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Minimal Energy Dissipation in Logic

Abstract: Minimal energy dissipations for the logic process based on thermodynamics and general phase space considerations are
known. The actual availability of these minimal dissipations has not, however, been demonstrated. These minimal dissipation sources
in a computing system also act as noise sources and thereby lead to questions about the ultimate available reliability of the computing
process. A new and hypothetical device is presented in this paper and used to construct a physically analyzable computing system.
It is demonstrated that this system has dissipations larger than, but of the same order of magnitude as, the original minimal quantities.
It is also shown that any required reliability can be obtained with this device, without increased energy expenditure, but at the expense

of an increasing time per computational step.

Introduction

The past decade has brought a growing realization that
the processing of information, whether carried out in
computers, in biological systems, or with paper and pencil,
requires the use of real physical degrees of freedom,
subject to the laws of physics. Studies of the ultimate
physical limitations of information handling, even though
they are still in a very rudimentary state, constitute the
beginning of a genuine physical science of epistemology.
This point has been made particularly eloquently by
Lederberg in a recent syndicated newspaper column.'
The work in this general field of fundamental computer
limitations has been reviewed by Freiser and Marcus.”
A book chapter by one of the authors® is awaiting publi-
cation.

A central question in this area has been, Is there a
minimal energy dissipation associated with the nonlinear
processes that carry out the typical logic in a computer?
The association of an amount 347 of random thermal
energy with a degree of freedom has always made it
plausible that the intentional logic signals must be asso-
ciated with a comparable energy. This was understood by
von Neumann, apparently as early as 1949.* Von Neu-
mann indeed suggested that an energy kT is dissipated
* per clementary act of information, that is, per
elementary decision of a two way alternative and per
elementary transmittal of 1 unit of information.” A
more exact understanding of the reason for the amount of
the dissipation was provided by one of the authors,’
who pointed out that general purpose digital computers
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require the capability to throw away information, and that
it is these information reduction processes which, in turn,
require an energy dissipation of order T per logical step.
In particular, for example, in an operation that requires
a bit to be reset to ONE, regardless of its initial value, and
in which the data flow initially gives zero and ONE equal
probabilities, the minimal energy dissipation is k7 log, 2.

Dissipation is inevitably associated with thermally
induced fluctuations, as is made clear by the existence of
fluctuation-dissipation theorems. Therefore, if computers
must have dissipation, they must also have internal noise
sources. A very basic and important question then be-
comes, Is computing to an arbitrary reliability specification
possible, or is there an irreducible error probability? This
paper demonstrates that, at least as far as general statistical
mechanical considerations are concerned, there are no
obvious reliability limitations to the computing process.
A given computer has a nonvanishing error probability
at each step, but a more reliable computer can be built
upon demand. Our answer, however, is in no sense a final
settlement of the reliability problem. To make more
reliable computers, we invoke the physical availability of
potentials, whose actual realizability is not terribly clear,
and which, even if realizable, come with uncertain impli-
cations about the size of the computer, both geometrically
and in terms of the number of particles required in it. All
these subsidiary considerations may (and are perhaps even
likely to) negate our purely statistical mechanical con-
clusion that arbitrarily accurate information processing
can be realized. Furthermore our conclusions apply only
to very slow computing processes. While we show that
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increasing reliability does not require increasing energy,
we do have to allow an unbounded time scale for the
process at each step.

Energy of switching

This paper is, in addition, motivated by the fact that a
more recent paper by Neyman® concludes that reliable
switching processes require larger dissipations than are
indicated in Landauer’s original discussion,” with the
energy dissipation increasing to larger and larger amounts
as the reliability specifications become more stringent.
Since Landauer’s discussion invoked the second law of
thermodynamics to find a lower bound for energy dissi-
pations, and did not demonstrate the actual achievability
of the minimal energies, Neyman’s results must be con-
sidered as plausible and deserve thoughtful consideration.
We shall point out that Neyman’s higher energies, required
for reliable switching, are in fact not needed; smaller
amounts comparable to those in the original thermo-
dynamic analysis are achievable, if we are satisfied with
very slow switching.

Unfortunately, while the slow switching is proceeding,
unswitched information held elsewhere in the computer
may be deteriorating unintentionally unless special
measures are taken to prevent this adverse effect. This
point was discussed in Landauer’s original paper,’ in
which a specific model was analyzed [in Eq. (5.4) of
that paper] to show that long computations in systems
with many elements require energy dissipation appreciably
greater than k7. In this paper, however, we demonstrate
that the model leading to Eq. (5.4) of Landauer’s original
paper® is unnecessarily pessimistic, just as Neyman’s equa-
tions are.

Neyman starts from an entropy increase per switching
event,

AS > k log, (rAD). @

Here k is Boltzmann’s constant, I is the information and
r = 1/p,, where p, is the probability of an error due to
thermal fluctuations in an “individual measurement.”
There is some uncertainty in both the definition of Al and
the origin of Neyman’s equation. Equation (1) has a close
formal relationship to Eq. (14.31) of Brillouin’s book’
(originally pointed out to the authors by D. W. Jepsen)
and to a very similar discussion by Ligomenides.® These
authors, however, are concerned with measurements of
energy in an harmonic oscillator potential, which is not an
obvious model of a bistable computer element. Equation
(1) leads Neyman to an energy loss

AE > kT log, (rAD. 2)

Consider the bistable well shown in Fig. 1 and used
as a model in Ref. 5 and in a subsequently published
elaboration.” Switching proceeds by tipping the well;
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Figure 1 Bistable potential well; x is a generalized coordi-
nate representing the quantity that is switched.

thus if the right-hand well is favored, the particle will
end up there, regardless of its initial position. Now
if we want to be very sure that switching has taken place,
we must bias the well by many times k7. Indeed, the
smaller p, is to be, the larger the required energy difference
between the wells must be. If this energy difference is
dissipated, then Eq. (2) seems very plausible. We shall,
however, show that for the bistable well of Fig. 1 a dissipa-
tion &T log, 2 is in fact achievable in the RESTORE-t0-ONE
operation, even for very small values of p,.

Small p,, or accurate switching, is indeed associated
with large biasing forces, but these forces are not neces-
sarily associated with large energy losses. The basic
physical point involved can be made as follows. A modest
biasing force is adequate to give a reasonably high prob-
ability that the particle is located in the favored well; if
an additional biasing force is applied subsequently, there
is a high probability that the particle will not be subject to
further well jumping. Hence the additional force has a
small probability of causing additional energy dissipation.
Thus if the biasing force is increased slowly compared
with the switching time, most of the energy dissipation
should occur in the early portion of the bias application.
By contrast, if the bias is applied quickly greater energy
dissipation results, accompanied by faster switching as
discussed in connection with Eq. (5.4) of Ref. 5.

To make this discussion more quantitative consider an
ensemble of wells with the ZERO and ONE states initially
populated with equal probability. Let these wells be
subjected to a slowly increasing energy bias U. The fraction
7 of wells in the favored state is

n=[1+ exp (UKD €]

In going from bias energy U to U + dU, a fraction dy of
wells shift into the favored state. Each of these gives up
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Figure 2 Time sequence of potentials starting at A (for
a particle known to be near ¢ = 0) and changing con-
tinuously to the deep bistable wells at F.
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energy U in the process. The total dissipation per well
as U is increased is therefore

i
f Udn = kT[log, 2 + n log, 9
3

+ (1 — n)log. (1 — 9], @

as can be shown by an elementary integration. Note that
the form Udy is closely related to HdM or EdP in elec-
trically activated storage systems such as magnetic cores.
The energy dissipation in Eq. (4) follows exactly the
decrease in entropy. In particular, when % = 1 an energy
kT log, 2 is dissipated, as was originally derived from
entropy considerations. It should be understood, however,
that in Eq. (4) we have calculated the energy changes of
the particle, not the free energy changes. It is true that
this energy is given up by the particle and delivered as heat
to the surroundings, just as when a set of spins is oriented
into a favored direction. As in the case of spins, however,
if we let the system subsequently randomize again, the
heat is resorbed by the information-bearing degree of
freedom under consideration. To let Eq. (4) represent a
permanent dissipation, we cannot afford to let the system
re-randomize. After removing the bias the system must
be subject to its next use, before it acts as an ‘““adiabatic
demagnetization” refrigerator. This, however, is in accord
with common sense. One does not, in a useful computing
system, expect to have jumping from zERO to ONE on the
basis of random thermal agitation. However, for one to
follow a system through a sequence of operations and
study the interactions among wells, this one-well model
is inadequate and a more detailed model of a computer
has to be examined.
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As was suggested previously, the minimal dissipation is
available only for a slow switching process, one that is
slow compared with the relaxation time of the undisturbed
system. This condition means that we lose information in
undisturbed locations while switching is going on else-
where. In subsequent sections, however, we argue that the
burden of retaining information can be put on wells that
are deeper and therefore more protected against informa-
tion loss than the wells that are being tipped.

We now begin a discussion of a more complex and
realistic computer system capable of performing all logical
functions and not confined to the relatively trivial case of
a one-time RESTORE-t0-ONE operation. The basic point of
our discussion as mentioned previously is that information
not subject to switching can be protected by higher
barriers against deterioration.

Description of the computing system

The computation scheme we have in mind was essentially
invented by the late von Neumann and is described, for
example, by Wigington.’® It is a method designed to use
systems which, under external control, can be taken
continuously from a monostable state into bistability and
back to monostability in a cyclic fashion. Von Neumann
applied his invention to parametric excitation in tuned
circuits with nonlinear reactances. A similar approach has
been invoked for the utilization of tunnel diodes by Goto.""
We invoke here a logic scheme based on the same notions.
QOur physical device, however, is a particle in a potential
well. The potential well is modulated periodically in time,
with the modulation converting it from a well with a single-
minimum to a well with two minima, and back again. A
sequence of successive well shapes going from the single-
depression well to the double well is illustrated in Fig. 2.
To the solid state physicist these curves are reminiscent of
the temperature dependence of the free-energy curves for
a ferroelectric going through a second-order transition. In
analogy with that phenomenon we call the well states near
curve C, i.e., near the borderline between monostability
and bistability, the “soft™ states. Figure 3 illustrates a
related time-dependent sequence of wells, the significance
of which is developed in the subsequent text.

The scheme envisions that each of the logic stages in a
computer is associated with a time-modulated well as
shown in Fig. 2 and that the stages are grouped into
different ‘“phases”; within a phase group the stages are at
the same part of their excursions through the well shapes of
Fig. 2. In analogy with von Neumann’s scheme we call
the source of time variation in the potential the “pump.””
In our case, the pump could be a series of suitably chosen
charges that are brought cyclically toward and away from
a charged particle whose coordinate g is used to represent.
the information. The particles in the flat-bottomed soft
state are particularly susceptible to external influences.
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Figure 3 The sequence of shapes through which a well coupled to preceding and following stages passes during a complete period
of the cycle shown in Table 1. During switcH the well passes successively through the stages A to F shown in Fig. 2; the asymmetry
is the result of the coupling to the previous stage. During HOLD the information in the well influences the switching of the subsequent
stage. Small variations in shape take place during the HoLD stage due to the changes in the forces exerted on the well by the previous
stage, which is being restored, and the following stage, which is being switched. During REsTORE the well is biased by coupling to wells
of the subsequent phase. The thin barrier at the center of the well during the RESTORE cycle prevents excessive dissipation due to coupling

backwards from the following stage.

The overall scheme uses this property; each particle is
loosely coupled to particles that belong to a phase more
advanced in time, so that as a particle reaches the soft
states it is pushed one way or another by the influence of
other particles that are already stabilized in the deep
bistable potential near state F of Fig. 2.

A more detailed description of the sequence of events
through which our wells are taken is provided in Table 1.
Each of the bistable elements belongs to one of at least
three phases. That is, the processor is driven cyclically
and there are elements at three different parts of the cycle.
The stages at different parts of the cycle are designated o,
B and v in Table 1; there are many elements in each
phase, which may be designated oy, oz, -+ , 81, B, etc.,
when necessary.

We start with a B-phase well about to begin the swiTcH
part of its cycle (at the left-hand end of the second row in
Table 1). Such a well is in the deep, single-trough configura-
tion shown at the top of Fig. 2 and labeled A. The value of
the switchable coordinate g of the particle is very close to
zero. The particle is tied through springs to three (or
another odd number of) other particles belonging to the
preceding phase « that is at F in its cycle. Each of the
springs exerts a force of the form £ A4gr on the particle,
where gr is the magnitude of the displacement of the
minima at stage F. Thus the total force exerted by the
springs acts in a direction determined by the majority of
the wells of the preceding stage. This is, in von Neumann’s
words, “majority logic.” As the cycle progresses the well
passes through its soft stages B, C and D of Fig. 2, in which
it is easily influenced by the springs and is displaced in the
majority direction. Then, as the well changes from its soft
state towards E, the particle becomes locked firmly in the
direction to which it was initially influenced while in the
soft state.

References 10 and 11 show that this majority logic,
if combined with negations, can carry out all logical
functions. Negation is carried out by simply coupling a
particle in the earlier phase to a particle in the succeeding
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Table 1 Sequence of events in the three phase groups
«, 8 and 7. In HOLD an element is near the deep-well state
F; during switcH the element changes from A to F under
the influence of elements in the HOLD stage; during RESTORE
an element is returned from F to A to prepare it for a
new cycle.

Time
Stage 1 2 3 1
« — HOLD RESTORE SWITCH -~ HOLD
B swnl'CH —  HOLD RESTORE SWITCH
Y RESTORE SWI’lI"CH — HOLD RESTORE
o HOLD RESTORE swéCH — HOLD

phase through a potential that reaches a minimum when
one well is in the zZERO state and the other well is in the
ONE state. Such an interaction can be visualized by thinking
of the spring as acting through a lever, pivoted at its center,
that reverses the direction of the force.

An AND operation, for example, which gives a ONE
output only if its two inputs are both at ONE, is performed
by having as the three influencing inputs the two variables
on which the AND is to be performed and a third particle
kept permanently in the zERO state.

Let us continue consideration of the 8 well’s being
influenced and switcued. The well we are following can
be deformed sufficiently slowly that the particle is at all
times arbitrarily close to equilibrium between the left-
and the right-hand pockets. Such a slow deformation must
be continued until the energy difference between the two
pockets attains a value, say Vi, associated with curve E
in Fig. 2, that gives some large desired Boltzmann distri-
bution ratio between the pockets and ensures that the
particle is where we want it. Here “slow” is a relative term.
In fact, the deformation must be so slow that particles
can equilibrate across the barrier V] that exists when the
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potential difference reaches V', but it cannot be so slow that
the particles holding the information in the preceding
wells leak over or through their barriers. This balance can
be arranged by making the barrier in the completely
switched a well have some very high value V', associated
with the deepest potential F in Fig. 2, through which
passage of a particle is so slow that the time to attain the
potential difference V; in the well being switched may be
considered to be very small in comparison.

At E we have arrived at a state in which the particle
has a satisfactorily large probability exp (qV1/kT) of being
in the desired well. No irreversibility has occurred up to
now; if we reverse the sequence of potentials, we will
retrace our sequence of particle distributions. The avoid-
ance of irreversibility is discussed in more detail in later
paragraphs. Now we wish to stabilize and standardize
this condition so that the information contained in this
stage can be used to influence the following stage. Stabili-
zation can be effected by rapidly raising the barrier between
the two halves of the potential to the necessary large
value V3.

The barrier can be erected on top of the central potential
maximum or, alternatively as shown in Fig. 2, by further
deepening of the wells from E to F. If the latter is done, we
must carry out the further deepening quickly compared
with the inter-well relaxation times associated with the
deep wells near F; otherwise our operation takes so long
that we lose information in the process. At the same time,
we must go slowly compared with the relaxation time for
redistribution within a well so that the change of well
shape, within the favored well, does not generate appre-
ciable dissipation. Part of the relaxation process within
the favored well relates to the disappearance of the bias
exerted from the preceding phase. This bias has a magni-
tude which depends on how much agreement was involved
in the majority poll, but we need a distribution in the
state F that is independent of history in order to exert
a standardized force on the following stages. In any
case, however, the use of sufficiently sharp well minima at
F will ensure the history-independent distribution.

The events described so far constitute one-third of a
cycle. During the next third, the HOLD part of the cycle,
the 4 well influences the succeeding stage vy and is assumed
to be so firmly stabilized by the barrier V, that no dissipa-
tion is caused by the reaction of this succeeding stage.

The last third of the cycle RESTOREs the potential to its
original state A (Fig. 2). Let us first consider what would
happen if we simply changed the potential from F back to
A through the sequence of Fig. 2. As the bistable potential
of the 8 wells is diminished, the 3 wells become susceptible
to the influence of the vy well. A v well matches the majority
disposition among the 8 wells to which it is connected,
but does not necessarily match each of the 8 wells, and
therefore tends to induce some transitions in the S8 wells.
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If these occur at some relatively deep potential, such as
at E where the minima are far apart, and the spring coup-
ling can exert an appreciable bias, then large dissipative
losses can occur. We prevent this by erecting a thin barrier
on top of the potential at F, before commencing to diminish
the barrier. The sequence of well shapes, including this
barrier, is illustrated in Fig. 3.

The thin barrier prevents inter-well transitions and
maintains a sequence of quasi-equilibrium distributions.
Finally, when the 8 potential has returned to the A stage,
the two halves are not far apart and the bias supplied by
the springs is modest. (The narrower the potential well,
the smaller the bias.) After the barrier is removed, only a
diffusive force remains to erase the memory of the original
B states. Indeed, if we want to be sure that the bias is
at a minimum, we could retain the thin 8 barriers until
the v well has also returned to its narrow monostable
potential configuration. In the final diffusion process,
after removal of the thin barrier, we change from a
distribution that fills one half of a well to one that fills the
whole well. Here an unavoidable nonequilibrium process
finally occurs. The entropy increases by k log, 2 and the
free energy decreases by AT log, 2, with the loss in free
energy turning up as irreversible heating.

Thus we have found an irreversible heat generation of
kT log, 2 per input variable and per logical step. This
amount generally exceeds the minimal amount predicted
by the earlier theory,’ but is of the same order of magni-
tude. Thus the AND operation has two inputs and a loss
of 2kT log, 2, or 1.386 kT per operation. The earlier theory
predicted the smaller energy loss 0.75kT log, 3, or 0.824 kT.
The most pronounced difference is in the simple process of
information transfer, unaccompanied by any logic opera-
tion. No logical irreversibility is involved and, therefore,
no minimal heat generation according to the earlier theory;
the specific method proposed here generates k7T log, 2
of heat. These differences may simply mean that the
presently proposed method is not the optimal invention,
and that there are less dissipative methods available.
Alternatively they could mean that the minima obtained
from general phase space considerations are not really
available in a general purpose computer. (Note, however,
that elimination of the thin barriers on the RESTORE cycle,
which results in much larger dissipations for some logic
functions, would leave the information transfer function
dissipationless.)

It has not been necessary to make any compromise with
reliability to achieve this energy dissipation. Any desired
reliability can be attained by properly choosing the po-
tential difference ¥, that controls the Boltzmann factor,
by deforming the wells so slowly that equilibrium can be
attained across the barrier ¥’{ that exists at this stage,
and by making the stabilizing barrier ¥} large enough to
prevent any deterioration of the information in the well
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while it is contributing to the control of the next stage.
The barrier V) must be increased if V| is increased,
because the time needed to attain equilibrium across V'{
increases.

Discussion
Note that it is necessary to have three different pump
phases in the system. Two pump phases are inadequate;
in that case a well that has passed on its information,
and has been returned to its single-well state, is coupled
simultaneously to the wells that have received information
and to wells that are about to transmit information,
and is influenced equally by them. If we allow three
pump phases, then a well about to be influenced can
be coupled simultaneously to wells that are the source of
the influence and to wells that have been influenced but
have already been restored to their neutral single-well state.
Three different pump phases are accepted as adequate.’”""
We now elaborate on a result used above in discussing
the energetics: As we change with time through a series of
potential distributions and let the particle come into
thermal equilibrium with each potential, the irreversible
dissipation can be minimized to any prescribed extent by
going through the sequence sufficiently slowly. The adjust-
ment of a particle distribution to a narrowing or widening
potential well is like, for example, the isothermal com-
pression or expansion of a gas; it may involve heat flow
but need not generate any irreversible heating if done
slowly. If in changing the potential we move our particle
a distance x in a time 7 in a medium of mobility u, we have
to change potentials slowly enough to keep loss terms of
the type x2/ wut small compared with the essential losses
to be identified otherwise. Or, alternatively, if we think
of our particle in a medium of mobil'ty u, the rate of
entropy generation in an interval a.x is

38/9t = j-VFdx = (j°/w) dx, )

where F is the free energy (or chemi:al potential since we
are dealing with one-particle systems) and j is the particle
current flow. In thermal equilibrium, i.e., if the Boltzmann
distribution is obeyed, ¥V F vanishes. If the potential shape
is now changed slightly, we can always select the origin of
the new potential such that the new free energy, after
equilibration, equals the original free energy. The redis-
tribution of particles is accompanied by an irreversible
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entropy generation, expressed by Eq. (5), but this quantity
can be minimized to any required extent by changing the
potential so slowly that the relative population changes
that occur within a relaxation time are kept sufficiently
small. The irreversibility will arise, therefore, in those parts
of the cycle in which we are mapping particle distributions
into each other, which are not in equilibrium; at those
points the free energy /sas to change.

Conclusions

As far as statistical mechanics goes, the effect of thermal
fluctuations can be made as small as desired by invoking
suitably chosen potentials without creating large energy
dissipation, but this is accomplished at the expense of the
speed of the computation. These considerations, however,
do not assure us that the required potentials are physically
realizable. Furthermore, slow switching can be considered
to create a small bandwidth for the noise power; it is then
not too surprising that the noise effects are limited. The
energy-reliability tradeoff for faster speeds remains
unclear at this point.
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