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Calculation of the Current Density in the Contacts

of a Thin Film Resistor

Abstract: The two-dimensional boundary value problem appropriate to current flow in a film resistor is examined. A simple closed-
form solution for current density into the contact is found to exist for the important case of a thin film resistor with extended lands.
The spatial dependence of the current density into the contact is found to be similar to that obtained by Kennedy and Murley for the
diffused resistor, with film thickness entering the functional dependence in a role analogous to the diffusion length of the dopant ion in

the diffused resistor.

Introduction

The trend toward higher current densities in integrated
circuit components, and the importance of current density
in promoting electrical degradation, have given impetus
to the mathematical analysis of certain flow problems
that have been neglected in the past. A recent publication
by Kennedy and Murley® gives a numerical solution to
the problem of the current distribution in the contacts
of a diffused resistor. The treatment is general in that
it first gives a solution for the diffusion problem involved
in the fabrication of the resistor, followed by a solution
of the two-dimensional flow problem using the calculated
conductivity profile. The problem considered in the
present communication is the constant-conductivity situa-
tion appropriate to a film resistor. A solution for the
current density exists in closed form, and it is shown that
in the important case of the “extended land,” such as is
used in cermet and nichrome resistors, a surprisingly simple
solution exists for the current density and its integral.
It is further found that the spatial dependence of current
density in the contact closely resembles that obtained
by Kennedy and Murley for the diffused resistor, with
the thickness of the film playing a role analogous to that of
the diffusion length of the dopant ion in the diffused
resistor calculation.

The calculation

Consider a resistor of uniform electrical conductivity ¢
and thickness ¢, situated in the complex { = £ - jy plane
shown in Fig. 1(a), and having infinite extent in the
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positive and negative £ directions. Contacts of infinite
conductivity and finite length L are applied as shown,
and it is desired to solve the boundary value problem
for J(x), the current density into the contact through
the plane » = 0. The origin in the { system is at 0/, and
the origin for the coordinate x is at 0, which is the inner
edge of the contact along the positive £ axis. The resistor
and its lands have finite width W in the direction per-
pendicular to the plane of the figure. Since the corre-
sponding two-dimensional boundary value problem
has been considered in the literature,” we shall first out-
line the solution and then apply suitable simplifications.

The strip in the ¢ plane is mapped into the upper half
of the z, plane, Fig. 1(b), by the transformation

t=tull@-2)/ 5] -0 o

where the constants have been chosen so that the origin
in the ¢ plane is transformed into the origin in the z;
plane, and the point { = —jz is transformed into infinity
in the z; plane. The equipotentials between £ = d/2 and
£ = (d/2)+ L,y = 0, are transformed into equipotentials
between points « and 8 in the z; plane by the substitutions

a = -;Lttanhg and
)
™ T (d
8= 2ttanh2t(2+ L> ’

the image equipotentials along the negative ¢ axis being
the negative of Eq. (2).
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The derivative of the function w mapping the inside
area of the rectangle shown in Fig. 1(c) onto the upper
half of the z; plane is given by the Schwarz—Christoffel
transformation

é_w__ 2 2v—}r.2 _ p2y-}
dzl—(zl @)z — B 3

The relative current density® (J,.;) may now be calculated
to be

S ] Jaw e
re! d¢ dz, di
= <sech2 1r2—§;>{<tanh2 7—;7{ — tanh? 7—:5)
B -3
X | tanh® g—f — tanh’ % (g + L):l} ' )

o Calculating J..; for a thin film resistor

Film resistors used in microelectronics frequently employ
an ‘“‘extended land,” in which a conductive land com-
pletely overlays the resistive film except in those arecas
in which a resistor is to be fabricated, Fig. (2). This cor-
responds, in the present model, to making L >> ¢. For
this situation, tanh® (x/20[(d/2) + L]1— 1, and Eq. (4)
becomes

— 2 3
1 tanh® (r{/2¢) ] ) )

oo = “:tanhz (w{/2t) — tanh® (rd/4t)

The difference of the squares of the hyperbolic tangents
may be written as

tanh® (r¢/2t) — tanh® (rd/41)

= [tanh (r{/2¢) + tanh (xvd/41)]}

X [tanh (r{/2f) — tanh (rd/41)]. (6)
By using

sinh (a £ b)

h hs =
tanh a = tanh & cosh a cosh b’

J:e1 €an be further reduced to

cosh (wd/4t)

Jre] = d %' (7)
s, T x\ ., wx
|:s1nh 2 (t + t> sinh 2t:l

In deriving Eq. (7) the coordinate x has been introduced,
and we have set » = 0 preparatory to calculating the
current density into the land.

In a thin film resistor the minimum distance between
contacts is about 1 mil (25 um) and the maximum thickness
is about 1 pm, giving d/2¢ a minimum value of approxi-
mately 12. The range of interest of Eq. (7) is thus d/:>> 1.
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Figure 1(a) Geometry of the resistor in the complex ¢
plane. (b) Geometry of Fig. 1(a) transformed into the
complex z: plane. (¢) Model solution of the boundary value
problem (to be mapped onto the z: plane).

Figure 2 Cross section of typical thin film resistor, illus-
trating an “extended land.” (a) Blanket deposition of land
metal on resistive sheet. (b) Removal of shunt conductor
to form resistor.
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Figure 3 Current density vs. distance. (Distance normalized
with respect to £.)

Evaluating Eq. (7) for d/t large gives:
lim  J,, = 1/E™" — 1).

dft—®

Normalizing, we have

f Joor dx = [— sec”’ (e”m)] = t.
0 ™ 0

The final result for current density is then

I 1
Jx) = — ————

(x) Wt (e'n'z/l — 1)% ’ (8)
where W is the width of the land (assumed equal to the
width of the resistor) and I is the total current. The cu-
mulative current flowing through the interface between
contact and resistor is therefore

I(x) = W f J(x) dx = %{sec_l €. ©)
0
Discussion

Equation (8) gives the current density J(x) into the land
as a function of distance from the inner edge of the con-
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Figure 4 Integrated current vs. distance. (Distance nor-
malized with respect to ¢.)

tact, and Eq. (9) gives the total current flowing from
0 to x. Current density is plotted as a function of distance
in Fig. 3 and the integrated current is shown in Fig. 4.
From Fig. 3, the current density at x = 0.2¢ is approxi-
mately equal to the value expected in the resistive sheet
in the approximation of uniform flow; that is, J = I/ Wz,
At x = ¢, J has about 219, of this value, while at x = 0 the
current density becomes infinite. From the integral func-
tion, Fig. 4, approximately 879, of the total current
into the contact flows in the region between x = 0 and
x = ¢, while 979, is contained within x = 2¢.

The problem considered here is analogous to the
Kennedy-Murley diffused-resistor calculation, with the
assumption of constant electrical conductivity in the
resistive film and with boundaries delineated by the thin
film geometry. Figure 5 compares the present result for
J(x) with the Kennedy-Murley relaxation solutions for n-
and p-type instantaneous-source and constant-surface im-
purity concentration diffusions, while Figure 6 compares
the current integrals I,(x). It is seen that the functional
forms of the solutions are remarkably similar when one
thinks of the thickness ¢ of the thin film resistor as anal-
ogous to the diffusion length Ly, of the dopant ion of the
diffused resistor.

It is also of interest to obtain some estimate of the
importance of the assumption of infinite conductivity
in the lands. Whereas common resistive films may have
a sheet resistivity as low as 5 ohms per square, if we
choose for the sheet resistivity of the lands the high value
of 50 milliohms per square, the conductance ratio of 100
suggests that the present solution should be a close approx-
imation. Unpublished calculations by Kennedy and Mur-
ley provide an interesting estimate of the deviations to be
expected for smaller conductance ratios. The numerical
solution graphed in Fig. 7 was obtained by relaxation
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Figure 5 Comparison of the current density J(x) for a thin
film resistor with that for a diffused resistor.

methods for two sheets of equal thickness with a con-
ductivity ratio of 2, as diagrammed in the figure. The
solution for J(x) given by Eq. (8) is also plotted and
is seen to agree with the numerical solution within 259,
for 0 < x < t, an interval which includes 879, of the
current. It thus appears that the assumption of infinite
conductivity should not prove very restrictive in many
situations of technical importance.
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Figure 6 Comparison of integrated current /.(x) for a thin
film with that for a diffused resistor.

Figure 7 Current density profiles compared. (a) Relaxation
calculation for the geometry shown in the inset. (b) Result
from Eq. (8), for o1ama —> 0.
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