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Calculation of the  Current  Density  in  the  Contacts 
of a Thin Film Resistor 

Abstract: The  two-dimensional  boundary  value  problem appropriate  to  current flow in a film  resistor is examined. A simple  closed- 
form  solution  for  current  density  into  the  contact is found to exist  for  the important case of a thin  film  resistor  with  extended  lands. 
The spatial dependence of the current  density into  the  contact  is  found  to  be  similar  to that obtained by Kennedy  and  Murley for the 
diffused  resistor,  with film thickness  entering the  functional  dependence  in a role  analogous to  the diffusion  length of the  dopant ion in 
the diffused  resistor. 

Introduction 
The trend  toward higher current densities in integrated 
circuit components, and the importance of current density 
in  promoting electrical degradation, have given impetus 
to  the mathematical analysis of certain flow problems 
that have been neglected in  the past. A recent publication 
by Kennedy and Murley’ gives a numerical solution to 
the problem of the current distribution in the contacts 
of a diffused resistor. The treatment is general in that 
it first gives a solution for  the diffusion problem involved 
in  the fabrication of the resistor, followed by a solution 
of the two-dimensional flow problem using the calculated 
conductivity profile. The problem considered in the 
present communication is the constant-conductivity situa- 
tion appropriate to a film resistor. A solution for the 
current density exists in closed form, and  it is shown that 
in the important case of the “extended land,” such as is 
used in cermet and nichrome resistors, a surprisingly simple 
solution exists for  the current density and its integral. 
It is further  found that  the spatial dependence of current 
density in the contact closely  resembles that obtained 
by Kennedy and Murley for  the diffused resistor, with 
the thickness of the film playing a role analogous to  that of 
the diffusion length of the dopant  ion in the diffused 
resistor calculation. 

The calculation 
Consider a resistor of uniform electrical conductivity u 
and thickness t, situated in  the complex { = ( f jr] plane 
shown in Fig. l(a),  and having infinite extent in the 
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positive and negative f directions. Contacts of infinite 
conductivity and finite length L are applied as shown, 
and it is desired to solve the boundary value problem 
for J(x), the current density into the contact through 
the plane 11 = 0. The origin in the { system is at 0’, and 
the origin for the coordinate x is at 0, which is the inner 
edge of the contact along the positive 2: axis. The resistor 
and its  lands have finite width W in the direction per- 
pendicular to  the plane of the figure.  Since the corre- 
sponding two-dimensional boundary value problem 
has been considered in the literature,2 we shall first out- 
line the solution and  then apply suitable simplifications. 

The strip  in the { plane is mapped into the upper half 
of the z1 plane, Fig. l(b), by the transformation 

where the constants have been chosen so that  the origin 
in the { plane is transformed into  the origin in the z1 
plane, and  the point { = - j t  is transformed into infinity 
in the z1 plane. The equipotentials between f = d/2 and 
E = ( 4 2 )  + L, 11 = 0, are transformed into equipotentials 
between points a and /3 in the z1 plane by the substitutions 

7r 
a = - tanh - and 

%-d 
2t 4 t  

/3 = - tanh (< + L.) , P 

2t 2t  2 

the image equipotentials along the negative f axis being 
the negative of Eq. (2). 
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The derivative of the function w mapping the inside 
area of the rectangle shown in Fig. l(c)  onto  the upper 
half  of the z1 plane is given  by the Schwarz-Christoffel 
transformation 

The relative current density3 (Jrel) may  now be calculated 
to be 

= l(sech2 $){(tanh’ W l  t - t a d ’  
4t 

2t 

CuIcuIuting Jrel for a thin film resistor 
Film resistors used in microelectronics frequently employ 
an “extended land,” in which a conductive land com- 
pletely overlays the resistive  film  except in those areas 
in which a resistor is to be fabricated, Fig. (2). This cor- 
responds, in the present model, to making L >> t .  For 
this situation, tanh’ (?r/2t)[(d/2) + L] + 1, and Eq. (4) 
becomes 

1 - tanh’ (?r{/2t) 
J r e l  = I[ tanh’ ( ~ { / 2 t )  - tanh’ (?rd/4t) 

The difference of the squares of the hyperbolic tangents 
may  be written as 

tanh2 (?r{/2t) - tanh’ (3rd/4t) 

= [tanh (?rl /2t)  i- tanh (?rd/4t)J 

X [tanh (?r{ /2t)  - tanh (?rd/4t)]. ( 6 )  

By using 

tanh a f tanh b = 
sinh (a  f b)  
cosh OL cosh b ’ 

Jrel can be further reduced to 

J r e l  = 
cosh (7rd/4t) 

[sinh (f + :) sinh :]’* (7) 

In deriving Eq. (7) the coordinate x has been introduced, 
and we have set 7 = 0 preparatory to calculating the 
current density into  the land. 

In a  thin film resistor the minimum distance between 
contacts is  about 1 mil (25 pm) and  the maximum thickness 
is about 1 pm,  giving d/2t a minimum value of approxi- 
mately 12. The range of interest of Eq. (7) is  thus d/t>> 1. 
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Figure l(a) Geometry of the  resistor  in  the  complex { 
plane. (b) Geometry  of Fig. l ( a )  transformed  into  the 
complex z1 plane. (c)  Model solution of  the  boundary  value 
problem (to be  mapped onto the z1 plane). 

Figure 2 Cross  section of typical  thin  film  resistor,  illus- 
trating  an  “extended  land.” (a) Blanket  deposition of land 
metal on resistive  sheet. (b) Removal  of  shunt  conductor 
to  form  resistor. 
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Figure 3 Current density vs. distance. (Distance normalized 
with respect to t . )  

Evaluating Eq. (7) for d/t  large gives: 

lim J~~~ = l/(eTz" - I ) + ,  

Normalizing, we have 

d / t - m  

The final result for current density is then 

where W is the width of the  land (assumed equal to  the 
width of the resistor) and Z is the  total current. The cu- 
mulative current flowing through the interface between 
contact and resistor is therefore 

~,(x) = w s,' J(x) dx = - sec-1 (eTZ/2'). 
21 
n- (9) 

Discussion 
Equation (8) gives the current density J(x) into  the  land 

68 as a function of distance from  the inner edge of the con- 

Figure 4 Integrated current vs. distance. (Distance nor- 
malized with respect to t . )  

tact,  and  Eq. (9) gives the  total current flowing from 
0 to x. Current density is plotted as a function of distance 
in Fig. 3 and  the integrated  current is shown in Fig. 4. 
From Fig. 3, the current density at x = 0.2t is approxi- 
mately equal  to  the value expected in  the resistive sheet 
in  the  approximation of uniform flow; that is, J = Z/ Wt. 
At x = t ,  J has  about 21% of this value, while at x = 0 the 
current density becomes infinite. From  the integral  func- 
tion, Fig. 4, approximately 87% of the total current 
into  the contact flows in  the region between x = 0 and 
x = t, while 97y0 is contained within x = 2t. 

The problem considered here is analogous to the 
Kennedy-Murley diffused-resistor calculation, with the 
assumption of constant electrical conductivity in  the 
resistive film and with boundaries delineated by the  thin 
film geometry. Figure 5 compares the present result for 
J(x) with the  Kennedy-Muley relaxation  solutions for n- 
and p-type  instantaneous-source and constant-surface im- 
purity  concentration diffusions, while Figure 6 compares 
the current  integrals Zo(x). It is seen that  the functional 
forms of the solutions are remarkably similar when one 
thinks of the thickness t of the  thin film resistor as  anal- 
ogous to the diffusion length LD of the  dopant  ion of the 
diffused resistor. 

It is also of interest to obtain some  estimate of the 
importance of the assumption of infinite conductivity 
in  the lands.  Whereas  common resistive films may have 
a sheet resistivity as low as 5 ohms per  square, if we 
choose for  the sheet resistivity of the  lands  the high value 
of 50 miUiohms per square, the conductance ratio of 100 
suggests that  the present solution  should  be a close approx- 
imation.  Unpublished calculations by Kennedy and  Mur- 
ley provide an interesting  estimate of the deviations to be 
expected for smaller conductance  ratios. The numerical 
solution  graphed in Fig. 7 was obtained by relaxation 

J .  OVEWEYER IBM J. RES. DEVELOP. 



Kennedy  and  Murley p type ""_ Kennedy  and  Murley n type 

" - P r e s e n t  work, thin film 

(a)Instantaneous source 
(b) Constant C, 

) (a )  

h 

*( 

4 
v 

(x,, or x / L D  

Figure 5 Comparison of the  current density J(x) for a thin 
film resistor with that  for a diffused resistor. 

methods for two sheets of equal thickness with a con- 
ductivity ratio of 2, as diagrammed in the figure. The 
solution for J(x) given  by Eq. (8) is also plotted and 
is seen to agree with the numerical solution within 25% 
for 0 < x < t ,  an interval which includes 87% of the 
current. It thus  appears that  the assumption of infinite 
conductivity should not prove very restrictive in many 
situations of technical importance. 
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Figure 6 Comparison of integrated current Z,(x) for a thin 
film with that  for a diffused resistor. 

Figure 7 Current density profiles compared. (a) Relaxation 
calculation for  the geometry  shown  in  the inset. (b) Result 
from Eq. (S),  for m a n d +  co. 
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