T. Bohlin

On the Maximum Likelihood Method of Identification

Abstract: The maximum likelihood principle of estimation applied to the linear black-box identification problem gives models with
theoretically attractive properties. Also, the method has been applied to industrial data (various processes in paper production) and

proved able to work in practice.

This paper presents further developments of the method in the case of a single output. The reliability and speed of the identification
algorithm have been improved, and the method has been made easier to use. A rather sophisticated computer program, however,
was needed. It employs a generalized model structure, an improved hill-climbing algorithm, and an automatic procedure for deter-
mining model orders and transport delays. Some statistics from performance tests of the program are presented.

Review of development

The maximum likelihood method of numerical identifica-
tion of linear dynamics systems for a single output was
introduced in 1965 and was shown to have good theoretical
properties.”* The actual performance of the method was
tested on a number of artificially generated samples of data.
This performance agreed with theoretical predictions. At
least three different aspects of the performance are essen-
tial: 1) How often and how fast the method gives a result,
2) how good the result is, and 3) how easy the method is to
use.

It is natural, in designing the method, that the second
aspect gets the highest attention, since it depends on the
basic principle adopted for the method. The first aspect
depends on the algorithm, which can very likely be im-
proved later, and something can always be done about
the third aspect by automating, i.e., by writing a good
computer program.

The initial investigation of “how good the result is”"?
showed that for long samples the method has the highest
possible accuracy—it is asymptotically efficient. This result
holds theoretically and also experimentally for data artifi-
cially generated according to a model consistent with the
assumptions of the identification method. For practical
applications using industrial data, this result, of course, is
not conclusive. How true the result is in that case will
depend on how well the industrial process satisfies the
assumptions of the identification method. They are:

1) Linearity

2) Normality of disturbances

3) Time-invariance of process characteristics

4) Time-invariance of disturbance characteristics.
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For a given sample of data, all four assumptions can
be checked.

The results also depend on whether the model has the
right structure and order. It is virtually impbssible to
check this; it is doubtful whether the real process has
any order at all. Any model may then be termed as
“correct” if it predicts correctly and “good” if it is also
simple.

The structure, or form of model, was chosen with
other requirements in mind than to be “right,” namely,
to be general enough to fit many processes, to make the
computations simple, and to make the theory manageable.

Therefore, the second development phase has been
to test the method on industrial data to see if assumptions
held, if the structure was good, what orders were reasonable
and, generally, to see how the method would work in
practice. This was done for 1} years in 1965-66, using
various processes connected with paper production as the
sources of data.’™®

The result of this test was that the method worked
very well in practice, if one knew how to handle it. In
particular, the ability of the method to tolerate various
kinds of random disturbances was encouraging and went
beyond what the theory claims. In practice both normality
and the requirement that disturbances be a time-invariant
stochastic time-series can be relaxed. As a result of some
of these tests, however, the model structure was changed.

The “if” clause is significant. It is to indicate that while
the second aspect of performance (quality of model) was
very good, the other two aspects (speed and ease of use)
could be improved. Work on this has taken another year,
and the purpose of this paper is to report the improvements
that have been made.
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ances. In 1), 2), and 3) disturbances enter with the input,
in 4) they are added to the output. The form 1) allows
white noise only. In 2) the disturbance spectrum must be
known; it is specified through the pre-filter F. In 3) and 4)
disturbance spectra need not be white and need not be
known. Their characteristics are estimated, together with
the other parameters.

Of course, it is not possible to appoint one of the
structures as the “best” in general. Any one may be best
if it happens to fit the particular process studied. How-
ever, it is believed that in practical cases of interest there
are always at least observation errors added to the output,
so that the structure should reflect this fact explicitly.
Then the form 4) with a separate disturbance term
NCE DD 'z Ne(r) is most adequate. Also, since the
spectrum is arbitrary, the structure allows random drift.
Drift has been present in most samples of industrial
data investigated during the applications.

The form 4) seemingly contains more parameters than
the alternatives, since it is most general. However, if it
fits the process, the model will in effect contain fewer
parameters. If 4) must be written in one of the other forms,
one has to pay for this by increasing the order and there-
fore the number of parameters. For instance, if the order
of all polynomials in 4) is n, one gets 4n - 2 parameters
in 4) and 6n -+ 2 parameters in 3). In case 1) the equivalent
number of parameters (for a fixed accuracy of approxi-
mation) depends on the parameter values, but is in any
case > 4n + 2. For quite reasonable parameter values
(e.g., zeroes of C(z™") close to the unit circle) it can be
much higher. The advantage of 4) over 1), 2), and 3) is
accentuated if more than one input (m, say) are acting
simultaneously. Then the number of parameters in a
general fixed-order structure is (m -+ 1)(2n + 1) in 4),
(m+ Dmn+ 2n+ 1)in3),and > (m+ Dmn+ n+ 1)
in 1).

It is possible to retain the advantage of 1) by deliber-
ately identifying a model of high order and afterwards
rewriting it in either of the forms 3) or 4), eliminating
redundant parameters.® However, the eliminating oper-
ation may be cumbersome, especially for more than one
input. Whether this alternative is faster would depend
on the eliminating routine and the required minimal
order of the model of form 1).

The allowance in the case 4) for an arbitrary disturbance
spectrum has turned out to have an important practical
consequence: If many input variables u influence the
output y simultaneously, it is feasible, in practice, to
analyze the influence of one input variable at a time. The
effects of other inputs are then absorbed in the disturbance
term together with all other variables (measurable or
unmeasurable) that add up to form the disturbance. This
is so because the effects of inputs and disturbances have
been separated in the model. Disturbances, and hence
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other (stationary) inputs do not therefore affect the A and
B operators. In cases 1), 2), and 3) they do.

Modeling algorithm

The algorithm for maximum likelihood modeling, de-
scribed briefly in the following, is a modification and
extension of one given in Ref. 2. Since one obviously
needs a digital computer to implement it, the algorithm
will be described in terms of a computer program.

The complete modeling program comprises a set of
subroutines. Some of these are aimed at improving on
the third aspect of performance (ease of use), mentioned
initially, but are not strictly necessary for the method.
Only their functions will be stated. The hill-climbing
algorithm will be described in more detail, since it is
crucial for the performance of the method. Also, the
method used to determine unknown orders and input
delays will be outlined.

The subroutines are:

A. A basic identification algorithm: It estimates the un-
known polynomials 4;, B,, C, D and constants A, «
in the structure

W = 2 EED e - 7

e
+ A D(Z-l)e(t) + & 1)

by maximizing the likelihood function, when poly-

nomial orders and input delays 7, have been specified.

It also calculates the covariance matrix of the esti-

mation errors. Maximizing the likelihood function

is equivalent to minimizing a particular loss function

V(6), where 6 is the collection of all unknown con-

stant parameters except A. The loss V(6) is the sum

of squared one-step-ahead prediction errors* or
model residuals \e(#|8), defined by (1) for any given

6 (Ref. 1). The routine consists essentially of two

parts, alternately executed until little reduction in

loss is received:

o A routine for evaluating the loss function and its
first- and second-order derivatives at a given point
9.

& A hill-climbing routine, which calculates a new
trial point °*'. The term “hill-climbing” is used
in spite of the fact that a minimum is being sought.

B. A routine testing for redundancy: It is executed when

A has found a solution and decides, by chi-square

tests, whether parameters that have been tagged as

possibly redundant, are significantly different from

* This loss function may well be taken to define the estimate, if, for some
reason, one does not believe in maximum likelihood or does not think that
disturbances are normal.
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zero. If not, the values are set to zero, and values of
nonzero parameters are adjusted accordingly.

C. A routine setting orders and delays: Repeated exe-
cutions of the sequence C, A, and B make a search
routine in the space of order and delay values. Its
purpose is to arrive at the lowest number of parameters
consistent with a near-minimal loss. The function of
C is to decide upon new trial settings or to make a
final decision on orders and delays, while A and B
determine the outcome of a trial setting.

When the search routine has accepted a model, the follow-
ing two routines test the validity of certain basic assump-
tions for the identification:

D. A routine testing time-invariance: It identifies two
models based on the first and second halves of the
data sample and tests, by chi-square test, whether
the two models deviate significantly.

E. A routine for testing disturbances: This routine
examines the sequence of computed model residuals
e(?). Theoretically, these residuals should be normally
distributed and uncorrelated. In practice normality
is not required, but individual, large residuals, even
if tolerated by the identification method, may indicate
that something is wrong with the data at that point.
Therefore, the routine checks the magnitudes and
points out to the user any residuals greater than four
standard deviations. This means tolerating larger
errors than is conventional in statistical tests. How-
ever, a limit of four standard deviations satisfies the
purpose of guarding against large errors in the data,
and it gives an added safety against error indications
in case the data sample should not quite behave
according to theory (e.g., deviate from normality).

The identification routine describes the process behind
the data sample by a model of the form 1), which is a
system of difference equations. Often more conventional
process characteristics are desired. Therefore, the program
includes
F. A set of routines for analysis of the model: The routines
derive from the model 1):
¢ A step response for each input
A Bode diagram for each input
A power spectrum of random disturbances
A decomposition of the data sample into effect of
inputs and disturbances
¢ A minimum-variance control law, including feed-
back and feed-forward terms (if any)
The closed-loop step response
The theoretical lower limit for the control error
on this particular process.

Thus, the normal sequence of executions in a complete

analysis of a data sample is C, A, B, C, A, B, --- , D,
A, A, E, F. However, each execution of A results in a
complete model of the form 1) with specified order.
Therefore, one may use A alone in order to save com-
puting and programming.

Determining orders and input delays

The order and (integer) delay parameters in the model 1)
are determined in similar ways; “delays” 7, are defined
as the lowest powers in the polynomials z"'B,(z), while
“orders,” denoted n?, n’, n°, and r’, are the highest powers
in A;, B;, C, and D respectively. Further, the binary
variable #°, is introduced, which is zero if k = 0 and unity if
k # 0.

The space of all possible combinations of integer order
and delay parameters is separated into m + 1 subspaces,
which are treated independently. Each subspace is spanned
by a triplet (0%, n%, 7,), i = 1, - -+ , m or («, n’, n"). This
arbitrary separation is motivated chiefly by computing
efficiency, but is further supported by the following
reasoning: The concept behind the choice of the structure
1) is one of superposition of effects of a number of known
independent variables and one unknown but independent
disturbance, to form the observed output. Therefore,
it is reasonable that a choice of order and delay param-
eters associated with a particular input is not influenced
by those associated with other inputs or with the dis-
turbance.

As stated, a search method is used to determine ,7,
nt, nd, n’, nd, and nk, and as such, defined by a measure
to judge the outcome of a trial setting of order and delay
parameters and a strategy for choosing a new trial setting.
It is outlined below.

o Measure of significance
Obviously, there is a trade-off between number of param-
eters and resulting loss; increasing the number of param-
eters reduces loss. What one needs is to find 2 minimal
number above which further loss reduction is small.
This is achieved by formulating the problem in a prob-
abilistic language; the approach has been used elsewhere:®
For long samples, and under the null-hypothesis that
all orders are at least equal and all delays are at most
equal to those of the true process, the reduction in loss
received by increasing the total number of parameters
from n to »’ has a chi-square distribution with »’ — »n
degrees of freedom, if divided by the loss and multiplied
by the length N of the sample.® Thus the range of probable
values of a chi-square variable determines what reduction
can be expected by increasing model orders above those
of the true process; such a reduction is nonsignificant.
Conversely, if the computed reduction is larger than
that range, the reduction is significant and observations
contradict the null hypothesis.
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The range of the tolerance interval depends on the
confidence one wishes to have in a possible rejection
of the null hypothesis. It may be determined by the user
by specifying the risk he is willing to run that the decision
might be wrong." This gives the possibility to influence
the complexity of the final model; specifying a smaller
risk for a decision ‘“‘order is greater than »” to be wrong
results in fewer such decisions and therefore a tendency
towards low-order models.

With specified confidence the range is given by the
definition of the chi-square variable.'® In particular, a
nonsignificant, relative loss reduction has mean (o’ — n)/N
and variance 2(n’ — n)/N.

For a given setting (%, %, 7;), i = 1, -+ , m and
°, n’, n°) the B-routine carries out a number of tests
to determine the significance of the setting compared to
lower-order alternatives. Thus, losses are compared for
the nominal setting and a series of 8(m + 1) alternatives,
determined by modifying the triplets (n$, n2 + 7., 75)
i =1, --- , m by the 2* possible combinations of
{73, -1+l and the triplet (2%, n’, n°) by those of
{

In this way the B-routine calculates the sensitivity of
the loss function with respect to order and delay param-
eters. The result is obtained in the form of an indicator
vector with 3(m + 1) components {I¢, I}, I7, -+ , IZ,
It I7, I°, I', I"} stating whether the sensitivities with
respect to individual components of the trial setting
(', i® 4 71, 11, oo, 0% ol Ty Tw, 15, 0, At} are

significant or not.

o Search strategy

This is heuristic and not claimed to be optimal in any
sense. It has two functions: viz., to make decisions re-
garding the true order and delay parameters, and, if
needed, to determine a new trial setting.

In order to formulate the search strategy, introduce
as state variables for the search integer intervals (0, r}),
7, Y, O, r), and (0, %), such that coefficients of poly-
nomials 4;, z''B,, C, and D respectively are zero for
powers outside the corresponding intervals. A sequence
of decisions, based on information from the B-routine,
narrow the intervals successively. The following decision
rule is applied:

If ! =101 =0, then r; = nf — 1

and ¥} =nl+ 71, — L

If I =0, then r; = 7, + 1.
If '=1"=0, then ¥ = n — 1
and = n*— 1.

Otherwise intervals are unchanged.

The rule is supported by the following reasoning: Multi-
plying by a common factor (I — «z™') numerator and
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denominator of a ratio of polynomials in the model 1)
raises the order of the model without changing the loss.
Conversely, a test result indicating two simultaneous non-
significant high-order coefficients suggests that a common
factor is present and, therefore, that the orders of the
associated ratio are excessive. A single nonsignificant high-
order coefficient, however, does not imply a common
factor and therefore, necessarily, that the order of the
associated polynomial is excessive; higher-order coefficients
may be nonzero. (The rule may lead to a wrong deci-
sion under unfortunate circumstances. Even if the true
orders are higher than those of the model, two simul-
taneous, zero high-order coefficients may occur acci-
dentally for particular, isolated combinations of coefficient
values. In such cases the search routine will fail and
decide upon a model with too low order.)

The current values of the intervals thus carry the sum
of the latest and previous decisions. Normally this sum
is not sufficient to define the order and delay parameters
uniquely. In that case the main rules for setting new
orders and delays are:

n? is incremented if I =1 and »f -+ 1< 7§
decremented if I¢ = I' = 0
unchanged otherwise.

n? + 7; is incremented if I' = land ' + 7, + 1 < /4
decremented if It = I} = 0
unchanged otherwise.

7, is incremented if I = 0
decremented if I = land 7, — 1 2> 7}
unchanged otherwise.

n’ is incremented if I° = landn" 4+ 1 < r
decremented if I = I = 0
unchanged otherwise.

n" is incremented if I = land n + 1 < #*
decremented if I = I' = 0
unchanged otherwise.

=1,

c

These rules state that polynomials are expanded, within
the limits of the intervals, as long as expansions yield
significant decrease in loss. They are reduced when test
results indicate that reduction is feasible without signifi-
cant increase in loss.

The main rule is modified somewhat to treat the cases
when B; = 0 or when n% would otherwise become negative,
indicating that no effect of the input variable u; has been
detected in the output.

The search is terminated when all order and delay
parameters remain unchanged.

The search strategy described will normally result in
a process with two phases which can be more or less
pronounced, viz., increase of the total number of param-
eters, while loss decreases significantly, followed by
elimination of a number, An say, of redundant parameters,
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while loss ¥ increases with a small amount ~V An/N
(see also Fig. 2).

It is evident that good start values for the intervals
contribute essentially to the efficiency of the search. The
method is suited to a case where one has some a priori
knowledge of the true order and delay parameters, but
where this knowledge is uncertain. It is not suited and
therefore inefficient when the process has large and un-
known transport delays. In that case the routine will
have to search over possible delay values, starting with
zero and going upwards. Since a model must be built
for each delay value in the search, this will take time.

Hill climbing

The hill-climbing routine is based on a Newton-Raphson
algorithm; however, a number of modifications are tem-
porarily employed in situations where the algorithm can
otherwise be expected to fail.

The Newton-Raphson algorithm fits a quadratic surface
to the function V() by equating function values V, first
order derivatives ¥, and second order derivatives Vg
at the current point 6", and choosing the next point gt
as the (nearest) stationary point on the quadratic surface.
The algorithm is thus

g = 6" — K8 Vo), 3}

where K(0) = V;G(G). The matrix V;o is the so-called
pseudo-inverse of V4. It is equal to V;, whenever the
ordinary inverse exists.

The Newton-Raphson algorithm converges to a min-
imum of ¥(8), if the start value 6° is sufficiently close.
It may also converge from a far-off starting point, if
the function is sufficiently “well-behaved.” A sufficient
condition is that ¥,,(6") be non-negative definite, which
means that the surface must not curve downwards in
any direction. Otherwise (2) may converge to any sta-
tionary point, or it may diverge.

Therefore, the routine includes a number of tests in
order to detect when F(6) is not well behaved, so that
(2) must be modified. The following two properties of
the algorithm (2) are the base for such modifications:

i) The algorithm (2) converges to a minimum for any X
that is non-negative definite and sufficiently small.

ii) The algorithm (2) converges rapidly if K is also close
to V;g‘

The idea is thus to approximate Vys by a non-negative
definite matrix, whenever V), is not non-negative definite
by itself.

The tests and the modifications of (2), possibly following
the tests, are an attempt to automate the actions a “man
in the loop” may take to overcome the difficulties met
in practice, when hill-climbing on the likelihood surface.

The tests correspond to the judgments the man makes,
and the various modifications correspond to the set of
alternative strategies he can use. Specifically, the routine
deviates from the normal course of Newton-Raphson
hill-climbing, whenever one or more of the following
difficulties are met:

o Unfavorable curvature
This is indicated when ¥ 4(6") is not non-negative definite.
Now, this matrix is the sum of two terms.”®

Voo(8) = N Z es(t)e’s(t) + N’ ; e(t)eqs(t), (3)

of which the first one is always non-negative definite.
Further, the sequence of e(eg(f) is uncorrelated and has
zero mean for ¢ equal to the true parameter vector, i.e.,
near the minimum. The second term therefore becomes
relatively less important as the sample length N increases,
and the routine replaces Vy, by its first term V%, when the
complete second-derivative matrix is not non-negative defi-
nite. V% is further always employed whenever (6~ — 6%)
V«0~") > a constant, i.e., outside the immediate vi-
cinity of the minimum.

For 6-values far from the minimum neither V44 nor
Vi necessarily gives a good estimate of step length and
direction towards the minimum; however, using a non-
negative definite matrix guarantees that a step is taken
in the direction of decreasing loss. Also, V% requires
less computing per iteration. In fact, the second term
of (3) is needed only to ensure a faster-than-linear con-
vergence rate towards the end of the hill-climbing. The
value of the constant normally affects the computing
time only; a low value reduces the average amount of
computing per iteration but tends to increase the number
of iterations, a high value has the opposite effects. A
compromise, if required, must be determined empirically.

o Singularity

The difficulty arises when ¥,y (or F3k) contains linearly
near-dependent columns. This would have two effects
on a Newton-Raphson hill-climbing:

i) The routine inverting V4, would fail due to round-off
errors.

ii) Even if ¥, could be inverted the hill-climbing would
take a very long step along what is estimated to be
a “valley.” This would be unfortunate in cases where
the valley reflects only a local property of the function
v()."

In this case Vy, is approximated by a matrix having
exactly dependent columns. This matrix is pseudo-inverted.
The difference between the two inverses is, geometrically,
that while near a slowly descending valley the true inverse
aims at the absolute minimum, essentially stepping along
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the valley, the pseudo-inverse locates the relative min-
imum perpendicular to the valley.

Since the two solutions are very different, the step
taken depends critically on what is meant by ‘“near-
dependence.” In order to motivate the definition used
for the present purpose, introduce the diagonal matrix Q
of square roots of diagonal elements in V4. Also, factorize
Vg = OSSTQ, where $ is a left-triangular matrix.® The
rank of V,, is revealed by the diagonal elements of S.
In particular, the rank is n-p if and only if p diagonal
elements are zero. The corresponding columns in S are
then undetermined and may be set to zero.

Now, suppose the true inverse of a nonsingular or
near-singular matrix V4, were used to calculate a step
towards the minimum. Then the step taken would be

h=—VuVy=—0'S" 5707V, @

If, particularly, 6 is equal to the true parameter values,
then for large N, EV,V75 ~ AV, (Refs. 2 and 8), and
hence V, = AQSw, where w is a random vector such
that Ew = 0 and Eww” = I. The step taken from a
hypothetical position defined by the true parameter
values would be

h=—)\0'S" 'w, (5)

It follows from (4) that when a diagonal element s;;
is small, the step 4, taken in the direction i will generally
be large. Also, Eq. (5) indicates that this will be the case
also if the value of the loss function is near minimum;
i.e., the routine will step along a valley. Therefore the
following definition suits the purpose of evading the
effect of ii):

The non-negative definite matrix ¥, has p linearly
near-dependent columns if p diagonal elements of S
are smaller than a constant p. A corresponding ap-
proximation of ¥V, of rank n — p is defined by OS ,,Sf,Q,
where S, is obtained during factorization of O W0 "
by zeroing the p columns for which s;; < p.

The following reasoning serves to assess the effect of
using S, in place of S and thus to give some guidance in
assigning a value to the constant p. Similar arguments
have been used in Ref. 14, but based on an expansion of
Ve in terms of eigenvectors and eigenvalues instead of the
present factorization into triangular matrices. Assume that
one eigenvalue in ¥'5; dominates. Then one diagonal ele-
ment in S is essentially smaller than the others. Rearrange
rows and columns in Vy, so that in S the smallest diagonal
element appears in the last place. Then from (5)

he = — NG5 1w,

nnt nn

Now, the product —Ag.w, would be the step taken
if only 8, were allowed to vary. The factor s, may there-
fore be interpreted as an amplification of the step length
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due to the influence of near-dependent variables. By
limiting diagonal elements in S to those < p (and pseudo-
inverting) a bound is set to large amplifications of step
length in directions nearly perpendicular to the direction
of the slope. Thus the value of p determines how narrow
the (inverted) “hill” is allowed to be before it is treated
as a “valley.”

The value of p is set primarily to eliminate the effect
of ii). To ensure that i) is also avoided the routine esti-
mates the effect of round-off errors, and inverts if the
effect is tolerable. Otherwise it increases the constant
and repeats.

The concept of near-dependence is introduced here
to amend computational difficulties in the hill-climbing.
Although related to, it must not be confused with the
statistical definition of dependence between the com-
ponents of the estimate §. The latter dependence is estab-
lished by chi-square tests (see the preceding section).

o Instability

The new point 8" calculated from (2) may define an
unstable or otherwise unacceptable model. There are
two kinds of instability, viz., numerical instability of the
algorithm calculating ¥(#), and instability of the model.
None appears as long as all zeroes of the polynomials
A;, C, and D fall inside the unit circle. Hence, for each
order of a polynomial there is a fixed region of coefficient
values inside which a polynomial is acceptable, and the
region of admissible 8 is the logical product of the regions
for all polynomials. The boundaries of the stable regions
for polynomials are linear for first and second orders
and linear or curved for higher orders.

When a nominal 6" has been calculated, the algo-
rithm tests whether it falls inside the admissible region.
If not, the boundary first crossed by a straight line con-
necting §° and 6°*" is introduced as a constraint on the
approximating quadratic surface, i.e., a minimum is
sought on the boundary. For a linear boundary the min-
imum is calculated explicitly; for a nonlinear boundary
an iterative procedure is used, where the nonlinear bound-
ary is substituted by a sequence of tangent hyperplanes.

For @-values outside the stable region the likelihood
function may take on very large values. Since the function
is analytic, this means that the derivatives may have
large values also on the boundary and immediately inside,
in particular that V,, changes fast with 8. This is a severe
condition for a Newton-Raphson algorithm, which,
assuming constant V,,, then does not work well. For
this reason it is undesirable to have an approximating
point 6° on the boundary (unless it happens to coincide
with the minimum), and the routine simply reduces the
step taken by a factor of 0.9, whenever a boundary has
been hit. Thus a boundary may be approached iteratively
but not reached in a single step.
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The test on admissibility is repeated for the new, con-
strained point, and if this is also outside the admissible
region, the minimum of the quadratic approximation
is further constrained by an additional boundary. Con-
straints are introduced only when the inadmissible region
would otherwise be entered.

Thus, the hill-climbing may converge to an uncon-
strained point inside the region or to a constrained point
on the boundary. In the latter case the algorithm in effect
reduces the number of free parameters (by introducing
constraints) and this shows up in the covariance matrix
of the estimation error, which then becomes singular.

o Unsatisfactory reduction of loss

The new loss (8°") may turn out to be not appreciably
lower, or even higher than the previous V(8%). For a truly
quadratic function the reduction would be

5= %(ak _ 0k+1)TV6(0k).

The routine tests whether at least half of this reduction
has actually been reached. If this is not the case, then
the minimum has been overshot, since for a short enough
step the function is always decreasing by 24.

In the case of unsatisfactory reduction the Newton-
Raphson hill-climbing is temporarily inhibited, and a
new point is selected on the straight line connecting g
and ¢** . To do this the routine introduces a scalar param-
eter x defined on this line:

6(x) = (1 — x) 6 + x¢*

and fits a four-parameter curve ¢, 4 ¢,x 4 ¢,x”° to values
and slopes of V[0(x)] in 6* and 6"''. Tt selects the new
point **? as the minimum of the approximating curve,
provided the value of x falls inside the interval (0.25, 0.9).
Otherwise the nearest end point of the interval is used.
The strategy is useful in cases where V', changes fast,
e.g., when the minimum locates near a stability boundary.

o Start values

For fixed 4;-, C-, and D-polynomials the loss function
is quadratic in the coefficients of the B;-polynomials,
and the so-constrained hill-climbing will find the minimum
in one step from any starting point. This is utilized to
get an improved start value for the unconstrained hill-
climbing. Thus, in the first step of the hill-climbing the
coefficients of 4;, C, and D are locked to their initial
values (normally zero), and B,-coefficients only are free
to vary.

Performance of the hill-climbing routine

The modeling algorithm has been applied to a number
of data samples, some generated artificially, some collected
from a paper making process. In most cases the order-
determining routine was used so that no additional in-

formation was given to the computer program (except
number of input variables). This means that several
models have been identified on the same sample, and
also that the set of models formed on the test data is a
mixture of high-, low-, and correct-order models with
correct and incorrect transport delays. The high-order
models are difficult, since they make the loss functon
singular.

Although only the final model in each sequence is
generally acceptable, i.e., has the right delays and no
redundant parameters, the collection of all models illus-
trates the performance of the hill-climbing routine. How-
ever, it is important to note that, while the starting point
¢° for generating the first model in a series was zero,
those of the later models were often good, since the algo-
rithm automatically sets start values for the hill-climbing
utilizing the preceding model.

o Test data
The test samples (length: 200 to 500 points) were produced
as follows:

1) Artificially generated, using models of the form 1):
28 models with two input variables.

2) Pure sine wave:
4 models with no input (spectral analysis)

3) Recorded from a paper making process, drying:
6 models with one input, 29 models with two inputs,
7 models with four inputs.

4) Recorded from a paper making process, sheet forming:
13 models with one input.

5) Recorded from a paper making process, pulp refining:
7 models with two inputs.

6) The fluctuations of the stock-market value of a share
were used as data:
3 models with no input.
The total number of models tried was 97.

Of course, there is no guarantee that the test cases are
in any sense representative for the set of “‘industrial
data.” A common characteristic has been unmeasurable
disturbances of the same order of magnitude as the effect
of inputs and containing various frequencies. This is
the case for which the method was particularly constructed,
and where the theoretical advantages are. Large dis-
turbances, however, tend to result in low-order models,
since a possible fine structure of the process dynamics
is drowned in noise.

o Test results
The hill-climbing routine converged to a minimum in
all test cases.

The routine occasionally utilized one or more of the
modifications of the Newton-Raphson hill-climbing
algorithm, designed to treat difficult situations. The
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following statistics give the number of times a particular
difficulty has been met:*

Unfavorable curvature: 113
Near-singular loss function (‘““valley’): 116
Inadmissible region entered: 105
Unsatisfactory reduction of loss: 62
Total number of iterations: 720

The number of iterations needed for a hill-climbing is
summarized for the test material in Fig. 1. As seen, there
is no clear dependence between number of parameters
and number of iterations needed. The average number
of iterations over the test material has been seven. The
average number of parameters has also been seven.

Figure 2 illustrates how the modeling proceeded in a
particular case. It shows the loss as a function of number
of iterations for two sequences of models: a complicated
case with four input variables, and a simpler case with
two input variables. The data are the same, so that in
the latter case two input variables have been deleted.
Any effect of those variables then adds to the disturbance,
resulting in a higher final loss. At each break in the loss
curve the program has changed the orders and/or delays
of the model and therefore the number of parameters.
This number is noted below each curve segment. The
number of data points is 284.

Comment on Fig. 2: The algorithm began with a model
of few parameters and then increased the number, thus
the decrease of loss. When increase of order no longer
yielded a reduction of loss, the algorithm started reducing
the complexity of the model. The loss remained roughly
the same and even increased slightly. The curves illustrate
a few general properties of the modeling routine, when
this has to determine orders and delays. As a rule the
later models require few iterations, since the start values
for the hill-climbing routine (i.e., parameter values for
the preceding model) are good. Models with redundant
parameters constitute difficult cases and therefore require
many iterations in spite of the fact that little reduction
in loss may be received. Early models also require many
iterations, partly because of poor start values and partly
because the model orders/delays are wrong, and the model
therefore cannot be fitted well to the data.

Conclusions

The maximum likelihood method of identification is a
general black-box identification method for discrete-
time data and, since there are other such methods, it is
appropriate to list its relative merits (and drawbacks)
for those who may consider using it. The list expresses

* Note: During the tests the admissible region of model parameters was
restricted further, so that besides unstable solutions certain kinds of stable
but unwanted solutions were also excluded. The number of unstable cases
is therefore less than 105.
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Figure 1 Total number of models identified on the test ma-
terial distributed over number of parameters employed by
the order-setting routine and number of iterations needed
by the hill-climbing routine.

Figure 2 Modeling loss as a function of number of steps
of iteration for two test cases.
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both theoretical results and experience gained when using
the method. The statements are regrettably not precise,
since they are brief.

Application is suitable:

In cases where random disturbances are a concern.

When the process has a pronounced dynamic behavior
and/or responds slowly.

When the process cannot be subject to experiment at
the user’s convenience,

When the purpose of identification is for automatic
control.

Features of the method are:

It covers all linear, time-invariant and finite-order
models.

A few inputs, a single output.

Arbitrary input sequences.

Arbitrary disturbance spectrum.

Disturbance characteristics are estimated.

Model accuracy is estimated.

The minimum-variance control law follows easily from
the model.

Order tests are feasible.

Search for transport delays is feasible, although cum-
bersome.

Basic assumptions are possible to check.

Arbitrary parameter constraints are feasible.

Performance is illustrated by the following properties:

Quality of model:
For long samples the estimates are unbiased and have
the theoretically lowest possible variances.
Acceptable results have been obtained also for industrial
data corrupted by large and irregular disturbances.
A minimum number of parameters is used.

Reliability and speed of algorithm:

Hill-climbing is used; computing time is unpredictable.

Computing time per step is approximately proportional
to nN (for large N), where » is number of parameters
and N is length of sample.

Efficiency is believed to be high for a hill-climbing
routine, when orders and transport delays are
specified.

Efficiency is probably low, when transport delays are
large and unspecified.

Reliability is high.

Ease of use:
Identification may be completely computerized.
In its most developed form the modeling needs no
50 a priori specifications.
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Diagnostics are feasible to detect improper use.
Conventional model characteristics are feasible for
comparison with experience.

“Speed” and ‘“‘ease of use” may partly be traded against
each other. It generally holds for the method that the
more skill one acquires in handling it, the less computing
one needs. If one is ignorant, one has to pay for this with
longer computing times. But this is also an asset; for
it may be interesting to note that by automating the
method sufficiently, it is possible to a certain extent to
substitute money for knowledge.
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