes  account of the discreteness of &gth 
the production of heat to first order  in  the period of the D Thermal diffusivitY (=<IC) 

pulses, can be obtained from  the short-time  approximation. Electric current 
This intuitively apparent assertion is supported by the i* i / i o  
calculations in sections 2, 3 and 4. The case in which the i o  Threshold current at  the ambient temperature 

time between pulses is very large leads one to essentially Current density 
different results in  the one-dimensional and three-dimen- j Current density at  the laser junction 
sional problems. Simplifications in the limit of very large j*  Current density divided by threshold current density 

G b  Defined by Eq. (2.3) 

it Threshold current  at  the  actual  temperature 

inter-pulse intervals are described in sections 2 through 5 .  Distance between the laser thermal emission surface and 
The models used may be summarized more specifically the heat sink surface (one-dimensional case) 

as follows. The heat is generated in  the plane  boundary of LIJ Characteristic thermal  length; see Eq. (4.1 1) 
a semi-infinite solid and is therefore  conducted into  the m Summation index 

solid from only one side. Two cases are considered: 
Q Total heat generated in  a single pulse 
a Q I A  

k Summation index 

(1) The power flows from  the junction through a  right Eiectrical resistance 

cylinder with the same cross-section as the junction  (the Surface region constituting the active area of the laser 
heat flow is one-dimensional). (2) The  heat producing Time interval between  pulses 

r Length of position vector 

region is a finite portion of the surface of a semi-infinite 
solid. It is assumed in both cases that a quantity of heat 
per unit area, jVt , ,  is generated per pulse uniformly in  the 
area described by the laser junction.  (Here Vis the junction 
voltage, essentially the value corresponding to the energy 
gap of the semiconductor or  the energy of the emitted 
photons.) The generation of heat by the flow of current 
through  the ohmic resistance of the bulk material in elec- 
trical series with the junction is also considered. 

One-dimensional thermal  problems are solved in  the 
next two sections. The three-dimensional problem and  the 
applicability of the results of sections 2 and 3 are discussed 
in sections 4 through 6. The solution of a particular three- 
dimensional  problem, which supports  the points of  view 
of section 4, is presented in section 5. Resistive heating in 
the three-dimensional problem is discussed briefly in 
section 6. The results of the  thermal theories are applied 
to the theory of pulsed operation of injection lasers in 
section 7. Table 1 contains a summary of the notation. 

2. One-dimensional heat conduction 
The case in which the  thermal resistance is determined by 
flow of heat in one  direction through a cylinder is treated 
in  this section. The thermal resistance is finite only if the 
cylinder has a finite length L. The laser junction at which 
heat is produced is at  one end of the cylinder (z = 0) in 
the present model, and  the  other  end (z = L) is maintained 
at the environmental  temperature, T = 0. The temperature 
at any  position z at time t after  an instantaneous pulse of 
heat of areal density q appears at  the surface 

m 

X exp [ - D(b2?r2/4L2)t]. (2.1) 

T 
TS 
TIA 

B 

TIC 

TI, 
T* 
T," 

To 

TI 

t 
tN 
tl 
tl * 
V 
X 
Z 

01 

Temperature 
Temperature at the beginning of a pulse 
Value of TI below  which no stimulated emission occurs 
[see Eq. (7.3) 
Value  of TI at which stimulated emission ceases before 
the  end of the pulse [see Eq. (7.5)] 
Value  of TI at which the light energy is reduced by one- 
half  [see Eq. (7.711 
A maximum value of TI ,  such as TI,, TI,  or TIC 
TITl (analogous definition for  any temperature) 
Temperature increase based on continuous  rather  than 
pulsed heat production 
Temperature rise produced by Joule heating after a 
short  current pulse 
Characteristic temperature; see discussion following 
Eq. (7.1) 
Time 
Characteristic time; see Eq. (7.11) 
Time duration of a current pulse 
tl / t N  
Voltage 
Cartesian coordinate  in  the plane of the laser 
Cartesian coordinate  normal to the plane of the laser 
( 1 / 4 ~ 3 / 2 )  Crn=lrn m-31' = 0.11727 

K Thermal conductivity 
P Thermal resistance 
p' Thermal resistance that relates the maximum temperature 

p Radial distance (in the plane of the laser) divided by 

u Electrical conductivity 
w 0.8239; see  Eqs.  (AS) to (A10) 

of a region to its heat current 

(4Dt)'Iz 

Here C is the specific heat per unit volume of the solid 
and D is the thermal diffusivity, i.e., the thermal con- 
ductivity K divided by C. Equation (2.1) is used to find 
the temperature of the laser at time t = 0 after an infinite 
series of preceding pulses at times - ks, k = 1, 2, 3, . . . . 
Heat is generated at a  uniform rate per unit area, q,  in 
each of the pulses. The temperature at z = 0 is found by 
summing terms of the type (2.1) to be 159, 
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m 

The  temperature  approaches zero very rapidly with 
increasing s. 

where 

Gh = ~ ' ( 2 6  - 1)2D/4L2. 

As s +  0,  Eq. (2.2) becomes 
m 

Equation (2.4) is the usual formula for the  temperature 
increase produced by the average heat  production and flow 
through  the  thermal resistance of the cylinder. 

To obtain  the next term in the expansion of TI  as a 
function of s as s -+ 0, we consider that the  production of 
heat  can be regarded as  an almost continuous process in 
this limit. In fact,  it is a convenient and reasonable approx- 
imation to replace those pulses remote in time by rec- 
tangular pulses of duration s centered on time - ks that 
produce  the same amount of heat  as the instantaneous 
pulses they replace. If all pulses with an index value 
k 2 m are so replaced, the heat  production earlier than 
time -(m - +)s becomes a  continuous process and is 
represented by an integral rather  than a  sum of a function 
of the integers. 

Thus the first form of Eq. (2.2) becomes 

k = l  b = l  

We show in  the appendix by introducing the Euler- 
Maclaurin  summation  formula for the  sum over b in 
Eq. (2.5) that TI has the form (to  the next order  in s) 

TI = T,, [I - w(Ds/L')"'], (2.6) 

where o is a constant whose value is given in  the appendix. 
By referring to a cylinder or bar of cross section A and 
introducing  its  thermal resistance P = L / K A ,  we put  Eq. 
(2.6) into the form 

Note  that  the second term in Eq. (2.7) is independent of 
any geometrical feature, a situation consistent with our 
previous assertion that this result is also applicable to 
the three-dimensional problem. 

When s f  m the sum in Eq. (2.2) is dominated by the 
first term (k  = 1, b = 1) and  thus T I  approaches the value 

T~ = ( 2 q / c ~ )  exp (--T~DS/~L').  (2.8) 

3. Resistive  heating in the  one-dimensional  problem 
The cylinder of the preceding section may have an appre- 
ciable electrical resistivity. ,If this is so, then Joule heat 
will  be produced by the flow of electric current and must 
be taken  into  account in calculating the temperature of 
the laser. 

At the end of a very short pulse of current of duration t1 
and local current density J in a medium of conductivity (T, 
the  temperature at any  point is 

To = J2tl/aC, (3.1) 

where J and To are independent of position in  the one- 
dimensional problem we are considering. The temperature 
due to this pulse at any subsequent time t is5 

T = (4To/T) [(-1)"l exp ( " G b t ) ] / ( 2 b  - 11, 
m 

b = l  
(3.2) 

where Gb is defined in Eq. (2.3). The temperature at 
t = 0 after an infinite series  of  pulses is, in analogy with 
Eq. (2.21, 

m 

TI = (4T,/7r) (-1)'+'/[exp ( G b S )  - 1](26 - 1). 
b = l  

(3.3) 

As s approaches 0, T I  approaches T,,, the value the 
temperature would have if the  heat were produced con- 
tinuously at  the average rate. The value of T,, for this 
case is found from Eq. (3.3) to be 

T,, = ToL2/2sD (3.4) 

or, in another  form, 

T,, = PRi2t1/2s. (3.5) 

Here  the electrical resistance R = L/Aa and i = JA. 
Equation (3.5) conforms with Holm's result' that  the 
temperature increase in this kind of situation is that which 
would be produced by the flow  of the electrical power 
through half of the  thermal resistance. 

The next term  in the  approximation of TI as s ap- 
proaches 0 can be obtained easily in this case by straight- 
forward expansion of Eq. (3.3): 

TI = Ta,[l - ( Ds/L2)] 
(3.6) 

= (PRi2t1/2s) - T,/2. 
It  has been necessary to use the following formulas7 in 
obtaining Eqs. (3.4) and (3.6): 

C(-1)""(2rn - l)-' = p(1) = 7r/4 

and 

C(-1)"+1(2m - 1)-3 = p(3) = 1r3/32. 
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As in section 2, when s approaches the first term of 
Eq. (3.3) dominates and T I  vanishes exponentially with 
increasing s. 

The results of sections 2 and 3 are summarized in Fig. 1. 
Values of T I  in the one-dimensional problems obtained by 
numerical summation of the series of Eqs. (2.2) and (3.3) 
are shown. The approximations given by Eqs. (2.6) and 
(3.8) are also presented. The independent variable in  the 
figure is the spacing between pulses measured by the 
quantity sD/L2.  A good  approximation to TI/T, ,  is 
provided by the simple function 

s D / L 2  2 1.47; 

( 3 . 7 )  

if the  heat is produced at  the laser surface; and by 

S D / L ~  2 1; 

if the heat is produced uniformly in  the laser material. 

are also presented in Table 2. 
The results obtained by summing Eqs. (2.2) and (3 .3 )  

4. Spreading resistance or three-dimensional  heat 
conduction 
This section treats the case in which the active region of the 
laser is a  bounded region S on  the surface of a semi- 
infinite solid. The temperature at any  point X in  a semi- 
infinite solid (initially at T = 0) at time I after  an instan- 
taneous pulse of heat of strength Q appears at a  point on 
the surface of the solid iss 

T = (Q/4C)(?rDt)-"/" exp ( -rZ/4Dt) .   (4 .1)  

Here r is the distance from  the  point of generation to  the 
point X .  If heat is generated over a surface region S 
(the active area of the laser), the temperature of the solid 
can be found by integrating  contributions of the form (4.1) 
over S, in which case Q is replaced by qdA and q is inter- 
preted as a  heat  source  strength  per  unit area. If the z 
coordinate is chosen perpendicular to  the boundary  plane, 
then the temperature of the laser (i.e., of the surface 
region S) may be found by setting z = 0. The desired 
temperature at this  junction ( z  = 0) at t = 0 after  an 
infinite series of pulses is 

TI = (4 /4C)  5 ( ~ D k s ) - " ~  Is exp ( - r 2 / 4 D k s )  d A .  
k = l  

( 4 . 2 )  

Apparently T is a  function of position with respect to 
the active region S and,  in particular, will vary within S. 
The point of view adopted here is that the  deterioration 
in performance of the laser caused by heating is determined 
by the maximum temperature in the active region. The 

Figure 1 Values of TI/T,, for surface and bulk heating 
in the one-dimensional  laser  problem,  derived from Eqs. 
(2.2) and (3.3), as  functions of sD/L'. The approxima- 
tions given by Eqs. (2.6) and (3.8) are also shown. 

Table 2 Values of TI/T,, for the  one-dimensional  thermal 
resistance problem,  obtained by summing the series of Eqs. 
(2.2) and (3.3). 

sD/L2 Eq. (2.2) Eq. (3.3) 

0.01 
0.02 
0.05 
0.1 
0.2 
0 .5  
1 
2 

0.9176 
0.8835 
0.8158 
0.7394 
0.6317 
0.4109 
0.1853 
0.0290 

0.9900 
0.9800 
0.9500 
0.8997 
0.7962 
0.5231 
0.2360 
0.0369 

maximum  value of T occurs at  the center of a convex 
region of high symmetry, such as  a rectangle. Thus  Eq. 
(4.2) is henceforth interpreted as a formula for  the tem- 
perature at  the center of the laser and  the threshold  current 
of the laser is regarded as a  function of this  temperature. 

Limiting case s + 0 
It is convenient to follow the  method of replacing the 
pulses remote in time by a continuous  source of heat as 
described in section 2 in connection with Eqs. (2.5) and 
(2.6). Equation (4.2) becomes, in analogy with Eq. (2.5), 

TI = ( q / 4 C )  (T Dks)-"/' Is exp (-r2/4 Dks) d A 

+ ( I / s ) S m  ( T D ~ ) - ~ / '  Jq exp ( - r 2 / 4 D t )  d A  df . 

772 

[ k = I  
( m+ 1 / 2 )  8 1 

( 4 . 3 )  161 
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The time  integral in Eq. (4.3) may be regarded as the 
difference between an integration from 0 to a and  an 
integration from 0 to (m + 3)s. The first time  integral is 
easily evaluated and gives a contribution to T I  of 

which is the steady-state temperature rise at  the center of 
the laser that would be caused by continuous  production 
of heat at a rate q/s. The value T,, is obviously closely 
related to  the spreading thermal resistance, although  it is 
not precisely a thermal resistance because this entity is 
usually defined as the resistance to heat flow from  an 
isotherm, and  the laser surface is not  an isotherm in  the 
present model. Since it  is intuitively expected that  the 
dominant  term in  the temperature increase will  be due to 
steady-state thermal resistance in  the limit s + 0, it  is 
instructive to write T,, in terms of a thermal resistance P' 
and  thus  obtain 

T,, = (qA/s)P'. (4.5) 

Here A is the  area of S and 

P' = (1/27r~A) (l/r) d A .  s, 
Turning now to  the remaining part of Eq. (4.3), we 

introducep = r/(4Dt)' in  the space integral over S, thereby 
transforming S into a surface Z in the p space. Since 
t 5 (rn + 4)s the boundaries of the surface I: approach m 

in  all directions from  any  point  not  on  the perimeter 
of Z when s+ 0. Thus  the space integration can be done 
by allowing the limits of the integral to approach m : 

Is exp (-r2/4Dt) d A  = 4aDt.  (4.7) 

In the first part of Eq. (4.3), the summation, t has  the 
value ks. The result (4.7) allows the integration over time 
from 0 to (m + 3)s, which arose in evaluating the second 
part of Eq. (4.3), to be carried out easily. Thus we find that 

TI = T,, + (q/C)(asD)"/2 

X [ 2 k"" - 2(m + $)"'] 
k = l  

The numerical coefficient in  the second term of Eq. (4.8) 
is  discussed in  the appendix. Thus T I  has essentially the 
form of Eqs. (2.6) and (2.7): 

TI = TB., - w(q/C)(SD)"/2. (4.9) 

Our assertion that  the results of the one-dimensional case 
can be carried over to  the three-dimensional case when s 
is small is confirmed. The resemblance of Eq. (4.9) to (2.6) 
can be increased by introducing Tay from Eq. (4.9, 

162 T I  = T,, [1 - U(SD/LD)~"]. (4.10) 

Here LD is a characteristic length defined by 

LD = KAP'. (4.1  1) 

In fact, if Eq. (4.11) is applied to the one-dimensional case 
one finds that LD = L, a result that is assumed hereafter. 

Limiting case s + 
One  can expect that, if the time delay following a heat 
pulse is very long, the exact details of the original location 
of the heat  source will have been forgotten and  the tem- 
perature  distribution is describable by Eq. (4.1), wherein 
Q must be taken  as  the  total heat produced in  the pulse, 
or qA. At  the laser itself r2 << 4Dt and  the exponential 
factor can be taken as unity. The temperature TI of the 
laser is then 

Here a is the  constant 

(1/4n3/') 2 m -3/2 . (4.13) 
m = l  

The sum of the -8 powers of the integers can be found 
from tables: and  the result is a = 0.11727. 

The qualitative reasoning leading to Eq. (4.12) is 
confirmed by analysis of Eq. (4.2). The exponential in  the 
integrand of Eq. (4.2) approaches unity for large values 
of k and  the integral approaches A,  the area of S. Equation 
(4.2) then reduces to Eq. (4.12). It is convenient for 
comparison with earlier results to write Eq. (4.12) in the 
form 

T,/T, = ~(A/L~)(SD/L~)"'~. (4.14) 

Equations (4.12) and (4.14) show an essential difference 
between the one-dimensional and three-dimensional cases. 
The temperature T I  decreases only as  an inverse power of s 
in the latter case, whereas it was found in Eq. (2.7) to 
decrease exponentially with s in the  former case. Thus 
the  thermal effects of the  spreading resistance always 
dominate  for large values of s, even though the one- 
dimensional thermal resistance may be much larger and 
dominant at small values of s. 

5. Heat flow from a rectangular  surface  region 
This section treats the most interesting example of the 
problem of the preceding section, namely the case in which 
the laser region S on  the surface of a semi-infinite solid is 
rectangular. Let b be the width of the rectangle and c be 
its length. The thermal resistance P' of such a rectangle is" 

P' = (a~)-'[b-' sinh"(b/c) + c-l sinh-l(c/b)], (5.1) 
and  the characteristic length LD is 
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L ,  = a"[c sinh"(b/c) + b sinh"(c/b)]. (5.2) 

The  ratios of LD to b and c, the dimensions of the rectangle, 
are shown as functions of c/b in Fig. 2. 

Table 3 contains the results obtained by numerical 
summation of the series of Eq. (4.2) for  the case in which 
S is a rectangle; the integration  over S reduces to a product 
of error functions. Values of Ts/T,, are given as functions 
of sD/L;. Figure  3 shows the same results for  the extreme 
cases b/c = 1 and 1/12. Curves derived from  the  formulas 
for  the limiting cases, Eq. (2.6) or  Eq. (4.10) and  Eq. (4.14) 
[with Eq. (5.2)] are also  shown for comparison. 

The range of usefulness of the approximations (4.10) 
and (4.14) for  the case in which the  thermal resistance is 
dominated by the spreading resistance of a rectangular 
surface depends on  the value of  b/c. The large-s and small- 
s limits almost overlap if b/c = 1, but  there is a  gap 
between their ranges of validity for small b/c. Even in 
the extreme case b/c = 1/12, however, the small-s ap- 
proximation, Eq. (4.10),  is valid for values of sD/Li less 
than 0.2. 

6. Resistive  heating in three dimensions 
Joule heat is produced by the flow  of current  away from 
the laser junction through  the bulk material.  This  heat 
also contributes to  the temperature increase of the laser. 
In  the absence of exact solutions for particular cases of 
interest, limiting cases somewhat analogous to those 
described in section 4 are considered. The s -+ 0 result is 
taken over from  the one-dimensional case, Eq. (3.6): 

T I  = PRi2t1/2s - j2t1/2aC. (6.1) 

The result for  the case s + co is again taken  from Eq. 
(4.1). That is, if (so)' is much larger than any dimension 
of the laser, the details of the  original  location of the heat 
source are forgotten. Now Q is taken  as  the heat  produced 
in  the ohmic resistance, Q = Ri't,. Thus 

T I  = ~(R~'~,/C)(SD)-~''. (6.2) 

Again denoting the limit of T I  as s -?. 0 by T,,, we find 
T,, to be the first term of Eq. (6.1). Equation (6.2) may then 
be written, in  analogy with Eq. (4.13), as 

TIIT,, = ~~(A/L;)(sD/L:)"'~. (6.3) 

Furthermore, if one assumes that  the electrical resistance 
problem and  the  thermal resistance problem are geometri- 
cally similar, so that PK = Ra, then  Eq. (6.1) has  the  form 
of the first part of Eq. (3.7): 

T,/T,, = 1 - (sD/L;). (6.4) 

Actually Eqs. (6.1) and (6.4) are only approximations, 
because the first term  in each was obtained by using 
Holm's theorem, which is applicable to a case in which the 
contact, or  in this case the laser, is both  an electrical and 
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Figure 2 The 
gular surface 
a function of 

~ characteristic thermal length LD of a rectan- 
region,  defined by Eqs. (4.1 1)  and (5.1), as 
the  length-to-width ratio c /b  of the rectangle. 

Table 3 Values of TI/T, ,  obtained by summing  the  series 
of Eq. (4.2) for a rectangle  with  sides b and c.  

c l b  

s D / L D 2  I 2 4 8 I2  Eq.  (4.10) 

0.1 0.739 0.739 0.742 0.749 0.754  0.739 
0 .2  0.632 0.638 0.653 0.671 0.682  0.632 
0 .5  0.464 0.482 0.520 0.559 0.579 0.417 
1 0.349 0.367 0.415 0.470 0.498 0.176 
2 0.255 0.271 0.316 0.379 0.416 
5 0.165 0.176 0.210 0.267 0.308 

10 0.118 0.126 0.152 0.197 0.233 
20 0.084 0.090 0.108 0.143 0.171 

a thermal equipotential surface. Values of T,/T,, derived 
from Eqs. (6.3) and (6.4) are plotted in Fig.  4 for rectangles 
with c/b = 1 and 12. A suggestion derived from inspection 
of Fig. 3 is incorporated in Fig. 4 in  the absence of an 
exact solution for comparison. Dotted lines  joining the 
two limiting approximations by means of their common 
tangents are shown. 
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I . ~ D / L ~ ~  
Figure 3 Values of TI/T., for heat flow from a rectangular 
surface region into a three-dimensional  heat  sink,  derived 
from Eq. (4.2) for length-to-width ratios of 1 and 12, 
as functions of sDILD". Values  derived from the formulas 
for the limiting  cases, Eq. (4.10) and Eq. (4.14) [with 
Eq. (5.2)], are shown as dashed  lines. 

Figure 4 Values of TI /T , ,  for the three-dimensional  elec- 
trical resistance  problem for rectangular surface regions 
with  length-to-width ratios of 1 and 12; the limiting  ap- 
proximations for small  and large values of s derived from 
Eqs. (6.3)  and (6.4), respectively, are shown. 
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7. Application to the injection laser 
According to  the model used in I the light energy in  an 
injection laser pulse is proportional to  the time integral 
of the excess of the driving current over the threshold 
current. (The threshold  current changes during the pulse 
because the current  heats  the laser.) This integral is 
approximated by the value obtained by simple trapezoidal 
integration.  Figure 2 of I shows that,  at least in  some cases, 
this is a good approximation. Thus 

( i  - i t )  dt = + [ 2 i  - i,(O) - i t ( t l ) ] t l .  (7.1) 

Here t1 is the time at which light emission ceases, either 
because the driving current is turned off or because the 
threshold  current rises to  the value of the current itself. 

In  the model used in I the threshold  current depends on 
the temperature of the laser as exp (T/Tl).   The fractional 
temperature increase during the pulse is j*t,*'. If the 
temperature of the laser at  the beginning of a pulse is T I ,  
the  threshold  current at this  time is io exp (T , /Tl )  or, by 
definition io exp T:.  The energy of the pulse as calculated 
from Eq. (7.1) is then  proportional  to 

{ i* - $[I + exp (j*tT '/')I exp T:  1 t l ,  (7.2) 

where i* = ;/io. Thus a calculation of TT enables one  to 
determine the degradation of pulse energy due to  the 
heating from  other pulses. 

Values of T I   a t  which certain critical stages in the 
character of the laser output occur may be recognized. 
As a first example, if the threshold  current at temperature 
T I  is greater than  the current itself, stimulated light 
emission will not  occur.  Let the lowest temperature for 
which this is the case be denoted by T I A .  Then 

i = io exp (TIA/T l ) ,  (7.3) 

or in a dimensionless notation (see Table 1) this  equation 
may be written as 

TE,, = In i*. (7.4) 

As a second example, laser action will cease before the 
end of the current pulse if T I  is larger than a  temperature 
TTU defined by 

As a third example, consider that value of TI   a t  which 
the light energy of the pulse is one-half of the value for 
an isolated pulse; that is, a pulse with T I  = 0 but with 
the same i and tl. From Eq. (7.2) this value defined as TIC is 

TF, = In { 3 + i*/[1 + exp ( i * t ~ ' " ) ] ] .  (7.7) 

The value of T,h, given by Eq. (7.7) is based on  the assump- 
tion  that laser action  continues  through  the  time tl, that 
is, that TT, < TT,. 

Let some laser criterion be given that can be expressed 
by specifying T I x ,  a maximum permissible value of T I .  
Assume that s D / L ~  << 1,  so that  the approximations of 
Eq. (2.5) and (3.6) may be used. The temperature at 
the beginning of a pulse must be determined by adding 
the contributions from  the release of energy at  the  junction, 
Eq. (2.5), and  from ohmic  heating, Eq. (3.6). The following 
equation  for T I  is obtained when this is done: 
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Equation (7.8) may be  regarded as a quadratic equation 
in s-'; then  an explicit formula for  the minimum separation 
between pulses that is compatible with the  operational 
criterion described by Tlx is obtained: 

1 1 w w 2  D 
- i i 3  = -~ ~ 2 + iR v" { P K A  + [(FKA)' 

If s is large, T I  is dominated by the three-dimensional 
or spreading resistance: 

T I  = a(iV i- i2R)tl/C(sD)3'2, (7.10) 

from which an explicit formula for  the minimum s value 
can be obtained. The  data  in Table 2 can also be used to 
obtain results of the type represented by Eqs. (7.8) and 
(7.10). 

Case of dominant one-dimensional resistance 
Consideration of a specific case illustrates the application 
of the above considerations. Let  a laser junction 50 
p m  X 200 pm be at  one end of a block of GaAs 60 pm 
long, with the  other end of the  GaAs block attached to a 
semi-infinite copper  heat sink. If the laser has a  threshold 
current of 5 A and is operated at a  current of 15 A applied 
in 50-nsec pulses, the power input  at  the junction is 22.5 W 
during the pulse. If the conductivity of the  GaAs is 600 
(0-cm)", the electrical resistance in series with the junc- 
tion is 0.1 O and  another 22.5 W of power are developed 
in  this series resistance. Let the value of T, ,  the constant 
that describes the temperature dependence of the threshold 
current as in Eq. (7.3), be 90°C. Then  the characteristic 
normalizing time t N  (see I), defined by 

f N  = ?TKCT:/~~;V', (7.1 1) 

is 0.96 psec. 
The thermal resistance of the  GaAs is 120°C/W and 

the spreading resistance in the copper [Eq. (5.1)] is 12 
"C/W. The thermal time constant of the  GaAs,  the 
quantity L2/DGa. ,s  that appears in Eq. (2.6) and following 
equations, is 83 psec. The thermal  time  constant  in the  Cu, 
L;/D,,, is 25 psec from Fig. 2. Since these time  constants 
are  about lo3 times the pulse length, it is appropriate  to 
regard the pulse as instantaneous. The following considera- 
tions show that  the small-s approximation, sD/L2 << 1, 
can be used for  the  GaAs. If s, the interval between pulses, 
is 83 psec so that sDCaA , /L2  = 1, the average laser power 
and  the average resistive power are each 14mW. The 
temperature rise from the flow of the average power 
through the  thermal resistance of the copper is 0.3"C. 
Since the resistive power flows through half of the thermal 
resistance of the  GaAs,  the temperature rise due to  the 
thermal resistance of the  GaAs is 2.4"C. The  total tem- 

5 

in psec 

I O  20 

Figure 5 Dependence of the energy output per pulse of the 
laser described in section 7 on the time s between pulses. 
The energy is  normalized to the energy of an isolated pulse, 
Le., the energy value as s + CL. The values of s at which 
TI attains the values TI.$, T1n and TIC,  Eqs. (7.4), ( 7 . 6 )  
and (7.7), respectively, are indicated. 

perature increase caused by the average power flow is 
2.7"C, which is small compared with Tl (90°C). The tem- 
perature increase T I  that determines the power output is, 
of course, considerably smaller still. Thus  the interesting 
range of s, the range  in which T I  is large enough to have 
an appreciable effect on  the pulse power, involves only 
values of s D , , , . / L ~  less than 1 and Eqs. (2.6) and (3.6) 
can be used. 

The situation is somewhat different in  the copper. The 
heat pulses arriving at  the copper  heat sink are not  instan- 
taneous pulses; in  fact  they are spread out over a  time of 
the  order of the thermal  time  constant of the  GaAs, 
83 psec. Since the interesting values of s are less than 
this value, it is a  better  approximation to regard the 
heat  current  through the spreading resistance of the copper 
as the average heat  current flowing continuously. In any 
case, the temperature drop  in  the copper heat sink is small 
and  errors in describing it are of minor significance in the 
primary calculation. 

The approximation just described for calculating T,, 
that is, adding  the temperature increase caused by the 
flow  of the average power through the spreading resistance 
of the  heat sink to  the temperature increase of the  GaAs 
calculated from  the theory of sections 2 and 3, leads to a 
value of T I  appropriate  to  the calculation of the pulse 
energy of the model laser. Equation (7.2) was used to 
calculate a  quantity  proportional to  the light pulse energy. 
The results are shown in Fig. 5 in which the pulse energy, 
normalized to  the energy of an isolated pulse, is plotted 
as  a  function of s, the spacing between pulses. 165 
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Case of dominant spreading resistance 
As a further illustration, consider a large laser with the 
p-n junction symmetrically placed in  a  slab of GaAs 
0.3 mm X 0.6 mm X 10 pm (L = 5 pm). If the material 
properties of the  GaAs  are  the same as  in  the preceding 
example, the threshold  current is 90 A, the  thermal resist- 
ance from  the junction to one side of the  GaAs is 0.556 
"C/W, and  the electrical resistance on one side is 0.463 mQ. 
Let the laser be clamped between two large  bronze heat 
sinks with the following properties: K = 0.5 W/cm-OC, 
C = 3.44 J/cm3-OC, D = 0.145 cm2/sec, u = 73.5 
(mQ-cm)". Then LD in  the bronze is 0.023 cm, the 
thermal resistance is 25.5 "C/W, the electrical resistance 
is 0.173 ma,  and  the  thermal time  constant L;/D is 
3.63 msec. Since the  thermal resistance in  the bronze is 
about 50 times as large as  that in the  GaAs, neglect of 
the  latter contribution is reasonable. In  contrast with 
the preceding case, the three-dimensional spreading 
resistance is dominant. Also, the thermal  time  constant 
of the  GaAs is 0.8 psec, much less than  both  the time 
constant  in the bronze and  the minimum interesting value 
of s (the value for which T I  = T I C ) ,  which is about 7 psec. 
Therefore the pulses of heat  arriving at  the bronze heat 
sink may be considered to be  instantaneous pulses. 
One-half of the  total heat (resistive plus  junction) generated 
in the  GaAs is dissipated through each bronze  heat  sink. 

Assume that  the laser is operated with 300-A pulses of 
50-nsec duration. Then  a  quantity proportional  to  the 
emitted energy can be calculated from Eqs. (7.8) and (7.2). 
The graph of this  quantity as a function of s is very similar 
to Fig. 5 (since t: has  the same value as  in  the preceding 
example and i* is only slightly different), but with the 
abscissa of Fig. 5 multiplied by a factor of about  four. 

8. Discussion of approximations 
It must be emphasized that  the models used involve a 
number of idealizations. Some of the neglected features 
would tend to improve the performance and  others  to 
degrade it.  The treatment of events within the pulse 
(presented in  I) assumed that  the current rose discon- 
tinuously from zero to a given value during the pulse. 
In fact, the electronic circuits only provide pulses with 
finite rise times and some heating of the laser occurs 
before the current reaches the threshold value and light 
emission begins. Further, there is a delay between the 
time at which the current reaches the threshold value and 
the time that laser action begins, which causes additional 
heating before the  start of light emission. These delays 
mean that  the power output is less than  the value calculated 
from  the idealized model and  that laser action ceases at  a 
temperature T I  less than  the T I C  of Eq. (7.7). 

Interface  thermal resistances have been neglected. These, 
if present, will cause  temperature increases greater than 
those calculated and degrade performance further. 
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The temperature dependence of the thermal conductivity 
was neglected to simplify the analysis. However, the 
thermal conductivity of semiconductors decreases with 
increasing temperature, an effect that will also cause 
temperatures to be somewhat greater than those calculated. 

An approximation that tends to make the  actual 
temperatures lower than  the calculated ones, and  thus  to 
improve the performance of the laser, is the neglect of the 
energy lost  in  the  form of emitted light. Another probably 
conservative approximation is the assumption that  the 
threshold  current value is determined by the hottest part 
of the laser; it is conceivable that some cool part of the 
laser could remain operative even after stimulated emission 
ceased in  the hottest part. 
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Appendix 
To evaluate the next-higher-order term in  the expansion of 
Eq. (2.5) in powers of s, we define 

g(u> = exp ( - n 2 u ) .  (AI) 

Using the Euler-Maclaurin  summation  formula we 
obtain" 

g(u) = lm exp (-n2u) dn = ; ( ~ / u ) " ~ .  (A21 

The desired sums are 

m 

n=1 

2 exp (-GbkS) = g@Dks/4L2)  - g(T2 Dks /L2)  
b=l  

and 

2 eXp ( -Gbf )  = ;L/ (TDt)1/2,  ('44) 
b = l  

where Gb is defined in  Eq. (2.3). 
The integral in  the second term of Eq. (2.5) is con- 

veniently regarded as  the difference between an integral 
from 0 to m and  an integral from 0 to (rn + t ) s .  The first 
of these integrals can  be evaluated exactly as 

m m  1 s-l exp ( - G b t )  dt = s-' 5 Gbl = L2/2sD.  
b = l  b = l  (A5) 

The result (A5) is equivalent to Eq. (2.5). The remaining 
part of the integral is easily evaluated with the  aid of 
Eq. (A4): 
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r *  - s-’ exp ( -G , t )   d t  = L [ ( m  + ~ ) / T S D ] ~ ’ ~ .  
J n  - 

6 = 1  
(A6) 

Substituting Eqs. (A3),  (A5) and (A6) into Eq. (2.5) 
we find 

T I  = q L / s D C  

- (q/CL)(7rsD)”/”[ 2(m + i)”’ - 2 k-” ’ ]  

= T,,[l - w , ( s D / L * ) ~ / * ] .  (‘47) 

Here w, is defined by 

+ (7/211)  2 k-’/’ - . . .] 
k=l 

As the approximation becomes more realistic physically by 
letting the value of m + , the value of w, -+ w. The sums 
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of the reciprocal powers of the integers are tabulatedg and 
w is found  to have the value 

1.4604/7r”2 = 0.8239. 
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