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Thermal Problems of the Pulsed Injection Laser

Abstract: Heat is produced in short periods of time during pulsed operation of an injection laser. The temperature of the laser at the
beginning of any pulse due to the heating caused by preceding pulses is calculated for several simple model cases. The results are applied

in the description of performance deterioration caused by heating.

1. Introduction

In an earlier publication® (hereafter referred to as 1) we
considered the thermal problems involved in operating
an injection laser continuously and in obtaining a single
pulse of energy from lasers whose thermal properties
are such that they cannot be operated continuously.
Similar models and problems were considered indepen-
dently at about the same time by Engeler and Garfinkel.?
Somewhat different calculations relating to pulsed energy
output were presented by Lasher and Smith.® Lasers that
cannot be operated continuously are usually operated
periodically; they are excited by short pulses of current
applied at regular time intervals. The purpose of this
paper is to consider the thermal problems associated with
pulsed periodic operation of an injection laser.

The problem is as follows. The threshold current of a
laser increases rapidly and the pulse energy obtainable
at a fixed value of current decreases as the temperature
of the laser increases. The temperature of a periodically
pulsed injection laser at the beginning of a pulse is raised
above that of its environment by the heat generated by
preceding pulses. In this paper we present calculations of
the temperature of the laser at time zero that results from
an infinite series of pulses at preceding times —ks (k =
1,2, ---). (Notation and symbols are defined in Table 1.)
It is assumed that the pulse duration is small compared
with all other times of interest, in particular, the time
interval between pulses and the characteristic thermal
diffusion time of the structure, so that the heat pulses
may be considered as being instantaneous. This problem
is sensitive to a greater variety of details of the physical
configuration of the laser than was the previous one, so
that a general treatment encompassing all relevant de-
tails is not possible. A number of limiting cases of various
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types are treated, however, and provide a guide to the
evaluation of more complex configurations.

The power density at a laser junction is high and the
heat generated at the junction must flow away through
the semiconductor to a much larger interface with a fluid
that eventually carries the heat out of whatever apparatus
is involved; in so doing the heat current passes through a
thermal spreading resistance. In many situations, however,
the heat current flows in one dimension through a cylin-
drical structure before passing through the spreading
resistance of the heat sink, which reduces the thermal
current density. The first division of the problem is into
the case in which the cylindrical or one-dimensional
resistance is negligible and the spreading or three-dimen-
sional resistance dominates, and the opposite case in
which the spreading resistance is negligible and the one-
dimensional resistance dominates. The time-dependent
heat conduction problem differs between these two cases.

A second separation of the problem into limiting cases
is based on the time scale. As pointed out in I, phenomena
that take place on a very short time scale are essentially
one-dimensional, even though the three-dimensional
features are important in a general treatment encompassing
all time scales. The results obtained for the one-dimen-
sional problem can be carried over into the three-dimen-
sional problem for “short™ time scales, which means in
this context that, for any time ¢ of interest, the thermal
diffusion length (Dt)%, where D is the thermal diffusivity,
is much smaller than any linear dimension of the problem.

The short-time-scale approximation is never completely
applicable in the problems treated here; since an infinite
sequence of pulses is involved, account must be taken of
arbitrarily large times. Nevertheless, a significant part of
the solution of the thermal problem can be obtained from
the very-short-time approximation if the interval between
pulses is short. The first approximation to the temperature
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of the laser is obtained in this case simply by allowing the
average production of heat to be regarded as a continuous
thermal current of constant value flowing from the laser
through the thermal resistance to the heat sink. The next
approximation, which takes account of the discreteness of
the production of heat to first order in the period of the
pulses, can be obtained from the short-time approximation.
This intuitively apparent assertion is supported by the
calculations in sections 2, 3 and 4. The case in which the
time between pulses is very large leads one to essentially
different results in the one-dimensional and three-dimen-
sional problems. Simplifications in the limit of very large
inter-pulse intervals are described in sections 2 through 5.
The models used may be summarized more specifically
as follows. The heat is generated in the plane boundary of
a semi-infinite solid and is therefore conducted into the
solid from only one side. Two cases are considered:
(1) The power flows from the junction through a right
cylinder with the same cross-section as the junction (the
heat flow is one-dimensional). (2) The heat producing
region is a finite portion of the surface of a semi-infinite
solid. It is assumed in both cases that a quantity of heat
per unit area, jV't,, is generated per pulse uniformly in the
area described by the laser junction. (Here V is the junction
voltage, essentially the value corresponding to the energy
gap of the semiconductor or the energy of the emitted
photons.) The generation of heat by the flow of current
through the ohmic resistance of the bulk material in elec-
trical series with the junction is also considered.
One-dimensional thermal problems are solved in the
next two sections. The three-dimensional problem and the
applicability of the results of sections 2 and 3 are discussed
in sections 4 through 6. The solution of a particular three-
dimensional problem, which supports the points of view
of section 4, is presented in section 5. Resistive heating in
the three-dimensional problem is discussed briefly in
section 6. The results of the thermal theories are applied
to the theory of pulsed operation of injection lasers in
section 7. Table 1 contains a summary of the notation.

2. One-dimensional heat conduction

The case in which the thermal resistance is determined by
flow of heat in one direction through a cylinder is treated
in this section. The thermal resistance is finite only if the
cylinder has a finite length L. The laser junction at which
heat is produced is at one end of the cylinder (z = 0) in
the present model, and the other end (z = L) is maintained
at the environmental temperature, 7 = 0. The temperature
at any position z at time ¢ after an instantaneous pulse of
heat of areal density ¢ appears at the surface is*”

T, = (2¢/CL) i cos (brz/2L) sin (br/2)

X exp [— D(br*/4LM)1]. 2.1)
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Table 1 Summary of notation.

Area
Summation index; width
Specific heat per unit volume
Length
Thermal diffusivity (=«/C)
» Defined by Eq. (2.3)
Electric current
i/io
Threshold current at the ambient temperature
Threshold current at the actual temperature
Current density
Current density at the laser junction
Current density divided by threshold current density
Summation index
Distance between the laser thermal emission surface and
the heat sink surface (one-dimensional case)
Characteristic thermal length; see Eq. (4.11)
Summation index
Total heat generated in a single pulse
Q/4
Electrical resistance
Length of position vector
Surface region constituting the active area of the laser
Time interval between pulses
Temperature
Temperature at the beginning of a pulse
4 Value of Ty below which no stimulated emission occurs
[see Eq. (7.3)]
s Value of T; at which stimulated emission ceases before
the end of the pulse [see Eq. (7.5)]
Tic Value of Ty at which the light energy is reduced by one-
half [see Eq. (7.7)]
Tix A maximum value of 77, such as T, Tig or Ti¢
T* T/T: (analogous definition for any temperature)
T.» Temperature increase based on continuous rather than
puised heat production
Ty Temperature rise produced by Joule heating after a
short current pulse
T:  Characteristic temperature; see discussion following

SSEIETQUS AT

: &S

NNN2 WY R0 S

=

x|

Eq. (7.1)
t Time
ty  Characteristic time; see Eq. (7.11)
I Time duration of a current pulse
t1* h / In !
14 Voltage
X Cartesian coordinate in the plane of the laser
z Cartesian coordinate normal to the plane of the laser
a (1/473/2) 3 ,0® m—32 = 0,11727
K Thermal conductivity
P Thermal resistance
P’ Thermal resistance that relates the maximum temperature

of a region to its heat current

p Radial distance (in the plane of the laser) divided by
(4D)riz

2 Electrical conductivity

w 0.8239; see Eqgs. (A8) to (A10)

Here C is the specific heat per unit volume of the solid
and D is the thermal diffusivity, i.e., the thermal con-
ductivity « divided by C. Equation (2.1) is used to find
the temperature of the laser at time ¢ = 0 after an infinite
series of preceding pulses at times —ks, k = 1,2,3, -+ .
Heat is generated at a uniform rate per unit area, ¢, in
each of the pulses. The temperature at z = 0 is found by
summing terms of the type (2.1) to be 159
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T: = (2q/CL) Z Z exp (;Gbks)

k=1 b=1 (2.2)

= (2¢/CL) Z lexp (Gos) — 1177,
where
G, = m°(2b — 1)’D/4L’. 2.3)
As s— 0, Eq. (2.2) becomes
T.. = (8qL/mks) > (2b — 1)7°
b=t 2.4)

(a/s)(L/x).

Equation (2.4) is the usual formula for the temperature
increase produced by the average heat production and flow
through the thermal resistance of the cylinder.

To obtain the next term in the expansion of T; as a
function of s as s — 0, we consider that the production of
heat can be regarded as an almost continuous process in
this limit. In fact, it is a convenient and reasonable approx-
imation to replace those pulses remote in time by rec-
tangular pulses of duration s centered on time — ks that
produce the same amount of heat as the instantaneous
pulses they replace. If all pulses with an index value
k > m are so replaced, the heat production earlier than
time —(m — %)s becomes a continuous process and is
represented by an integral rather than a sum of a function
of the integers.

Thus the first form of Eq. (2.2) becomes

i

T = (2q/CL)|:i Z exp (— Gks)

+

(m+1/2) ¢

(1/5) D exp (—Gyt) dt:l- (2.5)
b=1

We show in the appendix by introducing the Euler-

Maclaurin summation formula for the sum over b in

Eq. (2.5) that T; has the form (to the next order in s)

Tr = T, [1 — w(Ds/L*)"?, 2.6

where w is a constant whose value is given in the appendix.
By referring to a cylinder or bar of cross section 4 and
introducing its thermal resistance P = L/xA, we put Eq.
(2.6) into the form

T: = (g/5)[PA — wx (D). @7

Note that the second term in Eq. (2.7) is independent of
any geometrical feature, a situation consistent with our
previous assertion that this result is also applicable to
the three-dimensional problem.

When s — « the sum in Eq. (2.2) is dominated by the
first term (k = 1, b = 1) and thus T’} approaches the value

T\ = (2¢/CL) exp (—n°Ds/4L>). 2.8)

The temperature approaches zero very rapidly with
increasing s.

3. Resistive heating in the one-dimensional problem
The cylinder of the preceding section may have an appre-
ciable electrical resistivity. If this is so, then Joule heat
will be produced by the flow of electric current and must
be taken into account in calculating the temperature of
the laser.

At the end of a very short pulse of current of duration ¢,
and local current density J in a medium of conductivity o,
the temperature at any point is

3.1

where J and T, are independent of position in the one-
dimensional problem we are considering. The temperature
due to this pulse at any subsequent time ¢ is’

Ty = J’1,/6C,

T = (4T/m) 2, [(—1)""" exp (—G,0)l/(2b — 1),
ot (3.2)

where G, is defined in Eq. (2.3). The temperature at
t = 0 after an infinite series of pulses is, in analogy with
Eq. 2.2),

Ty = (4To/7) 2, (—1)"'/[exp (Gos) — 1126 — 1).
b=t (3.3)

As s approaches 0, T approaches T,,, the value the
temperature would have if the heat were produced con-
tinuously at the average rate. The value of T,, for this
case is found from Eq. (3.3) to be

T,, = To,L?/2sD G4
or, in another form,
T., = PRi’t,/2s. (3.5)

Here the electrical resistance R = L/A4c and i = JA.
Equation (3.5) conforms with Holm’s result® that the
temperature increase in this kind of situation is that which
would be produced by the flow of the electrical power
through half of the thermal resistance.

The next term in the approximation of T as s ap-
proaches 0 can be obtained easily in this case by straight-
forward expansion of Eq. (3.3):

T; = T. [l — (Ds/L*]

= (PRi’t,/25) — To/2.
It has been necessary to use the following formulas’ in
obtaining Egs. (3.4) and (3.6):

2D em — 1) = B() = /4
and

d(—=1em — 1) = 8@3) = ©°/32

(3.6)
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As in section 2, when s approaches « the first term of
Eq. (3.3) dominates and 7'; vanishes exponentially with
increasing s.

The results of sections 2 and 3 are summarized in Fig. 1.
Values of T'; in the one-dimensional problems obtained by
numerical summation of the series of Egs. (2.2) and (3.3)
are shown. The approximations given by Egs. (2.6) and
(3.8) are also presented. The independent variable in the
figure is the spacing between pulses measured by the
quantity sD/L®. A good approximation to Ty/T,, is
provided by the simple function

/T, = {1 — 7 2% (s D/LYY?, sD/L* < 1.47;
I av T

0, sD/L* > 1.47;
3.7
if the heat is produced at the laser surface; and by
. D 2 2 < .
T/ T., = {1 6D/L),  sD/L"< 1 (3.8)
0, sD/L* > 1;

if the heat is produced uniformly in the laser material.
The results obtained by summing Egs. (2.2) and (3.3)
are also presented in Table 2.

4. Spreading resistance or three-dimensional heat
conduction

This section treats the case in which the active region of the
laser is a bounded region S on the surface of a semi-
infinite solid. The temperature at any point X in a semi-
infinite solid (initially at T = 0) at time ¢ after an instan-
taneous pulse of heat of strength Q appears at a point on
the surface of the solid is®

T = (Q/4C)x D)y’ exp (—r*/4D1). .1

Here r is the distance from the point of generation to the
point X. If heat is generated over a surface region S
(the active area of the laser), the temperature of the solid
can be found by integrating contributions of the form (4.1)
over S, in which case Q is replaced by gdA4 and g is inter-
preted as a heat source strength per unit area. If the z
coordinate is chosen perpendicular to the boundary plane,
then the temperature of the laser (i.e., of the surface
region S) may be found by setting z = 0. The desired
temperature at this junction (z = 0) at ¢ = 0 after an
infinite series of pulses is

T: = (¢/40) i (r Dks)™*"* f exp (—r*/4Dks) dA.
o s (4.2)

Apparently T is a function of position with respect to
the active region S and, in particular, will vary within S.
The point of view adopted here is that the deterioration
in performance of the laser caused by heating is determined
by the maximum temperature in the active region. The
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T/ T,

0.001 0.01 0.1 1

sD/L2

Figure 1 Values of T:/T.. for surface and bulk heating
in the one-dimensional laser problem, derived from Egs.
(2.2) and (3.3), as functions of sD/L® The approxima-
tions given by Egs. (2.6) and (3.8) are also shown.

Table 2 Values of T:/T., for the one-dimensional thermal
resistance problem, obtained by summing the series of Eqs.
(2.2) and (3.3).

sD/L? Eq. (2.2) Eq. (3.3
0.01 0.9176 0.9900
0.02 0.8835 0.9800
0.05 0.8158 0.9500
0.1 0.7394 0.8997
0.2 0.6317 0.7962
0.5 0.4109 0.5231
1 0.1853 0.2360
2 0.0290 0.0369

maximum value of T occurs at the center of a convex
region of high symmetry, such as a rectangle. Thus Eq.
(4.2) is henceforth interpreted as a formula for the tem-
perature at the center of the laser and the threshold current
of the laser is regarded as a function of this temperature.

o Limiting case s — 0

It is convenient to follow the method of replacing the
pulses remote in time by a continuous source of heat as
described in section 2 in connection with Eqgs. (2.5) and
(2.6). Equation (4.2) becomes, in analogy with Eq. (2.5),

Ty = (q/4C)[ij ( Dks)™*"* f exp (—#°/4Dks) d A

©

+ (1/5) (@ Dn)™? / exp (—r/4Dr) d A dt]-

(m+1/2)s

“4.3)
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The time integral in Eq. (4.3) may be regarded as the
difference between an integration from 0 to © and an
integration from 0 to (m 4 %)s. The first time integral is
easily evaluated and gives a contribution to T'; of
Tow = (q/ZrCsD)f (1/r)dA, “4.4)
S

which is the steady-state temperature rise at the center of
the laser that would be caused by continuous production
of heat at a rate q/s. The value T,, is obviously closely
related to the spreading thermal resistance, although it is
not precisely a thermal resistance because this entity is
usually defined as the resistance to heat flow from an
isotherm, and the laser surface is not an isotherm in the
present model. Since it is intuitively expected that the
dominant term in the temperature increase will be due to
steady-state thermal resistance in the limit s — 0, it is
instructive to write T,, in terms of a thermal resistance P’
and thus obtain

T.. = (g4/s)P’, “4.5)

Here A is the area of S and

P’ = (1/27x A) f (1/rydA. (4.6)
i)

Turning now to the remaining part of Eq. (4.3), we
introduce p = r/ (4Dt)% in the space integral over S, thereby
transforming S into a surface ¥ in the p space. Since
t < (m - 3)s the boundaries of the surface Z approach
in all directions from any point not on the perimeter
of Z when s— 0. Thus the space integration can be done
by allowing the limits of the integral to approach «:

f exp (—r’/4Dt) dA = 4z Dt. 4.7

8
In the first part of Eq. (4.3), the summation, ¢ has the
value ks. The result (4.7) allows the integration over time
from 0 to (m + 1)s, which arose in evaluating the second
part of Eq. (4.3), to be carried out easily. Thus we find that

TI = Ts.v + (Q/C)(WSD)—l/Z

X [f K72 = 20m + %)“2]-
k=1

The numerical coefficient in the second term of Eq. (4.8)
is discussed in the appendix. Thus T'; has essentially the
form of Eqgs. (2.6) and (2.7):

TI = Tuv - w(q/c)(SD)_l/z'

4.8)

“4.9)

Our assertion that the results of the one-dimensional case
can be carried over to the three-dimensional case when s
is small is confirmed. The resemblance of Eq. (4.9) to (2.6)
can be increased by introducing 7,, from Eq. (4.5),

T; = Ty [l — w(sD/Lp)"?]. 4.10)

Here Ly, is a characteristic length defined by

Ly = kAP'. 4.11)

In fact, if Eq. (4.11) is applied to the one-dimensional case
one finds that Ly, = L, a result that is assumed hereafter.

o Limiting case s — ©

One can expect that, if the time delay following a heat
pulse is very long, the exact details of the original location
of the heat source will have been forgotten and the tem-
perature distribution is describable by Eq. (4.1), wherein
Q must be taken as the total heat produced in the pulse,
or gA. At the laser itself »* << 4Dt and the exponential
factor can be taken as unity. The temperature 77 of the
laser is then

©

Ty = (qA4/4C)@sDY™>> > m™"
m=1 4.12)
= alq A/CYs D).
Here « is the constant
(1/45"%) > m™2. (4.13)
m=1

The sum of the —3 powers of the integers can be found
from tables,” and the result is & = 0.11727.

The qualitative reasoning leading to Eq. (4.12) is
confirmed by analysis of Eq. (4.2). The exponential in the
integrand of Eq. (4.2) approaches unity for large values
of k and the integral approaches A4, the area of S. Equation
(4.2) then reduces to Eq. (4.12). It is convenient for
comparison with earlier results to write Eq. (4.12) in the
form

T1/T., = a(A/L3)sD/L3) ™ ?. 4.14)

Equations (4.12) and (4.14) show an essential difference
between the one-dimensional and three-dimensional cases.
The temperature T'; decreases only as an inverse power of s
in the latter case, whereas it was found in Eq. (2.7) to
decrease exponentially with s in the former case. Thus
the thermal effects of the spreading resistance always
dominate for large values of s, even though the one-
dimensional thermal resistance may be much larger and
dominant at small values of s.

5. Heat flow from a rectangular surface region

This section treats the most interesting example of the
problem of the preceding section, namely the case in which
the laser region S on the surface of a semi-infinite solid is
rectangular. Let b be the width of the rectangle and ¢ be
its length. The thermal resistance P’ of such a rectangle is*’

P’ = (m)'[b ! sinh7'(®/c) + ¢ ' sinhTi(e/B),  (5.1)
and the characteristic length Ly, is
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Lp = # '[e sinh™*(b/c) + b sinh™'(¢/b)]. (5.2)

The ratios of Ly to b and ¢, the dimensions of the rectangle,
are shown as functions of ¢/b in Fig. 2.

Table 3 contains the results obtained by numerical
summation of the series of Eq. (4.2) for the case in which
S is a rectangle; the integration over S reduces to a product
of error functions. Values of T,/T,, are given as functions
of sD/Lg. Figure 3 shows the same results for the extreme
cases b/c = 1 and 1/12. Curves derived from the formulas
for the limiting cases, Eq. (2.6) or Eq. (4.10) and Eq. (4.14)
[with Eq. (5.2)] are also shown for comparison.

The range of usefulness of the approximations (4.10)
and (4.14) for the case in which the thermal resistance is
dominated by the spreading resistance of a rectangular
surface depends on the value of b/¢. The large-s and small-
s limits almost overlap if b/c = 1, but there is a gap
between their ranges of validity for small b/¢c. Even in
the extreme case b/c = 1/12, however, the small-s ap-
proximation, Eq. (4.10), is valid for values of sD/L} less
than 0.2.

6. Resistive heating in three dimensions

Joule heat is produced by the flow of current away from
the laser junction through the bulk material. This heat
also contributes to the temperature increase of the laser.
In the absence of exact solutions for particular cases of
interest, limiting cases somewhat analogous to those
described in section 4 are considered. The s — 0 result is
taken over from the one-dimensional case, Eq. (3.6):

T: = PR’t;/2s — j*t,/20C. (6.1)

The result for the case s — « is again taken from Eq.
(4.1). That is, if (sD)! is much larger than any dimension
of the laser, the details of the original location of the heat
source are forgotten. Now @ is taken as the heat produced
in the ohmic resistance, O = Ri’t,. Thus

T; = a(Ri’t;/C)(sD)*". (6.2)

Again denoting the limit of 7'; as s — 0 by T,,, we find
T,, to be the first term of Eq. (6.1). Equation (6.2) may then
be written, in analogy with Eq. (4.13), as

T1/Tw = 20(A/L3)(sD/LE) V™. (6.3)

Furthermore, if one assumes that the electrical resistance
problem and the thermal resistance problem are geometri-
cally similar, so that Px = Re, then Eq. (6.1) has the form
of the first part of Eq. (3.7):

T:/T.. = 1 — (sD/L2). 6.4

Actually Egs. (6.1) and (6.4) are only approximations,
because the first term in each was obtained by using
Holm’s theorem, which is applicable to a case in which the
contact, or in this case the laser, is both an electrical and
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Figure 2 The characteristic thermal length Lo of a rectan-
gular surface region, defined by Eqs. (4.11) and (5.1), as
a function of the length-to-width ratio ¢/b of the rectangle.

Table 3 Values of T1/T.. obtained by summing the series
of Eq. (4.2) for a rectangle with sides » and c.

c/b
sD/Lp? ] 2 4 8 12 Eg. (4.10)

0.1 0.739 0.739 0.742 0.749 0.754 0.739
0.2 0.632 0.638 0.653 0.671 0.682 0.632
0.5 0.464 0.482 0.520 0.559 0.579 0.417

1 0.349 0.367 0.415 0.470 0.498 0.176
2 0.255 0.271 0.316 0.379 0.416

5 0.165 0.176 0.210 0.267 0.308

10 0.118 0.126 0.152 0.197 0.233
20 0.084 0.090 0.108 0.143 0.171

a thermal equipotential surface. Values of T';/T,, derived
from Egs. (6.3) and (6.4) are plotted in Fig. 4 for rectangles
with ¢/b = 1 and 12. A suggestion derived from inspection
of Fig. 3 is incorporated in Fig. 4 in the absence of an
exact solution for comparison. Dotted lines joining the
two limiting approximations by means of their common
tangents are shown.
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Eq. (4.14) '

T \ \ |
- \\\ \ \ —
\\
= N \\ c/b=12 -
L Eq. (410N "\ i
0.5 AR N —clh=1 |
\
{ \ \ \\ ]
\ \
- \ N -
) - \ \\\ -
Z \ \\
= L \\ -
= Eq. (4.2
= 0 ] (y 2 |
0.01 0.1 1 10 100
sD/Lp?

Figure 3 Values of T:1/T.. for heat flow from a rectangular
surface region into a three-dimensional heat sink, derived
from Eq. (4.2) for length-to-width ratios of 1 and 12,
as functions of sD/Lp®. Values derived from the formulas
for the limiting cases, Eq. (4.10) and Eq. (4.14) [with
Eq. (5.2)], are shown as dashed lines.

Figure 4 Values of T1/T.v for the three-dimensional elec-
trical resistance problem for rectangular surface regions
with length-to-width ratios of 1 and 12; the limiting ap-
proximations for small and large values of s derived from
Eqs. (6.3) and (6.4), respectively, are shown.

T T T
1.0k Eq. (6.3) ]
0.5
5 - Eq. (6.4)
[ 0 ] i |
0.01 0.1 1 10 100
sD/LD

7. Application to the injection laser

According to the model used in I the light energy in an
injection laser pulse is proportional to the time integral
of the excess of the driving current over the threshold
current. (The threshold current changes during the pulse
because the current heats the laser.) This integral is
approximated by the value obtained by simple trapezoidal
integration. Figure 2 of I shows that, at least in some cases,
this is a good approximation. Thus

fl (i — i) dt = 3[2i — i(0) — i(t)]t,. 7.1

Here ¢, is the time at which light emission ceases, either
because the driving current is turned off or because the
threshold current rises to the value of the current itself.

In the model used in I the threshold current depends on
the temperature of the laser as exp (7/T)). The fractional
temperature increase during the pulse is j*ti‘%. If the
temperature of the laser at the beginning of a pulse is 77y,
the threshold current at this time is i, exp (T1/T3) or, by
definition i, exp T%. The energy of the pulse as calculated
from Eq. (7.1) is then proportional to

tir — 30+ exp G* N exp Th}n,

where i* = i/i,. Thus a calculation of T¥ enables one to
determine the degradation of pulse energy due to the
heating from other pulses.

Values of T; at which certain critical stages in the
character of the laser output occur may be recognized.
As a first example, if the threshold current at temperature
Ty is greater than the current itself, stimulated light
emission will not occur. Let the lowest temperature for
which this is the case be denoted by T;4. Then

i = ipexp (TIA/Tl)a

or in a dimensionless notation (see Table 1) this equation
may be written as

(7.2)

(7.3)

T# = In i*. (7.9)

As a second example, laser action will cease before the
end of the current pulse if T’ is larger than a temperature
Ty defined by

i = igexp (TH + i*e5'%), (1.5)
or
T#, = Ini* — j*3"°, (7.6)

As a third example, consider that value of T; at which
the light energy of the pulse is one-half of the value for
an isolated pulse; that is, a pulse with 7; = 0 but with
the same i and ¢,. From Eq. (7.2) this value defined as T'(¢ is

T#, = In {3 + i*/[1 + exp (*r+)]}.

The value of T#¥, given by Eq. (7.7) is based on the assump-
tion that laser action continues through the time 7,, that
is, that TF, < T#;.

Let some laser criterion be given that can be expressed
by specifying T1x, a maximum permissible value of 7.
Assume that sD/Lj << 1, so that the approximations of
Eq. (2.5) and (3.6) may be used. The temperature at
the beginning of a pulse must be determined by adding
the contributions from the release of energy at the junction,
Eq. (2.5), and from ohmic heating, Eq. (3.6). The following
equation for 7' is obtained when this is done:

(1.7)

wiVt,D'*

1/2
sk A

PRi’t, iy
TI = - -
2s 20C A4

i th

Pl e (7.8)
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Equation (7.8) may be regarded as a quadratic equation
in s"%; then an explicit formula for the minimum separation
between pulses that is compatible with the operational
criterion described by T';x is obtained:

1 1 {me [ w'D
iz = X —1 + 2
s 2+ iRV Pk A (Px A)

4+ @+ iRV < d -+ 2Tix >:|1/2}-(7 2
! Noc o7 T iV P :

If s is large, Ty is dominated by the three-dimensional
or spreading resistance:

T, = oGV + ?R)t,/C(sD)*?, (7.10)

from which an explicit formula for the minimum s value
can be obtained. The data in Table 2 can also be used to
obtain results of the type represented by Egs. (7.8) and
(7.10).

o Case of dominant one-dimensional resistance
Consideration of a specific case illustrates the application
of the above considerations. Let a laser junction 50
pwm X 200 um be at one end of a block of GaAs 60 um
long, with the other end of the GaAs block attached to a
semi-infinite copper heat sink. If the laser has a threshold
current of 5 A and is operated at a current of 15 A applied
in 50-nsec pulses, the power input at the junction is 22.5 W
during the pulse. If the conductivity of the GaAs is 600
(Q-cm)™", the electrical resistance in series with the junc-
tion is 0.1 © and another 22.5 W of power are developed
in this series resistance. Let the value of T, the constant
that describes the temperature dependence of the threshold
current as in Eq. (7.3), be 90°C. Then the characteristic
normalizing time ¢y (see I), defined by

tx = wkCTZ /4207, (7.11)

is 0.96 usec.

The thermal resistance of the GaAs is 120°C/W and
the spreading resistance in the copper [Eq. (5.1)] is 12
°C/W. The thermal time constant of the GaAs, the
quantity L*/Dg, ., that appears in Eq. (2.6) and following
equations, is 83 usec. The thermal time constant in the Cu,
L5/ Dg,, is 25 usec from Fig. 2. Since these time constants
are about 10° times the pulse length, it is appropriate to
regard the pulse as instantaneous. The following considera-
tions show that the small-s approximation, sD/L* << 1,
can be used for the GaAs. If s, the interval between pulses,
is 83 usec so that sD,,/L” = 1, the average laser power
and the average resistive power are each 14mW. The
temperature rise from the flow of the average power
through the thermal resistance of the copper is 0.3°C.
Since the resistive power flows through half of the thermal
resistance of the GaAs, the temperature rise due to the
thermal resistance of the GaAs is 2.4°C. The total tem-
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Figure 5 Dependence of the energy output per pulse of the
laser described in section 7 on the time s between pulses.
The energy is normalized to the energy of an isolated pulse,
i.e., the energy value as s —> oco. The values of s at which
T, attains the values Tis, Twe and Tic, Egs. (7.4), (7.6)
and (7.7), respectively, are indicated.

perature increase caused by the average power flow is
2.7°C, which is small compared with 7, (90°C). The tem-
perature increase T'; that determines the power output is,
of course, considerably smaller still. Thus the interesting
range of s, the range in which T’ is large enough to have
an appreciable effect on the pulse power, involves only
values of sD¢.a./L’ less than 1 and Egs. (2.6) and (3.6)
can be used.

The situation is somewhat different in the copper. The
heat pulses arriving at the copper heat sink are not instan-
taneous pulses; in fact they are spread out over a time of
the order of the thermal time constant of the GaAs,
83 usec. Since the interesting values of s are less than
this value, it is a better approximation to regard the
heat current through the spreading resistance of the copper
as the average heat current flowing continuously. In any
case, the temperature drop in the copper heat sink is small
and errors in describing it are of minor significance in the
primary calculation.

The approximation just described for calculating T,
that is, adding the temperature increase caused by the
flow of the average power through the spreading resistance
of the heat sink to the temperature increase of the GaAs
calculated from the theory of sections 2 and 3, leads to a
value of T'; appropriate to the calculation of the pulse
energy of the model laser. Equation (7.2) was used to
calculate a quantity proportional to the light pulse energy.
The results are shown in Fig. 5 in which the pulse energy,
normalized to the energy of an isolated pulse, is plotted
as a function of s, the spacing between pulses.
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o Case of dominant spreading resistance
As a further illustration, consider a large laser with the
p-n junction symmetrically placed in a slab of GaAs
0.3 mm X 0.6 mm X 10 ym (L = 5 um). If the material
properties of the GaAs are the same as in the preceding
example, the threshold current is 90 A, the thermal resist-
ance from the junction to one side of the GaAs is 0.556
°C/W, and the electrical resistance on one side is 0.463 mQ.
Let the laser be clamped between two large bronze heat
sinks with the following properties: « = 0.5 W/cm-°C,
C = 3.44 J/em’-°C, D = 0.145 cm’/sec, ¢ = 73.5
(mQ-cm) ', Then Ly in the bronze is 0.023 cm, the
thermal resistance is 25.5 °C/W, the electrical resistance
is 0.173 mg, and the thermal time constant LJ/D is
3.63 msec. Since the thermal resistance in the bronze is
about 50 times as large as that in the GaAs, neglect of
the latter contribution is reasonable. In contrast with
the preceding case, the three-dimensional spreading
resistance is dominant. Also, the thermal time constant
of the GaAs is 0.8 usec, much less than both the time
constant in the bronze and the minimum interesting value
of s (the value for which T = T;¢), which is about 7 usec.
Therefore the pulses of heat arriving at the bronze heat
sink may be considered to be instantaneous pulses.
One-half of the total heat (resistive plus junction) generated
in the GaAs is dissipated through each bronze heat sink.
Assume that the laser is operated with 300-A pulses of
50-nsec duration. Then a quantity proportional to the
emitted energy can be calculated from Egs. (7.8) and (7.2).
The graph of this quantity as a function of s is very similar
to Fig. 5 (since % has the same value as in the preceding
example and i* is only slightly different), but with the
abscissa of Fig. 5 multiplied by a factor of about four.

8. Discussion of approximations
It must be emphasized that the models used involve a
number of idealizations. Some of the neglected features
would tend to improve the performance and others to
degrade it. The treatment of events within the pulse
(presented in I) assumed that the current rose discon-
tinuously from zero to a given value during the pulse.
In fact, the electronic circuits only provide pulses with
finite rise times and some heating of the laser occurs
before the current reaches the threshold value and light
emission begins. Further, there is a delay between the
time at which the current reaches the threshold value and
the time that laser action begins, which causes additional
heating before the start of light emission. These delays
mean that the power output is less than the value calculated
from the idealized model and that laser action ceases at a
temperature T'; less than the T';¢ of Eq. (7.7).

Interface thermal resistances have been neglected. These,
if present, will cause temperature increases greater than
those calculated and degrade performance further.

The temperature dependence of the thermal conductivity
was neglected to simplify the analysis. However, the
thermal conductivity of semiconductors decreases with
increasing temperature, an effect that will also cause
temperatures to be somewhat greater than those calculated.

An approximation that tends to make the actual
temperatures lower than the calculated ones, and thus to
improve the performance of the laser, is the neglect of the
energy lost in the form of emitted light. Another probably
conservative approximation is the assumption that the
threshold current value is determined by the hottest part
of the laser; it is conceivable that some cool part of the
laser could remain operative even after stimulated emission
ceased in the hottest part.
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Appendix
To evaluate the next-higher-order term in the expansion of
Eq. (2.5) in powers of s, we define

glu) = Z exp (—nu). (A1)

Using the Euler-Maclaurin summation formula we

obtain**

g(u) = f exp (—n'u) dn = L(x/u)'"”. (A2)
0

The desired sums are

> exp (—Gyks) = g(x’Dks/4L*) — g(x’ Dks/L”)
b=1

= LL/(x Dks)'"* (A3)
and
> exp (—Gyt) = 1L/ Dt)’?, (A4)

where G, is defined in Eq. (2.3).

The integral in the second term of Eq. (2.5) is con-
veniently regarded as the difference between an integral
from 0 to « and an integral from 0 to (m -+ 1)s. The first
of these integrals can be evaluated exactly as

f S sl exp(—Gyt)dt = s Y, Gy = L*/2sD.
4] b=1 b=1 (AS)

The result (AS5) is equivalent to Eq. (2.5). The remaining
part of the integral is easily evaluated with the aid of
Eq. (A4):
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(m+1/2)s ©
f > 5" exp (—Gyr) dt = L[(m~+ %)/ms D]"*.
0 b=1 (A6)

Substituting Eqgs. (A3), (A5) and (A6) into Eq. (2.5)
we find

T, = qL/sDC
- (Q//CL)(WSD)ﬂ/Z[z(m + L — i k—l/z]

= T..[1 — w,(sD/L)]. (A7)

Here w,, is defined by
@, = r‘l/{z(m + 7= 2 k“”}
k=1
— 1—1/2{21/2 + Z [2(k + %)1/2
k=1
— 2k — H" — k*‘”]}- (A8)

Expanding (k == %)’i‘ by the binomial theorem one obtains

@ = 7r'/2|:21/2 + (/2% Yk
k=1

+@/2 2k = ] (A9)

As the approximation becomes more realistic physically by
letting the value of m— o, the value of w,, — w. The sums

MARCH 1970

of the reciprocal powers of the integers are tabulated® and
w is found to have the value

1.4604/7"* = 0.8239. (A10)
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