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On the  Maximum  Likelihood  Method of Identification 

Abstract: The maximum  likelihood  principle of estimation  applied to the  linear  black-box  identification  problem  gives  models  with 
theoretically  attractive  properties. Also, the method  has  been  applied to industrial data (various  processes in paper  production) and 
proved  able  to  work  in  practice. 

This  paper  presents  further  developments of the method  in the case  of a single output. The  reliability  and  speed of the identification 
algorithm have  been  improved, and  the  method  has  been  made  easier to use. A rather  sophisticated  computer  program,  however, 
was  needed. It employs a generalized  model structure,  an  improved  hill-climbing  algorithm, and an  automatic  procedure  for  deter- 
mining  model orders  and transport delays.  Some  statistics from  performance  tests of the  program  are  presented. 

Review of development 
“ The maximum likelihood method of numerical identifica- 

tion of linear dynamics systems for a single output was 
introduced  in 1965 and was shown to have good  theoretical 
properties.’” The  actual performance of the method was 
tested on a  number of artificially generated samples of data. 
This performance agreed with theoretical predictions. At 
least  three different aspects of the performance are essen- 
tial: 1) How often and how  fast the method gives a  result, 
2 )  how  good the result is, and 3) how easy the method is to 
use. 

It is natural,  in designing the method, that  the second 
aspect gets the highest attention, since it depends on  the 
basic principle adopted  for  the method. The first aspect 
depends on  the algorithm, which can very likely be im- 
proved later, and something can always be done about 
the  third aspect by automating, i.e., by writing a good 
computer program. 

showed that  for long samples the method has  the highest 
possible accuracy-it  is asymptotically efficient. This result 
holds theoretically and also experimentally for  data artifi- 
cially generated according to a model consistent with the 
assumptions of the identification method. For practical 
applications using industrial data, this result, of course, is 
not conclusive. How  true  the result is in that case will 
depend on how well the industrial process satisfies the 
assumptions of the identification method.  They are: 

1) Linearity 
2) Normality of disturbances 
3) Time-invariance of process characteristics 
4) Time-invariance of disturbance characteristics. 

The initial investigation of “how  good the result 
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For a given sample of data, all four assumptions  can 
be checked. 

The results also depend on whether the model has  the 
right  structure and  order.  It is virtually impossible to 
check this; it is doubtful whether the  real process has 
any  order  at all. Any model may then be termed as 
“correct” if it predicts correctly and “good” if it is also 
simple. 

The structure, or  form of model, was chosen with 
other requirements  in mind than  to be “right,” namely, 
to be general enough to fit many processes, to  make  the 
computations simple, and  to  make  the theory manageable. 

Therefore, the second development phase has been 
to test the method on industrial data  to see if assumptions 
held, if the structure was good, what orders were reasonable 
and, generally, to see how the method would work in 
practice. This was done  for 1; years in 1965-66, using 
various processes connected with paper  production as  the 
sources of data.3-5 

The result of this test was that  the method worked 
very  well in practice, if one knew how to handle it. In 
particular, the ability of the method to tolerate  various 
kinds of random disturbances was encouraging and went 
beyond what the theory claims. In practice  both  normality 
and  the requirement that disturbances be a  time-invariant 
stochastic time-series can be relaxed. As a result of some 
of these tests, however, the model  structure was changed. 

The  “if” clause is significant. It is to indicate that while 
the second aspect of performance  (quality of model) was 
very good, the  other two  aspects (speed and ease of  use) 
could be improved. Work on this has  taken  another year, 
and  the purpose of this  paper is to  report  the improvements 
that have been made. 



ances. In l), 2),  and 3) disturbances enter with the input, 
in 4) they are added to  the output. The form 1) allows 
white noise only. In 2 )  the disturbance spectrum must  be 
known; it is specified through the pre-filter F. In 3) and 4) 
disturbance spectra need not be white and need not be 
known. Their characteristics are estimated, together with 
the other parameters. 

Of course, it is not possible to appoint one of the 
structures as  the "best" in general. Any one may be best 
if it happens to fit the particular process studied. How- 
ever, it is believed that in practical cases of interest there 
are always at least observation errors added to  the  output, 
so that  the structure should reflect this  fact explicitly. 
Then the form 4) with a separate disturbance term 
XC(z")D"(z")e(t) is most adequate. Also, since the 
spectrum is arbitrary, the structure allows random drift. 
Drift  has been present in most samples of industrial 
data investigated during the applications. 

The form 4) seemingly contains more parameters than 
the alternatives, since it is most general. However, if it 
fits the process, the model  will in effect contain fewer 
parameters. If 4) must be written in one of the other forms, 
one has to pay for this by increasing the order  and there- 
fore  the number of parameters. For instance, if the order 
of all polynomials in 4) is n, one gets 4n + 2 parameters 
in 4) and 6n + 2 parameters in 3). In case 1) the equivalent 
number of parameters (for a fixed accuracy of approxi- 
mation) depends on  the parameter values, but is in any 
case 2 4n + 2. For quite reasonable parameter values 
(e.g., zeroes of C(z-') close to  the unit circle) it can be 
much higher. The advantage of 4) over l), 2), and 3) is 
accentuated if more than one  input (m, say) are acting 
simultaneously. Then the number of parameters in a 
general fixed-order structure  is (m + 1)(2n + 1) in 4), 
(m  + l)(rnn + 2n + 1) in 3), and 2 (rn + l)(mn + n + 1) 
in 1). 

It is possible to retain  the advantage of 1) by deliber- 
ately identifying a model of high order  and afterwards 
rewriting it  in either of the forms 3) or 4), eliminating 
redundant parameters.' However, the eliminating oper- 
ation may  be cumbersome, especially for more than one 
input. Whether this alternative is faster would depend 
on the eliminating routine and  the required minimal 
order of the model of form 1). 

The allowance in  the case 4) for  an arbitrary disturbance 
spectrum has turned out  to have an important practical 
consequence: If many input variables u influence the 
output y simultaneously, it is feasible, in practice, to 
analyze the influence  of one  input variable at a time. The 
effects of other  inputs are then absorbed in the disturbance 
term together with all other variables (measurable or 
unmeasurable) that  add up to form the disturbance. This 
is so because the effects of inputs and disturbances have 
been separated in the model. Disturbances, and hence 
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other (stationary) inputs do not therefore affect the A and 
B operators. In cases l), 2),  and 3) they do. 

Modeling algorithm 
The algorithm for maximum likelihood modeling, de- 
scribed briefly in the following, is  a modification and 
extension of one given in Ref. 2.  Since one obviously 
needs a digital computer to implement it, the algorithm 
will  be described in terms of a computer program. 

The complete modeling program comprises a set of 
subroutines. Some of these are aimed at improving on 
the third aspect of performance (ease  of  use), mentioned 
initially, but  are  not strictly necessary for the method. 
Only their functions will be stated. The hill-climbing 
algorithm will  be described in more detail, since it is 
crucial for  the performance of the method. Also, the 
method used to determine unknown orders  and  input 
delays will be outlined. 

The subroutines are: 
A. A basic identification algorithm: It estimates the un- 

known polynomials A, ,  B, ,  C, D and constants X, K 

in the structure 

by maximizing the likelihood function, when poly- 
nomial orders  and input delays 7,  have been  specified. 
It also calculates the covariance matrix of the esti- 
mation errors. Maximizing the likelihood function 
is equivalent to minimizing a particular loss function 
V(@, where 0 is the collection of all unknown con- 
stant parameters except X. The loss V(0) is the sum 
of squared one-step-ahead prediction errors* or 
model residuals Xe(t[e), defined by (1) for any given 
0 (Ref. 1). The  routine consists essentially  of two 
parts, alternately executed until little reduction in 
loss is received: 

A routine for evaluating the loss function and its 
first- and second-order derivatives at a given point 

A hill-climbing routine, which calculates a new 
trial  point @+'. The  term "hill-climbing'' is used 
in spite of the fact that a minimum is being sought. 

B. A  routine testing for redundancy: It is executed  when 
A has  found  a solution and decides,  by chi-square 
tests, whether parameters that have been  tagged as 
possibly redundant, are significantly  different from 

ek. 

reason, one does  not believe in maximum likelihood or does  not think that 
* This loss function may well be taken to define the estimate, if, for  some 

disturbances are normal. 
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zero. If not,  the values are set to zero, and values of 
nonzero  parameters are adjusted accordingly. 
A routine setting orders  and delays: Repeated exe- 
cutions of the sequence c, A, and B make  a search 
routine  in  the space of order  and delay values. Its 
purpose is  to arrive at  the lowest number of parameters 
consistent with a near-minimal loss. The function of 
C is to decide upon new trial settings or to  make a 
final decision on  orders  and delays, while A and B 
determine the outcome of a trial setting. 

When the search routine  has accepted a  model, the follow- 
ing two routines  test the validity of certain basic assump- 
tions  for  the identification: 

D. 

E. 

A routine  testing time-invariance: It identifies two 
models based on  the first and second halves of the 
data sample and tests, by chi-square  test, whether 
the  two models deviate significantly. 
A routine  for testing disturbances: This  routine 
examines the sequence of computed  model  residuals 
e(t). Theoretically, these residuals  should  be  normally 
distributed and uncorrelated. In practice  normality 
is not required, but individual,  large residuals, even 
if tolerated by the identification method, may indicate 
that something is wrong with the  data  at  that point. 
Therefore, the  routine checks the magnitudes and 
points out to the user any residuals greater than four 
standard deviations. This means  tolerating larger 
errors  than is conventional in statistical  tests. How- 
ever, a limit of four  standard deviations satisfies the 
purpose of guarding  against  large errors  in  the  data, 
and it gives an  added safety against error indications 
in case the  data sample  should not  quite behave 
according to theory (e.g., deviate from normality). 

The identification routine describes the process behind 
the  data sample by a model of the  form l), which is a 
system of difference equations.  Often more conventional 
process characteristics are desired. Therefore, the program 
includes 
F. A set of routines for analysis of the model: The routines 

derive from  the model 1): 
A step response for each input 
A Bode diagram for each input 
A power  spectrum of random disturbances 
A decomposition of the  data sample into effect of 

A minimum-variance control law, including feed- 

The closed-loop step response 
The theoretical lower limit for  the control error 
on this  particular process. 

inputs  and disturbances 

back and feed-forward terms (if any) 

Thus,  the normal sequence of executions in a complete 

analysis of a data sample is C, A, B, C, A, B, . . , D, 
A,  A, E, F. However, each execution of A results  in  a 
complete model of the  form 1) with speciJed order. 
Therefore, one may use A alone in order to save com- 
puting and programming. 

Determining orders and  input  delays 
The  order  and (integer) delay parameters in  the model 1) 
are determined in similar ways; “delays” ri are defined 
as  the lowest powers in the polynomials zTiBi(z), while 
“orders,”  denoted n4, np, nc, and nd, are  the highest powers 
in Ai ,  B,, C, and D respectively. Further,  the binary 
variable n‘, is introduced, which is zero if K = 0 and unity if 

The space of all possible combinations of integer order 
and delay parameters is separated into m i- 1 subspaces, 
which are treated independently. Each subspace is spanned 
by a  triplet (ny, np, ri), i = 1, . . . , m or (n“, nd, n’). This 
arbitrary separation is motivated chiefly  by computing 
efficiency, but is further supported by the following 
reasoning: The concept behind the choice of the  structure 
1) is one of superposition of effects of a number of known 
independent variables and  one unknown but independent 
disturbance, to  form  the observed output.  Therefore, 
it is reasonabIe that a choice of order  and delay param- 
eters associated with a  particular input  is  not influenced 
by those associated with other  inputs or with the dis- 
turbance. 

As stated, a  search  method is used to determine ,rb 
n:, np, nc,  nd, and nk, and  as such, defined by a measure 
to judge the outcome of a trial setting of order  and delay 
parameters and a strategy for choosing a new trial setting. 
It is outlined below. 

K #  0. 

Measure of significance 
Obviously, there  is a trade-off between number of param- 
eters and resulting loss; increasing the number of param- 
eters reduces loss. What  one needs is to find a minimal 
number  above which further loss reduction is small. 
This is achieved by formulating the problem in a prob- 
abilistic language; the  approach  has been used elsewhere:’ 

For long samples, and under the null-hypothesis that 
all orders  are  at least  equal and all delays are  at most 
equal to  those of the  true process, the reduction  in loss 
received by increasing the  total number of parameters 
from n to n’ has a  chi-square  distribution with n‘ - n 
degrees of freedom, if divided by the loss and multiplied 
by the length N of the sample.’ Thus  the range of probable 
values of a  chi-square variable determines what  reduction 
can be expected by increasing model  orders  above those 
of the  true process; such a  reduction is nonsignificant. 
Conversely, if the computed  reduction is larger than 
that range, the reduction is significant and observations 
contradict the null hypothesis. 
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The  range of the tolerance interval depends on the 
confidence one wishes to have in a possible rejection 
of the null hypothesis. It may be determined by the user 
by specifying the risk he is willing to run  that  the decision 
might be wrong.'' This gives the possibility to influence 
the complexity of the final model; specifying a smaller 
risk for a decision "order is greater than n" to be wrong 
results in fewer such decisions and therefore a tendency 
towards low-order models. 

With specified confidence the range is given by the 
definition of the chi-square variable.I2 In particular,  a 
nonsignificant, relative IOSS reduction  has  mean (n' - n) /N 
and variance 2(n' - n ) / N .  

For a given setting (n:, nf ,  TJ ,  i = 1, . . . , m and 
(n", nd, nk) the B-routine carries out a  number of tests 
to determine the significance of the setting  compared to 
lower-order alternatives. Thus, losses are compared for 
the nominal  setting and a series of 8(m + 1) alternatives, 
determined by modifying the triplets (n;, np + T ; ,  

{ -;, - A ,   + A ]  and  the triplet (n", nd, nk) by those of 

In this way the B-routine calculates the sensitivity of 
the loss function with respect to  order  and delay param- 
eters. The result is obtained in  the  form of an indicator 
vector with 3(m + 1) components { I:, ZQ, I ; ,  . . . , I:, 
Z i ,  I ; ,   I" ,  I d ,  Zk) stating whether the sensitivities with 
respect to individual  components of the trial setting 
{ny, n? + 7 1 ,  T ~ ,  . . .  , ni, n: + T,,  T,, nc,  n", nk} are 
significant or not. 

i = 1, . . .  , rn by the 23 possible combinations of 

{ - A ,  -A, -3 .  

denominator of a ratio of polynomials in  the model 1) 
raises the  order of the model  without changing the loss. 
Conversely, a test result indicating two simultaneous non- 
significant high-order coefficients suggests that a common 
factor is present and, therefore, that  the  orders of the 
associated ratio  are excessive. A single nonsignificant high- 
order coefficient, however, does not imply a  common 
factor  and therefore, necessarily, that  the  order of the 
associated polynomial is excessive; higher-order coefficients 
may be  nonzero. (The rule may lead to a  wrong deci- 
sion under  unfortunate circumstances. Even if the  true 
orders are higher than  those of the model, two simul- 
taneous,  zero high-order coefficients may occur acci- 
dentally for particular, isolated combinations of coefficient 
values. In such cases the search routine will fail and 
decide upon a model with too low order.) 

The current values of the intervals thus carry the sum 
of the latest and previous decisions. Normally  this sum 
is not sufficient to define the  order  and delay parameters 
uniquely. In  that case the main rules for setting new 
orders  and delays are: 

np is incremented if f y  = 1 and n: + 1 5 ry 
decremented if Z: = If = 0 
unchanged otherwise. 

decremented if Z: = ff = 0 
unchanged otherwise. 

T, is incremented if Zl = 0 
decremented if Z: = 1 and T~ - 1 2 r: 
unchanged otherwise. 

np + 7i is incremented if Zp = 1 and np + 7, + 1 5 rp 

Search strategy 
This is heuristic and  not claimed to be optimal  in any 
sense. It has  two functions: viz., to make decisions re- nd is incremented if I d  = and nd + I rd 

garding the  true  order  and delay parameters, and, if 
needed, to determine a new trial setting. 

as state variables for the search integer intervals (0, r:), 

nc is incremented if I" = 1 and ne + 1 5 re 
decremented if I" = Zd = 0 
unchanged otherwise. 

decremented if I" = Zd = 0 
unchanged otherwise. 

In  order  to  formulate  the search strategy,  introduce nk = 1 .  

(r:, rp), (0, re), and (0, rd), such that coefficients  of poly- 
nomials Ai, zT*Bir  C, and D respectively are zero for 
powers outside the corresponding intervals. A sequence 
of decisions, based on information from  the B-routine, 
narrow  the intervals successively. The following decision 
rule is applied: 

If Zq = ZP = 0, then rl = ny - 1 

If ZI = 0, then rl = T, + 1. 
If I" = Id  = 0, then re = nc - 1 

Otherwise intervals are unchanged. 

and rp = np + T~ - 1. 

and rd = nd - 1. 

The  rule is supported by the following reasoning: Multi- 
plying by a  common factor (1 - az") numerator  and 

These rules state  that polynomials are expanded, within 
the limits of the intervals, as long as expansions yield 
significant decrease in loss. They are reduced when test 
results indicate that reduction is feasible without signifi- 
cant increase in loss. 

The main rule  is modified somewhat to  treat  the cases 
when Bi = 0 or when np would otherwise become negative, 
indicating that  no effect  of the  input variable ui has been 
detected in  the  output. 

The search is terminated when all order  and delay 
parameters  remain unchanged. 

The search strategy described will normally result in 
a process with two  phases which can  be  more or less 
pronounced, viz., increase of the  total number of param- 
eters, while loss decreases significantly, followed by 
elimination of a  number, An say, of redundant parameters, 45 
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while loss V increases with a small amount %V An/N 
(see also Fig. 2). 

It is evident that good start values for  the intervals 
contribute essentially to the efficiency  of the search. The 
method is suited to a case where one  has some a priori 
knowledge of the  true  order  and delay parameters, but 
where this knowledge is uncertain. It is  not suited and 
therefore inefficient when the process has large and un- 
known transport delays. In  that case the  routine will 
have to search over possible delay values, starting with 
zero and going upwards. Since a model  must be built 
for each delay value in  the search, this will take time. 

Hill climbing 
The hill-climbing routine  is based on a Newton-Raphson 
algorithm; however, a number of modifications are tem- 
porarily employed in situations where the algorithm  can 
otherwise be expected to fail. 

The Newton-Raphson  algorithm fits a quadratic surface 
to the function V(O)  by equating  function values V, first 
order derivatives Ve,  and second order derivatives Ves 
at  the current point Ok,  and choosing the next point O k + l  

as  the (nearest) stationary point  on  the  quadratic surface. 
The algorithm is thus 
O k + l  = ek - x(@) ve(ok), (2 )  

where K(0) = Vi,(O). The matrix Vi8 is the so-called 
pseudo-inverse of V o e .  It is equal to V& whenever the 
ordinary inverse exists. 

The Newton-Raphson  algorithm converges to a min- 
imum of V(O), if the  start value 0’ is sufficiently close. 
It may also converge from a far-off starting  point, if 
the function is sufficiently “well-behaved.” A suacient 
condition is that Vee(Ok) be non-negative definite, which 
means that  the surface  must not curve  downwards  in 
any  direction. Otherwise (2) may converge to any  sta- 
tionary  point, or it may diverge. 

Therefore, the  routine includes a number of tests in 
order  to detect when V(O) is  not well behaved, so that 
(2) must be modified. The following two  properties of 
the algorithm (2) are  the base for such modifications: 

i) The algorithm (2)  converges to a minimum for  any K 
that  is non-negative definite and sufficiently small. 

ii) The algorithm (2)  converges rapidly if K is also close 
to Vee. t 

The idea is  thus  to approximate VBs by a non-negative 
definite matrix, whenever Veo is not non-negative definite 
by itself. 

The tests and  the modifications of (2),  possibly following 
the tests, are  an  attempt to automate  the actions a “man 
in  the  loop” may take to overcome the difficulties met 
in practice, when hill-climbing on  the likelihood surface. 

The tests correspond to the  judgments the  man makes, 
and  the various modifications correspond to  the set of 
alternative strategies he can use.  Specifically, the  routine 
deviates from  the normal course of Newton-Raphson 
hill-climbing, whenever one  or more of the following 
difficulties are met: 

Unfavorable  curvature 
This is indicated when Vee(Ok) is not non-negative definite. 
Now, this matrix is the  sum of two 

Vee(O> = X’ eo(t>e%t) + X’ e ( t ) e d t ) ,  (3) 

of which the first one is always non-negative definite. 
Further,  the sequence of e(t)eoe(t) is uncorrelated and  has 
zero  mean for 0 equal to the  true parameter  vector, i.e., 
near the minimum. The second term therefore becomes 
relatively less important as the sample length N increases, 
and  the  routine replaces Ves by its first term V&, when the 
complete second-derivative matrix is not non-negative defi- 
nite. V& is further always employed whenever ( O k - l  - O k )  
VB(Ok”) > a constant, i.e., outside the immediate vi- 
cinity of the minimum. 

For 0-values far  from  the minimum  neither Vee nor 
V& necessarily gives a good estimate of step length and 
direction towards  the minimum; however, using a non- 
negative definite matrix  guarantees that a step is taken 
in  the direction of decreasing loss. Also, V& requires 
less computing per iteration. In fact, the second term 
of (3) is needed only to ensure a faster-than-linear  con- 
vergence rate towards the end of the hill-climbing. The 
value of the constant  normally affects the computing 
time only; a low value reduces the average amount of 
computing per  iteration  but tends to increase the  number 
of iterations, a high value has  the opposite effects. A 
compromise, if required,  must  be determined empirically. 

N N 

f =1 f = l  

Singularity 
The difficulty arises when Vee (or V&) contains linearly 
near-dependent columns. This would have  two effects 
on a Newton-Raphson hill-climbing: 

i) The  routine inverting Vss would fail due to round-off 

ii) Even if Vss could  be inverted the hill-climbing would 
take a very long  step  along what is estimated to be 
a “valley.” This would be unfortunate  in cases where 
the valley reflects only a local property of the function 

errors. 

v(e).13 

In this case Voo  is approximated by a matrix  having 
exactly dependent columns. This  matrix is pseudo-inverted. 
The difference between the  two inverses is, geometrically, 
that while near a slowly descending valley the  true inverse 
aims at  the absolute minimum, essentially stepping along 
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the valley, the pseudo-inverse locates the relative min- 
imum perpendicular to the valley. 

Since the two solutions are very different, the step 
taken depends critically on what is meant by “near- 
dependence.” In  order  to motivate the definition used 
for  the present purpose, introduce the diagonal matrix Q 
of square  roots of diagonal elements in Ve e .  Also, factorize 
V e e  = QSSTQ, where S is a left-triangular r n a t r i ~ . ~  The 
rank of Vse  is revealed by the diagonal elements of S .  
In particular, the  rank is n-p if and only if p diagonal 
elements are zero. The corresponding columns in S are 
then undetermined and may be set to zero. 

Now, suppose the  true inverse of a nonsingular or 
near-singular matrix V o R  were used to calculate a step 
towards the minimum. Then the step taken would be 

h = “ - 1 ~  - - Q - ~ ~ ’ J - * S - ~ Q - ~ V ~ .  
8.9 a - (4) 

If, particularly, 8 is equal to  the  true parameter values, 
then  for large N ,  EVoV; N XzVee (Refs. 2 and 8), and 
hence Ve = XQSw, where w is a random vector such 
that Ew = 0 and EwwT = I .  The step taken from a 
hypothetical position defined  by the  true parameter 
values would be 

It follows from (4) that when a diagonal element sti 
is small, the step hi taken  in  the direction i will generally 
be large. Also, E q .  (5) indicates that this wiU be the case 
also if the value of the loss function is near minimum; 
i.e., the routine will step along a valley. Therefore the 
following definition suits the purpose of evading the 
effect  of  ii): 

The non-negative definite matrix V e e  has p linearly 
near-dependent columns if p diagonal elements of S 
are smaller than a constant p .  A corresponding ap- 
proximation of V e  e of rank n - p is defined  by QS,S;Q, 
where S ,  is obtained  during  factorization of Q” Ve  sQ-l 
by zeroing the p columns for which sii < p .  

The following reasoning serves to assess the effect  of 
using S, in place of S and  thus  to give some guidance in 
assigning a value to  the constant p. Similar arguments 
have been used in Ref. 14, but based on  an expansion of 
Voe in terms of eigenvectors and eigenvalues instead of the 
present factorization into triangular matrices. Assume that 
one eigenvalue in V i :  dominates. Then  one diagonal ele- 
ment in S is essentially smaller than  the others.  Rearrange 
rows and columns in Ves so that  in S the smallest diagonal 
element appears in  the last place. Then from (5) 

h, = - hqiis,:w,. 

Now, the product - Xq;:w, would be the step taken 
if only 8, were allowed to vary. The factor si: may there- 
fore be interpreted as  an amplification of the step length 

due to the influence  of near-dependent variables. By 
limiting diagonal elements in S to those < p (and pseudo- 
inverting) a bound  is set to large amplifications of step 
length in directions nearly perpendicular to the direction 
of the slope. Thus the value of p determines how narrow 
the (inverted) “hill” is allowed to be before it is treated 
as a “valley.” 

The value of p is set primarily to eliminate the effect 
of ii). To ensure that i) is  also avoided the routine esti- 
mates the effect  of round-off errors, and inverts if the 
effect is tolerable. Otherwise it increases the constant 
and repeats. 

The concept of near-dependence is introduced here 
to amend  computational difficulties in  the hill-climbing. 
Although related to,  it must not be confused with the 
statistical definition of dependence between the com- 
ponents of the estimate 8. The  latter dependence is estab- 
lished by chi-square tests (see the preceding section). 

Instability 
The new point O k + l  calculated from (2) may define an 
unstable or otherwise unacceptable model. There are 
two kinds of instability, viz., numerical instability of the 
algorithm calculating V(O), and instability of the model. 
None appears as long as all zeroes of the polynomials 
Ai, C, and D fall inside the  unit circle. Hence, for each 
order of a polynomial there is a fixed region of  coefficient 
values inside which a polynomial is acceptable, and  the 
region of admissible 8 is the logical product of the regions 
for all polynomials. The boundaries of the stable regions 
for polynomials are linear for first and second orders 
and linear or curved for higher orders. 

When a nominal O k + l  has been calculated, the algo- 
rithm tests whether it falls inside the admissible region. 
If not, the boundary first crossed by a straight  line con- 
necting Bk and O k + l  is introduced as a constraint on  the 
approximating quadratic surface, i.e., a minimum is 
sought on  the boundary. For a linear boundary the min- 
imum is calculated explicitly; for a nonlinear boundary 
an iterative procedure  is used, where the nonlinear bound- 
ary is substituted by a sequence of tangent hyperplanes. 

For &values outside the stable region the likelihood 
function may take  on very large values. Since the function 
is analytic, this means that  the derivatives may have 
large values also on the  boundary and immediately inside, 
in particular that V s R  changes fast with 8. This is a severe 
condition for a Newton-Raphson  algorithm, which, 
assuming constant V o R ,  then does not work well. For 
this reason it is undesirable to have an appraximating 
point Ok on  the boundary (unless it happens to coincide 
with the minimum), and  the routine simply reduces the 
step taken by a factor of 0.9, whenever a boundary has 
been hit. Thus a boundary may be approached iteratively 
but  not reached in a single step. 47 
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The test on admissibility is repeated for  the new, con- 
strained  point, and if this is also  outside the admissible 
region, the minimum of the  quadratic approximation 
is further constrained by an additional  boundary. Con- 
straints are introduced only when the inadmissible region 
would otherwise be entered. 

Thus, the hill-climbing may converge to  an uncon- 
strained  point inside the region or  to a constrained point 
on  the boundary. In  the  latter case the algorithm in effect 
reduces the number of free  parameters (by introducing 
constraints) and this shows up in  the covariance matrix 
of the estimation error, which then becomes singular. 

Unsatisfactory reduction of loss 
The new loss V(Ok+') may turn out to be not appreciably 
lower, or even higher than  the previous V(Bk). For a  truly 
quadratic function the reduction would be 

6 = - @ + I  ) ve(ek). 
The routine tests whether at least half of this  reduction 

has actually been reached. If this is not  the case, then 
the minimum has been overshot, since for a short enough 
step the function is always decreasing by 26. 

In  the case of unsatisfactory reduction the Newton- 
Raphson hill-climbing is temporarily inhibited, and a 
new point is selected on  the straight line connecting Ok 
and Bk+'. To  do this the routine introduces a scalar param- 
eter x defined on this line: 

and fits a  four-parameter curve c,, + clx + c2xC3 to values 
and slopes of V[O(x)] in Ok and Ok+' .  It selects the new 
point 8'' as  the minimum of the approximating curve, 
provided the value of x falls inside the interval (0.25, 0.9). 
Otherwise the nearest end point of the interval is used. 
The strategy is useful in cases where V e e  changes fast, 
e.g., when the minimum locates near  a stability boundary. 

Start values 
For fixed Ai-, C-, and D-polynomials the loss function 
is  quadratic in  the coefficients  of the Bi-polynomials, 
and  the so-constrained hill-climbing will  find the minimum 
in  one step from any  starting  point.  This is utilized to 
get an improved start value for the unconstrained hill- 
climbing. Thus,  in  the first step of the hill-climbing the 
coefficients  of Ai, C, and D are locked to their  initial 
values (normally zero), and &coefficients only are free 
to vary. 

Performance of the hill-climbing routine 
The modeling algorithm has been applied to a number 
of data samples, some generated artificially, some collected 
from a paper making process. In most cases the  order- 

48 determining routine was used so that no  additional  in- 

formation was  given to the  computer  program (except 
number of input variables). This means that several 
models have been identified on the same sample, and 
also that  the set of models formed on the test data is a 
mixture of high-, low-, and correct-order models with 
correct and incorrect transport delays. The high-order 
models are difficult, since they make the loss functon 
singular. 

Although only the final model in each sequence is 
generally acceptable, i.e., has the right delays and  no 
redundant  parameters, the collection of all models illus- 
trates the performance of the hill-climbing routine.  How- 
ever, it is important to note that, while the starting  point 
Oo for generating the first model in a series was zero, 
those of the later models were often  good, since the algo- 
rithm automatically sets start values for  the hill-climbing 
utilizing the preceding model. 

Test data 
The test samples (length: 200 to 500 points) were produced 
as follows: 

1) Artificially generated, using models of the  form 1): 

2 )  Pure sine wave: 

3) Recorded from a  paper making process, drying: 

28 models with two input variables. 

4 models with no  input (spectral analysis) 

6 models with one  input, 29 models with two inputs, 
7 models with four inputs. 

4) Recorded from a  paper making process, sheet forming: 
1 3  models with one input. 

5 )  Recorded from a paper making process, pulp refining: 
7 models with two inputs. 

6) The fluctuations of the stock-market value of a share 
were  used as data: 
3 models with no input. 
The  total number of models tried was  97. 

Of course, there is no guarantee that the test cases are 
in any sense representative for  the set of "industrial 
data." A common characteristic has been unmeasurable 
disturbances of the same order of magnitude as  the effect 
of inputs  and containing various frequencies. This is 
the case for which the method was particularly constructed, 
and where the theoretical advantages are.  Large dis- 
turbances,  however,  tend to result in low-order models, 
since a possible fine structure of the process dynamics 
is drowned in noise. 

Test results 
The hill-climbing routine converged to a minimum in 
all test cases. 

The routine occasionally utilized one or more of the 
modifications of the Newton-Raphson hill-climbing 
algorithm, designed to treat difficult situations. The 
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following statistics give the number of times a particular 
difficulty has been  met:* 

Unfavorable curvature: 113 
Near-singular loss function ("valley"): 11 6 
Inadmissible region entered: 105 
Unsatisfactory reduction of loss: 62 
Total number of iterations: 720 

The number of iterations needed for a hill-climbing is 
summarized for  the test material in Fig. 1. As  seen, there 
is no clear dependence between number of parameters 
and number of iterations needed. The average number 
of iterations over the test material has been  seven. The 
average number of parameters has also been seven. 

Figure 2 illustrates how the modeling proceeded in a 
particular case. It shows the loss as a function of number 
of iterations for two sequences  of  models: a complicated 
case  with four input variables, and a simpler case with 
two input variables. The  data  are  the same, so that in 
the latter case two  input variables have been deleted. 
Any  effect  of those variables then adds to  the disturbance, 
resulting in a higher final loss. At each break in the loss 
curve the program has changed the orders  and/or delays 
of the model and therefore the number of parameters. 
This number is noted below each curve segment. The 
number of data points is 284. 

Comment on Fig. 2: The algorithm began  with a model 
of  few parameters and  then increased the number, thus 
the decrease of loss. When increase of order no longer 
yielded a reduction of loss, the algorithm started reducing 
the complexity of the model. The loss remained roughly 
the same and even increased slightly. The curves illustrate 
a few general properties of the modeling routine, when 
this  has to determine orders and delays.  As a rule the 
later models require few iterations, since the start values 
for  the hill-climbing routine (i.e., parameter values for 
the preceding model) are good. Models with redundant 
parameters constitute difficult  cases and therefore require 
many iterations  in  spite of the fact that little reduction 
in loss may be received. Early models also require many 
iterations, partly because of poor start values and partly 
because the model orders/delays are wrong, and the model 
therefore cannot be fitted well to  the data. 

Conclusions 
The maximum likelihood method of identification is a 
general black-box identification method for discrete- 
time data and, since there are other such methods, it is 
appropriate to list its relative merits (and drawbacks) 
for those who  may consider using it. The list expresses 

* Note: During the tests the admissible region of model parameters  was 
restricted  further, so that besides unstable solutions certain kinds of stable 
but  unwanted solutions were also excluded. The number of unstable cases 
is therefore less than 105. 

I Number of parameters 

Figure 1 Total  number  of models identified on the test  ma- 
terial  distributed  over  number  of  parameters  employed  by 
the order-setting  routine  and number of  iterations  needed 
by  the hill-climbing routine. 

Figure 2 Modeling loss as a function of number  of steps 
of iteration for two  test  cases. 
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both theoretical results and experience gained when using 
the method. The statements are regrettably not precise, 
since they are brief. 

Application is suitable: 
In cases where random disturbances are a concern. 
When the process has a pronounced dynamic behavior 

When the process cannot be subject to experiment at 

When the purpose of identification is for automatic 

and/or responds slowly. 

the user’s convenience. 

control. 

Features of the method are: 
It covers all linear, time-invariant and finite-order 

A few inputs, a single output. 
Arbitrary input sequences. 
Arbitrary  disturbance spectrum. 
Disturbance characteristics are estimated. 
Model accuracy is estimated. 
The minimum-variance control law follows easily from 

Order  tests are feasible. 
Search for  transport delays is feasible, although cum- 

Basic assumptions are possible to check. 
Arbitrary  parameter  constraints are feasible. 

models. 

the model. 

bersome. 

Performance is illustrated by the following properties: 

Quality of model: 
For long samples the estimates are unbiased and have 

the theoretically lowest possible variances. 
Acceptable results have been obtained  also for industrial 

data  corrupted by large and irregular disturbances. 
A minimum number of parameters is used. 

Reliability and speed of algorithm: 
Hill-climbing is used; computing time is unpredictable. 
Computing  time per step  is approximately proportional 

to nN (for large N), where n is number of parameters 
and N is length of sample. 

Efficiency is believed to be high for a hill-climbing 
routine, when orders and  transport delays are 
specified. 

EAiciency is  probably low, when transport delays are 
large and unspecified. 

Reliability is high. 

Ease of use: 
Identification may be completely computerized. 
In its most developed form  the modeling needs no 

50 a priori specifications. 
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Diagnostics are feasible to detect improper use. 
Conventional model characteristics are feasible for 

comparison with experience. 

“Speed” and “ease of  use”  may partly be traded against 
each other. It generally holds for  the method that  the 
more skill one acquires in handling it,  the less computing 
one needs. If one is ignorant,  one  has to pay for  this with 
longer computing times. But this is also an asset; for 
it may be interesting to note that by automating the 
method sufficiently, it is possible to a certain extent to 
substitute money for knowledge. 
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