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Minimal  Energy  Dissipation  in  Logic 

Abstract: Minimal  energy  dissipations  for  the  logic  process  based on thermodynamics  and  general  phase  space  considerations  are 
known. The  actual  availability of these  minimal  dissipations has not, however,  been demonstrated. These  minimal  dissipation  sources 
in a computing  system  also  act  as  noise  sources  and  thereby  lead to questions about the ultimate  available  reliability of the  computing 
process. A new and  hypothetical  device  is  presented  in  this  paper and used to construct a physically  analyzable  computing  system. 
It is  demonstrated that this system  has  dissipations  larger than, but of the same order of magnitude  as,  the  original  minimal  quantities. 
It is  also shown that any  required  reliability  can  be  obtained  with  this  device,  without  increased  energy  expenditure,  but at the expense 
of an  increasing  time  per  computational  step. 

lntroductisn 
The past decade has brought a growing realization that 
the processing of information, whether carried out in 
computers, in biological systems, or with paper and pencil, 
requires the use of real physical degrees of freedom, 
subject to the laws of physics. Studies of the ultimate 
physical limitations of information  handling, even though 
they are still in a very rudimentary  state,  constitute the 
beginning of a genuine physical science of epistemology. 
This  point has been made  particularly eloquently by 
Lederberg in a recent syndicated newspaper column.1 
The work in this general field  of fundamental  computer 
limitations has been reviewed by Freiser and Marcus.’ 
A  book  chapter by one of the  authors3 is awaiting publi- 
cation. 

A central  question  in  this area  has been, Is there a 
minimal energy dissipation associated with the nonlinear 
processes that carry out  the typical logic in a computer? 
The association of an  amount 3kT of random thermal 
energy with a degree of freedom has always made it 
plausible that  the intentional logic signals must  be  asso- 
ciated with a  comparable energy. This was understood by 
von Neumann,  apparently as early as 1949.4 Von  Neu- 
mann indeed suggested that  an energy kT is dissipated 
“.  . . per elementary act of information, that is, per 
elementary decision of a two way alternative and per 
elementary transmittal of 1 unit of information.” A 
more exact understanding of the reason for  the  amount of 
the dissipation was provided by one of the  author^,^ 
who pointed out  that general purpose digital computers 
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require the capability to  throw away information, and  that 
it is these  information  reduction processes which, in turn, 
require an energy dissipation of order kT per logical step. 
In particular, for example, in  an  operation  that requires 
a bit to be reset to ONE, regardless of its  initial value, and 
in which the  data flow initially gives ZERO and ONE equal 
probabilities, the minimal energy dissipation is kT log, 2. 

Dissipation is inevitably associated with thermally 
induced fluctuations, as is made clear by the existence of 
fluctuation-dissipation theorems. Therefore, if computers 
must have dissipation, they must also have  internal noise 
sources. A very basic and  important question then be- 
comes, Is computing to  an  arbitrary reliability specification 
possible, or is there an irreducible error probability? This 
paper  demonstrates that, at least as far as general statistical 
mechanical considerations are concerned, there are  no 
obvious reliability limitations to  the computing process. 
A given computer has a nonvanishing error probability 
at each step,  but a more reliable computer  can be built 
upon demand.  Our  answer, however, is in  no sense a final 
settlement of the reliability problem. To make  more 
reliable computers, we invoke the physical availability of 
potentials, whose actual realizability is not  terribly clear, 
and which, even if realizable, come with uncertain impli- 
cations about  the size of the computer,  both geometrically 
and  in terms of the number of particles required in it. All 
these subsidiary considerations may (and are perhaps even 
likely to) negate our purely statistical mechanical con- 
clusion that arbitrarily  accurate  information processing 
can be realized. Furthermore  our conclusions apply only 
to very slow computing processes. While we show that 
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increasing reliability does  not  require increasing energy, 
we do have to allow an unbounded  time scale for  the 
process at each step. 

Energy of switching 
This paper is, in  addition,  motivated by the fact that a 
more recent paper by Neyman‘ concludes that reliable 
switching processes require  larger dissipations than  are 
indicated  in Landauer’s original discu~sion,~ with the 
energy dissipation increasing to larger and larger amounts 
as  the reliability specifications become more stringent. 
Since Landauer’s discussion invoked the second  law of 
thermodynamics to find a lower bound  for energy dissi- 
pations, and did not demonstrate the  actual achievability 
of the minimal energies, Neyman’s results must  be con- 
sidered as plausible and deserve thoughtful consideration. 
We shall point  out  that Neyman’s higher energies, required 
for reliable switching, are  in fact not needed; smaller 
amounts comparable to those in  the original  thermo- 
dynamic analysis are achievable, if we are satisfied with 
very slow switching. 

Unfortunately, while the slow switching is proceeding, 
unswitched information held elsewhere in  the computer 
may be  deteriorating unintentionally unless special 
measures are  taken  to prevent this adverse effect. This 
point was discussed in Landauer’s original  paper,5 in 
which a specific model was analyzed [in Eq. (5.4) of 
that paper] to show that long  computations in systems 
with many elements require energy dissipation appreciably 
greater than  kT.  In this  paper, however, we demonstrate 
that  the model leading to  Eq. (5.4) of Landauer’s original 
paper5 is unnecessarily pessimistic, just as Neyman’s equa- 
tions are. 

Neyman starts  from  an entropy increase per switching 
event, 

A S  > k log. (rAZ). (1 1 
Here k is Boltzmann’s constant, Z is the information and 
r = l /p l ,  where p1 is the probability of an  error  due  to 
thermal  fluctuations in  an “individual measurement.” 
There is some  uncertainty  in both  the definition of AI and 
the origin of Neyman’s equation. Equation ( 1 )  has a close 
formal relationship to Eq. (14.31) of Brillouin’s book7 
(originally pointed out  to  the  authors by D. W. Jepsen) 
and  to a very similar discussion by Ligomenides.’ These 
authors, however, are concerned with measurements of 
energy in  an harmonic oscillator potential, which is not  an 
obvious model of a bistable computer element. Equation 
(1) leads  Neyman to  an energy loss 

AE 2 k T  log, (rAZ). (2) 

Consider the bistable well shown  in Fig. 1 and used 
as a model  in  Ref. 5 and  in a subsequently published 
e lab~ra t ion .~  Switching proceeds by tipping the well; 

MARCH 1970 

Figure 1 Bistable potential well; x is a generalized coordi- 
nate representing the quantity that is switched. 

thus if the right-hand well is favored, the particle will 
end  up  there, regardless of its  initial position. Now 
if  we want to be very sure that switching has  taken place, 
we must bias the well by many times kT. Indeed, the 
smaller p1 is to be, the larger the required energy difference 
between the wells must be. If this energy difference is 
dissipated, then Eq. (2) seems very plausible. We shall, 
however, show that  for  the bistable well of Fig. 1 a dissipa- 
tion kT log, 2 is  in fact achievable in  the mSTom-to-oNE 
operation, even for very small values of pl. 

Small pl ,  or accurate switching, is indeed associated 
with large biasing forces, but these forces are not neces- 
sarily associated with large energy losses. The basic 
physical point involved can  be  made as follows. A modest 
biasing force is adequate to give a reasonably high prob- 
ability that  the particle is located in  the favored well; if 
an  additional biasing force is applied subsequently, there 
is a high  probability that  the particle will not be subject to 
further well jumping.  Hence the  additional force has a 
small probability of causing additional energy dissipation. 
Thus if the biasing force is increased slowly compared 
with the switching time, most of the energy dissipation 
should occur in  the early portion of the bias application. 
By contrast, if the bias is applied quickly greater energy 
dissipation results, accompanied by faster switching as 
discussed in connection with Eq. (5.4) of Ref. 5 .  

To make  this discussion more quantitative consider an 
ensemble of  wells  with the ZERO and ONE states initially 
populated with equal  probability. Let these wells be 
subjected to a slowly increasing energy bias U. The fraction 
q of  wells in the favored state is 

q = [ l  + exp (-U/kT‘)]-’. (3) 

In going from bias energy U to U + dU, a fraction dq of 
wells shift into  the favored  state.  Each of these gives up 
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Figure 2 Time sequence of potentials starting at A (for 
a particle known to be  near q = 0) and changing con- 
tinuously to the deep bistable wells at F. 

energy U in the process. The total dissipation  per well 
as U is  increased  is  therefore 

s,* Udq = kT[log, 2 f 7 log, 3 

as can be  shown  by an elementary integration. Note that 
the form Udq is closely related to HdM or EdP in elec- 
trically  activated  storage  systems such as magnetic  cores. 
The energy  dissipation in Eq. (4) follows  exactly the 
decrease in entropy. In particular, when q = 1 an energy 
kT log, 2 is dissipated, as was originally  derived from 
entropy considerations. It should be understood, however, 
that in Eq.  (4)  we have  calculated the energy changes of 
the particle, not the free energy changes. It is true that 
this energy  is  given  up by the particle and delivered as heat 
to the surroundings, just as when a set of spins is oriented 
into a favored  direction. As in the case  of spins,  however, 
if we let the system  subsequently  randomize  again, the 
heat is resorbed by the information-bearing  degree of 
freedom under consideration. To let  Eq. (4) represent a 
permanent  dissipation, we cannot afford to let the system 
re-randomize.  After  removing the bias the system  must 
be  subject to its next  use,  before it acts as an “adiabatic 
demagnetization”  refrigerator. This, however,  is in accord 
with  common  sense.  One  does not, in a useful  computing 
system,  expect to have jumping from ZERO to ONE on the 
basis of random thermal agitation. However, for one to 
follow a system through a sequence  of operations and 
study the interactions among wells, this  one-well  model 
is inadequate and a more  detailed  model of a computer 
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As was  suggested  previously, the minimal  dissipation is 
available  only for a slow  switching  process,  one that is 
slow compared  with the relaxation  time of the undisturbed 
system.  This  condition  means that we lose information in 
undisturbed  locations while  switching  is  going on else- 
where. In subsequent  sections,  however, we argue that the 
burden of retaining information can  be put on wells that 
are deeper and therefore  more  protected  against  informa- 
tion loss than the wells that  are being  tipped. 

We  now  begin a discussion of a more  complex and 
realistic  computer  system  capable of performing all logical 
functions and not confined to  the relatively trivial case of 
a one-time RESTORE-to-ONE operation. The basic point of 
our discussion as mentioned  previously  is that information 
not subject to switching  can  be  protected by higher 
barriers  against deterioration. 

Description of the  computing system 
The computation scheme we have in mind  was  essentially 
invented by the late von  Neumann and is  described, for 
example, by Wigington.” It is a method  designed to use 
systems  which,  under  external control, can be taken 
continuously from a monostable state into bistability and 
back to monostability in a cyclic fashion. Von Neumann 
applied  his  invention to parametric excitation in tuned 
circuits with nonlinear  reactances. A similar approach has 
been  invoked for the utilization of tunnel diodes by Goto. l1 
We invoke  here a logic  scheme  based on the same  notions. 
Our  physical  device,  however,  is a particle  in a potential 
well. The potential well  is modulated  periodically in time, 
with the modulation  converting it from a well  with a single- 
minimum to a well  with  two  minima, and back  again. A 
sequence  of  successive  well shapes  going from the single- 
depression well to  the double well  is illustrated in Fig. 2. 
To the solid state physicist  these  curves are reminiscent  of 
the temperature dependence of the free-energy  curves for 
a ferroelectric  going through a second-order transition. In 
analogy with that phenomenon we call the well states near 
curve C, i.e.,  near the borderline  between  monostability 
and bistability, the “soft” states. Figure 3 illustrates a 
related  time-dependent  sequence of  wells, the significance 
of  which is  developed in the subsequent text. 

The scheme  envisions that each  of the logic  stages in a 
computer is associated with a time-modulated well as 
shown in Fig. 2 and that the stages are grouped into 
different  “phases”;  within a phase group the stages are at 
the same part of their excursions through the well shapes of 
Fig. 2. In  analogy  with  von  Neumann’s  scheme we call 
the source of time variation in the potential the “pump.” 
In our case, the pump  could  be a series of suitably  chosen 
charges that are brought cyclically toward and away from 
a charged  particle  whose coordinate q is  used to represent 
the information. The particles in the flat-bottomed soft 
state are particularly  susceptible to external influences.. 
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Figure 3 The  sequence of shapes  through  which  a  well coupled to preceding  and following stages  passes  during  a complete period 
of the  cycle  shown in Table 1. During SWITCH the well passes  successively  through  the  stages A to F shown  in  Fig. 2; the asymmetry 
is the result of the coupling to the  previous  stage.  During HOLD the information  in  the  well  influences  the  switching of the subsequent 
stage.  Small  variations  in  shape  take  place  during  the HOLD stage  due to the  changes  in  the  forces  exerted on the well  by the previous 
stage, which is being  restored,  and  the  following stage, which is being  switched.  During RESTORE the well is biased  by coupling to wells 
of the  subsequent  phase.  The  thin barrier  at the  center of the  well  during the RESTORE cycle prevents excessive  dissipation  due to coupling 
backwards  from  the following stage. 

The overall scheme  uses this property; each particle is 
loosely coupled to particles that belong to a phase more 
advanced in time, so that  as a particle reaches the soft 
states it is pushed one way or another by the influence of 
other particles that  are already stabilized in the deep 
bistable potential near  state F of Fig. 2. 

A  more detailed description of the sequence of events 
through which our wells are  taken is provided in Table 1. 
Each of the bistable elements belongs to one of at least 
three phases. That is, the processor is driven cyclically 
and there are elements at three different parts of the cycle. 
The stages at different parts of the cycle are designated a, 
B and y in Table 1; there are many elements in each 
phase, which  may be designated al, a2, . . . , PI, P2, etc., 
when  necessary. 

We start with a P-phase well about  to begin the SWITCH 

part of its cycle (at the left-hand end of the second row in 
Table 1). Such a well is in the deep, single-trough configura- 
tion shown at  the  top of Fig. 2 and labeled A. The value of 
the switchable coordinate q of the particle is very  close to 
zero. The particle is tied through springs to three  (or 
another odd number of) other particles belonging to the 
preceding phase cr that is at F in its cycle. Each of the 
springs exerts a force of the form f A q ,  on the particle, 
where qa is the magnitude of the displacement of the 
minima at stage F. Thus the  total force exerted by the 
springs acts  in  a direction determined by the majority of 
the wells  of the preceding stage. This is, in von Neumann’s 
words, “majority logic.” As the cycle  progresses the well 
passes through  its soft stages B, C and D of Fig. 2, in which 
it is easily  influenced by the springs and is displaced in the 
majolity direction. Then, as the well changes from  its soft 
state  towards E, the particle becomes locked firmly in the 
direction to  which it was initially influenced  while in  the 
soft state. 

References 10 and 11 show that this majority logic, 
if combined with negations, can carry out all logical 
functions. Negation is carried out by  simply coupling a 
particle in  the earlier phase to a particle in the succeeding 
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Table 1 Sequence of events in the three  phase  groups 
a, p and y. In HOLD an element is near the deep-well state 
F; during SWITCH the element changes from A to F under 
the influence of elements in the HOLD stage;  during RESTORE 
an element is returned from F to A to prepare it for a 
new cycle. 

Time 

I 2 3 I 

LY ”-f HOLD 

1 
RESTORE SWITCH -+ HOLD 

P SWITCH ”f HOLD RESTORE 

Y RESTORE SWITCH + HOLD 
1 

SWITCH 

1 
RESTORE 

CY HOLD RESTORE SWITCH + HOLD 

phase through  a potential that reaches a minimum when 
one well is  in the ZERO state  and the other well is in the 
ONE state. Such an interaction can be visualized by thinking 
of the spring as acting through  a lever, pivoted at its center, 
that reverses the direction of the force. 

An AND operation, for example, which  gives a ONE 

output only if its two inputs are both at ONE, is performed 
by having as  the three influencing inputs the two variables 
on which the AND is to be performed and a  third particle 
kept permanently in the ZERO state. 

Let us continue consideration of the well’s being 
influenced and SwlTcHed. The well  we are following can 
be deformed sufficiently  slowly that the particle is at all 
times arbitrarily close to equilibrium between the left- 
and  the right-hand pockets. Such a slow deformation must 
be continued until the energy  difference  between the two 
pockets attains  a value, say VI, associated with curve E 
in Fig. 2, that gives some large desired Boltzmann distri- 
bution ratio between the pockets and ensures that  the 
particle is where we want it. Here “slow” is a relative term. 
In fact, the deformation must be so slow that particles 
can equilibrate across the barrier V i  that exists when the 



potential difference reaches VI, but  it  cannot be so slow that 
the particles holding the information in the preceding 
wells leak over or through  their barriers. This balance can 
be arranged by making the barrier in  the completely 
switched a! well have some very high value VL, associated 
with the deepest potential F in Fig. 2, through which 
passage of a particle is so slow that the time to  attain the 
potential difference VI in  the well being switched may be 
considered to be very small in comparison. 

At E we have arrived at a state in which the particle 
has  a satisfactorily large probability exp (qV,/kT) of being 
in the desired well. No irreversibility has occurred up  to 
now; if  we reverse the sequence of potentials, we  will 
retrace our sequence of particle distributions. The avoid- 
ance of irreversibility is discussed in more  detail in later 
paragraphs.  Now we  wish to stabilize and standardize 
this condition so that  the information contained in this 
stage can be used to influence the following stage. Stabili- 
zation  can be  effected by rapidly raising the barrier between 
the two halves of the  potential to  the necessary large 
value V:. 

The barrier can be erected on  top of the central potential 
maximum or, alternatively as shown in Fig. 2,  by further 
deepening of the wells from E to F. If the latter is done, we 
must carry out  the further deepening quickly compared 
with the inter-well relaxation times associated with the 
deep wells near F; otherwise our operation  takes so long 
that we lose information in the process. At the same time, 
we must go slowly compared with the relaxation time  for 
redistribution within a well so that  the change of  well 
shape, within the favored well, does not generate appre- 
ciable dissipation. Part of the relaxation process within 
the favored well relates to the disappearance of the bias 
exerted from  the preceding phase. This bias has a magni- 
tude which depends on how much agreement was  involved 
in  the majority poll, but we need a distribution in  the 
state F that is independent of history in  order  to exert 
a standardized force on  the following stages. In any 
case, however, the use of sufficiently sharp well minima at 
F will ensure the history-independent distribution. 

The events described so far constitute  one-third of a 
cycle. During the next third,  the HOLD part of the cycle, 
the p well influences the succeeding stage y and is assumed 
to be so firmly stabilized by the barrier V, that  no dissipa- 
tion  is caused by the reaction of this succeeding stage. 

The last third of the cycle RESTORES the potential to its 
original state A (Fig. 2). Let us first consider what would 
happen if we simply changed the potential from F back to 
A  through the sequence of Fig. 2. As the bistable potential 
of the /3 wells is diminished, the 0 wells become susceptible 
to  the influence of the y well. A y well matches the majority 
disposition among the 0 wells to which it is connected, 
but does not necessarily match each of the p wells, and 
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If these occur at some relatively deep potential, such as 
at E where the minima are  far  apart,  and  the spring coup- 
ling can exert an appreciable bias, then large dissipative 
losses can occur. We prevent this by erecting a thin barrier 
on  top of the potential at  F, before commencing to diminish 
the barrier. The sequence of well shapes, including this 
barrier, is illustrated in Fig. 3. 

The thin barrier prevents inter-well transitions and 
maintains a sequence of quasi-equilibrium distributions. 
Finally, when the 0 potential has returned to  the A stage, 
the two halves are  not  far  apart  and  the bias supplied by 
the springs is modest. (The narrower the potential well, 
the smaller the bias.) After the barrier is removed, only a 
diffusive force remains to erase the memory of the original 
p states. Indeed, if we want to be sure that the bias is 
at a minimum, we could retain the  thin 0 barriers until 
the y well has  also  returned to its  narrow monostable 
potential configuration. In  the final diffusion process, 
after removal of the thin  barrier, we change from a 
distribution that fills one half of a well to one that fills the 
whole  well. Here an unavoidable nonequilibrium process 
finally occurs. The entropy increases by k log. 2 and  the 
free energy decreases by kT  log, 2, with the loss in free 
energy turning up as irreversible heating. 

Thus we have found an irreversible heat generation of 
kT  log, 2 per input variable and per logical step. This 
amount generally exceeds the minimal amount predicted 
by the earlier t h e ~ r y , ~  but is of the same order of magni- 
tude. Thus  the AND operation has two inputs and a loss 
of 2kT log, 2, or 1.386 kT per operation. The earlier theory 
predicted the smaller energy loss 0.75kTloge 3, or 0.824 kT. 
The most pronounced difference is in  the simple process of 
information transfer, unaccompanied by any logic opera- 
tion. No logical irreversibility is involved and, therefore, 
no minimal heat generation according to the earlier theory; 
the specific method proposed here generates kT  log, 2 
of heat. These differences may simply mean that  the 
presently proposed method is not  the optimal invention, 
and  that there are less dissipative methods available. 
Alternatively they could mean that  the minima obtained 
from general phase space considerations are  not really 
available in a general purpose  computer.  (Note, however, 
that elimination of the  thin barriers on the RESTORE cycle, 
which results in much larger dissipations for some logic 
functions, would leave the  information transfer function 
dissipationless.) 

It has  not been necessary to make  any compromise with 
reliability to achieve this energy dissipation. Any desired 
reliability can be attained by properly choosing the po- 
tential difference VI that controls the Boltzmann factor, 
by deforming the wells so slowly that equilibrium can be 
attained across the barrier V {  that exists at this stage, 
and by making the stabilizing barrier V i  large enough to 
prevent any deterioration of the information in the well 
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while it is contributing to  the control of the next stage. 
The barrier V i  must be increased if V :  is increased, 
because the time needed to  attain equilibrium across V $  
increases. 

Discussion 
Note  that  it is necessary to have three different pump 
phases in  the system. Two  pump phases are inadequate; 
in that case a well that  has passed on its  information, 
and  has been returned to its single-well state, is coupled 
simultaneously to  the wells that have received information 
and  to wells that  are  about  to transmit  information, 
and is influenced equally by them. If we allow three 
pump phases, then a well about  to be influenced can 
be coupled simultaneously to wells that  are  the source of 
the influence and to wells that have been influenced but 
have  already been restored to their  neutral single-well state. 
Three different pump phases are accepted as  adequate.lo’ll 

We now elaborate on a result used above in discussing 
the energetics: As we change with time  through  a series of 
potential  distributions and let the particle come into 
thermal  equilibrium with each potential, the irreversible 
dissipation can be minimized to  any prescribed extent by 
going through  the sequence sufficiently slowly. The adjust- 
ment of a particle distribution to a  narrowing or widening 
potential well is like, for example, the isothermal com- 
pression or expansion of a gas; it may involve heat flow 
but need not generate any irreversible heating if done 
slowly. If in changing the potential we move our particle 
a distance x in  a  time t in a medium of mobility p, we have 
to change potentials slowly enough to keep loss terms of 
the type x 2 / p t  small compared with the essential losses 
to be identified otherwise. Or, alternatively, if  we think 
of our particle in  a medium of mobi1:ty p, the  rate of 
entropy  generation  in an interval c;X is 

aS/d t  = j . V F  dx  = ( jz/p) dx, ( 5 )  

where F is the free energy (or chem;:al potential since we 
are dealing with one-particle systems) and j is the particle 
current flow. In  thermal equilibrium, i.e., if the Boltzmann 
distribution is obeyed, V F vanishes. If the potential  shape 
is now changed slightly, we can always select the origin of 
the new potential such that  the new free energy, after 
equilibration, equals the original free energy. The redis- 
tribution of particles is accompanied by an irreversible 

entropy generation, expressed by Eq. ( 5 ) ,  but this  quantity 
can be minimized to any  required extent by changing the 
potential so slowly that  the relative population changes 
that occur within a relaxation  time are  kept sufficiently 
small. The irreversibility will arise, therefore, in those parts 
of the cycle in which we are mapping  particle  distributions 
into each other, which are not in equilibrium; at  those 
points the free energy has to change. 

Conclusions 
As far  as statistical mechanics goes, the effect  of thermal 
fluctuations can be made as small as desired by invoking 
suitably chosen potentials  without  creating large energy 
dissipation, but this is accomplished at  the expense of the 
speed of the computation.  These  considerations, however, 
do  not assure us that  the required  potentials are physically 
realizable. Furthermore, slow switching can be considered 
to create a small bandwidth for  the noise power; it is then 
not too surprising that  the noise effects are limited. The 
energy-reliability tradeoff for faster speeds remains 
unclear at this point. 
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