Authors

Joseph A. Aboaf

IBM Thomas J. Watson Research Center, Yorktown Heights, New York

Engaged in the development of thin films for variable threshold field effect transistors. Ph.D. degree in Chemistry, University of Milan, Italy, 1959. Research Assistant and lecturer, University of London, England, 1959–60. Research Member, Bausch & Lomb, Inc., Rochester, N. Y., 1960–63. Research Staff Member, IBM Thomas J. Watson Research Center, 1963–69. Advisory Engineer, Components Division, East Fishkill, 1969. Member, Electrochemical Society and American Ceramic Society.

David S. Billingsley

Data Processing Division, Scientific Center, Houston, Texas B.S. in Chemical Engineering, 1950; B.S. in Industrial Engineering and in Mechanical Engineering, 1956; M.S. in Chemical Engineering, 1958; Ph. D. in Chemical Engineering, 1961, all from Texas A & M University. Joined IBM in 1961 as a systems engineer in the Houston branch office, worked for the Federal Systems Division in the Real Time Computing Center at the NASA Manned Spacecraft Center in Houston from 1962 through 1964. Transferred to the staff of the Houston Scientific Center in 1964. Member, Phi Lambda Upsilon and Sigma Xi.

Torsten P. A. Bohlin

IBM Nordic Laboratory, Lidingö, Sweden

Advisory Engineer at the IBM Nordic Laboratory. Civilingenjör in Physics, 1958; Teknologie Licentiat in Mathematics and Mathematical Statistics, 1965, Royal Institute of Technology (KTH), Stockholm, Sweden. Research Assistant in Applied Mathematics, 1957–58 and 1960–62 at KTH. Worked at the Research Institute of National Defence (FOA), Stockholm as a research engineer from 1958–60, on the principles of signal detection, radar tracking and interception. Joined the IBM Nordic Laboratory in 1962, where his field of research has been the theory and application of computer control in the process industries, in particular the problems of identification and adaptive control. Manager, Control Systems Theory Group, 1965–67. Member, TFF.

Leo Esaki

IBM Thomas J. Watson Research Center, Yorktown Heights, New York

Manager of Applied Physics Group; appointed an IBM Fellow in 1967. B.S. in Physics, 1947; Ph.D. in Physics, 1959; both at the University of Tokyo. While at the Sony Corporation in Japan, his research resulted in the discovery of the tunnel diode. Became a Research Staff member at the IBM Research Center in 1960. Received Nishina Memorial Award, Asahi Press Award, Toyo Rayon Foundation Award and Japan Academy Award (1965); also Morris N. Liebmann Memorial Prize of the IEEE and the Ballantine Award of the Franklin Institute. Fellow, American Physical Society and IEEE.

Joseph N. Gayles, Jr.

Morehouse College, Atlanta, Georgia

Associate Professor of Chemistry, Morehouse College. Research interests include laser scattering phenomena (primarily Brillouin and anisotropic Rayleigh scattering), molecular spectroscopy, laboratory automation, and the viscoelastic properties of polymers. A.B., 1958, Dillard University (New Orleans); Ph.D., in Chemistry, 1962, Brown University. Research Associate and Assistant Professor at Oregon State University, 1963; Assistant Professor of Chemistry and Woodrow Wilson Teaching Fellow, Morehouse College (Atlanta), 1964–66; summer associate with the Quantum Chemistry Group, University of Uppsala (Sweden), 1965. Associated with the IBM San Jose Research Laboratory, 1966–69. Member, American Chemical Society and American Physical Society.

William L. Honzik

Sullivan Associates, Santa Clara, California

B.S. in Physics, 1969, University of Santa Clara, California. Joined IBM Research in March 1968 and remained there as student employee until April 1969. Student Member, American Physical Society.

Robert E. Jones, Jr.

Systems Development Division, San Jose, California

A.B. in Chemistry, 1953, Columbia University; Ph.D. in Chemistry, 1957, University of California at Berkeley. He is currently engaged in technical planning.

Sol Krongelb

IBM Thomas J. Watson Research Center, Yorktown Heights, New York

Engaged in studying the adhesive properties of material interfaces. B.S. in Engineering Physics, 1953, New York University; M.S., 1955, and Ph.D. in Physics, 1958, Massachusetts Institute of Technology. Joined IBM Research in 1958 and has done work on parametric circuits, tunnel diodes, deposition processes for insulating films, and the properties of oxides and semiconductor-oxides interfaces. Member, American Physical Society, IEEE, Tau Beta Pi and Sigma Xi.

Solomon L. Levine

Systems Development Division, Poughkeepsie, New York

Currently working in the analytical laboratory of a materials technology group on a variety of chemically related materials problems. B.S., 1961, Rensselaer Polytechnic Institute; Ph.D., 1966, University of Rhode Island, both in Chemistry. Joined IBM in 1965 in Burlington as a materials manufacturing engineer.

James Overmeyer

Components Division, East Fishkill, New York

Engaged in reliability evaluation of semiconductor devices. B.S. in Physics, 1949, Lehigh University. Joined IBM Research in 1954 and worked in magnetics research, chiefly electron spin resonance. Transferred to the Components Division in 1965. Member, Phi Beta Kappa and American Physical Society.

Peter J. Price

Watson Laboratory, New York, New York

Research staff member, solid state physics. Ph.D., Cambridge, 1951. Subsequently, research assistant to the late Fritz London at Duke University, and a member of the Institute for Advanced Study at Princeton. Joined IBM at the Watson Research Laboratory at Columbia University in 1953. Fellow, American Physical Society.

Sidney S. Russell

Components Division, East Fishkill, New York

Engaged in quality engineering studies, specializing in resistor and capacitor components. Associate in Electronic Technology, 1959, Flint Junior College, Michigan; B.S. in Applied Electronics, 1962, University of Michigan. Inspection Group Leader at Bendix Systems Division 1959–62 and Procurement Quality Engineer at Honeywell Aero, Florida Division, 1963–66. Joined IBM Components Division, Procurement Quality Engineering Staff, in 1967.

Geraldine C. Schwartz

Components Division, East Fishkill, New York

B.A., Brooklyn College, 1943; M.A. and Ph.D. in Physical Chemistry, 1945 and 1948, respectively, Columbia University. NIH Post-Doctoral Fellowship 1948–1950. Before coming to IBM, she was Assistant Professor of Chemistry at Bard College. She joined the IBM Components Division at Poughkeepsie in 1964 and has worked on a variety of thin film problems. She is currently engaged in development of thin film technology for integrated circuits. Member, Sigma Xi, RESA, AVS, and ECS.

Thomas O. Sedgwick

1BM Thomas J. Watson Research Center, Yorktown Heights, New York

Manager of Exploratory Thin Film Group since 1965; engaged in studies of semiconductor surface electronic properties and vapor transport reactions. B.S. in Chemistry, University of Massachusetts, 1955; Ph.D. in Chemistry, Polytechnic Institute of Brooklyn, 1962; Postdoctoral Fellowship (Fulbright, German Federal Government) University of Munich, 1961–62; Process Development Chemist, American Cyanamid Co., Stamford Research Labs., 1955–57. Member, Electrochemical Society.

Raphael Tsu

IBM Thomas J. Watson Research Center, Yorktown Heights, New York

Research staff member; theoretical and experimental studies in the broad area of semiconductor physics. B.S., 1956, University of Dayton; M.S. and Ph.D., 1957 and 1960, respectively, Ohio State University, all in Electrical Engineering. Research Associate at the Antenna Laboratory working on the theory and experiments on the scattering matrix while completing Ph.D. Worked on electron-phonon interactions and diffraction delay lines at the Bell Telephone Laboratories, 1961–64. Assistant Professor of Physics at Trinity University, 1964–66. Joined IBM in 1966. Member, American Physical Society, Sigma Xi and Sigma Pi Sigma.

Duane O. Wilson

IBM Research Laboratory, San Jose, California

B.A. in Physics, 1968, University of California at Irvine. Joined IBM Research in 1968 as a Research Assistant. Currently working on experiments dealing with electron paramagnetic resonance and far-infrared Michelson interferometry.

Contents of previous two issues

September 1969		Vol. 13, No. 5	
Symposium on Instabilities in Semiconductors Editor's Note	486	Bulk Negative Differential Conductivity in Germanium: Theory by E. G. S. Paige	562
A Perspective on Acoustoelectric Instabilities by R. Bray	487	Wave Propagation in Negative Differential Conductivity Media: n-Ge by A. C. Baynham	568
Parametric Amplification and Frequency Shifts in the Acoustoelectric Effect by S. Zemon and J. Zucker	494	Trap-controlled Field Instabilities in Photoconducting CdS Caused by Field-quenching by K. W. Böer	573
A Brillouin Scattering Study of Acoustoelectric Domain Formation in n-GaAs by D. L. Spears	499	The Effects of Hydrostatic Pressure on Hot-electron Phenomena in n-InSb by J. C. McGroddy, M. I. Nathan, W. Paul, S. Porowski, J. S. Smith, Jr. and W. P. Dumke	580
Off-axis Acoustoelectric Domains in CdS by A. R. Moore, R. W. Smith and P. Worcester Acoustoelectric Amplification in InSb	503	Location of the (111) Conduction Band Minima in the Ga _x In _{1-x} Sb Alloy System by M. R. Lorenz, J. C. McGroddy, T. S. Plaskett	500
by R. K. Route and G. S. Kino Characteristics of Semiconducting Glass Switching/ Memory Diodes by A. D. Pearson	507 510	and S. Porowski	583 587
Physics of Instabilities in Amorphous Semiconductors by H. Fritzsche	515	A Topological Theory of Domain Velocity in Semiconductors by J. B. Gunn	591
Current Filaments in Semiconductors by A. M. Barnett	522	Avalanche Shock Fronts in p-n Junctions by D. J. Bartelink and D. L. Scharfetter	596
Current Oscillations in Deep-level Doped Semiconductors by B. G. Streetman and N. Holonyak, Jr	529	Coherent Microwave Emission from an Electron-hole Plasma by B. B. Robinson and G. A. Swartz	601
Space-charge-limited Current Instabilities in n ⁺ -π-n ⁺ Silicon Diodes by A. K. Hagenlocher and W. T. Chen	533	Negative Differential Mobility in Nonparabolic Bands by G. Persky and D. J. Bartelink	607
Time Response of the High-field Electron Distribution Function in GaAs by H. D. Rees	537	The Role of Acoustic Wave Amplification in the Emission of Microwave Noise from InSb by C. W. Turner	611
Negative Conductivity Effects and Related Phenomena in Germanium. Part I		Noise Emission from InSb by A. H. Thompson and G. S. Kino	616
by J. C. McGroddy, M. I. Nathan and J. E. Smith, Jr.	543	Microwave Emission and High-frequency Oscillations in n-Type InSb by D. K. Ferry and W. A. Porter	621
Negative Conductivity Effects and Related Phenomena in Germanium. Part II by J. E. Smith, Jr., M. I. Nathan and J. C. McGroddy	554	Summary of Microwave Emission from InSb: Gross Features and Possible Explanations by M. Glicksman	626