D. S. Billingsley

On the Equations of Holland in the Solution of
Problems in Multicomponent Distillation

Abstract: Holland developed certain equations to be used to accelerate or induce convergence in multicomponent distillation calcula-
tions. In practice this procedure has been the most successful of any adjunct to the basic Thiele-Geddes or Lewis-Matheson procedure
for solving these problems. It is of importance, therefore, to ascertain the conditions under which the Holland equations can be
guaranteed to possess the required type of solution at each iteration. The types of specifications which fulfill these conditions are

determined.

Introduction
Holland" suggested a procedure for accelerating or in-
ducing convergence in the solution of multicomponent
distillation problems. In practice this procedure has been
the most successful of any adjunct to the basic Thiele—-
Geddes® or Lewis-Matheson® procedure for solving multi-
component distillation problems. When coupled with
other computational improvements such as the tridiagonal
matrix solution as carried out by Ball,* the “constant
composition” heat balance calculation suggested by
Holland"® and the author’s “adaptive parameter adjust-
ment” scheme® for improving the “K,-method” of deter-
mining stage temperatures, the fastest and most widely
applicable algorithm known to the author results.

1t is of importance, therefore, to ascertain the conditions
under which the Holland equations can be guaranteed
to possess the required type of solution at each iteration.
It is often assumed that such a solution exists and is unique
under any circumstances which may occur during the
course of computation. Without resorting to pathological
situations, however, it is a straightforward procedure to
exhibit counterexamples to this assumption when the
temperature of a product stream is specified or the mole
fraction is specified for a component in a product stream.
This was done in Ref. 5 and an example is also given in
the appendix to this paper. On the other hand, as will
be proven subsequently, when the total flow of each
product stream is specified a unique positive finite solution
to the Holland equations always exists.

For a full treatment of the way in which the subsequent
Eqgs. (1) arise the reader is referred to Holland." More
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briefly, using the diagram of a complex column as given
in Fig. 1, we have a device for separating a vapor-liquid
mixture of various chemical compounds (‘“‘components’)
into different fractions represented by the streams leaving
the unit. The purpose of this fractionation is to obtain
in the bottom product stream (“bottoms’”) a preponderance
of those compounds having relatively large molecular
weights (“heavies™), to obtain in the overhead product
stream (“‘distillate”) a preponderance of those compounds
having relatively small molecular weights (“lights””) and
to obtain in each remaining product stream (‘‘side-draw’’)
a mixture with a preponderance of compounds having
molecular weights within a narrow range. Many columns
have only one feed and no side-draws, and are accordingly
referred to as simple columns, as distinguished from the
complex column depicted in Fig. 1.

A column, or tower, is operated by supplying heat,
Ok, through the reboiler at the bottom of the tower and
abstracting heat, Q¢, through the condenser at the top
of the tower. Liquid, L, from each plate falls to the next
lower plate while vapor, V, rises to the next higher plate,
thus causing the higher compounds to become more con-
centrated in the upper part of the unit while the heavier
components become more concentrated in the lower part
of the unit; however, all components are present to some
extent throughout the tower. Also sometimes used though
not shown in Fig. 1 are interheaters and intercoolers
which supply and abstract heat at various places along
the tower. The operation of a tower is determined by
many things such as the total rate of feed at each feed
location, the rate at which heat is supplied to and ab-
stracted from the tower, the total rate (“‘withdrawal rate”’)
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Figure 1 A complex distillation column.

at which each product stream is produced and the relative
locations of the feed streams, product streams, inter-
heaters and intercoolers. Regardless of how the column is
operated, however, when conditions do not change in
time (i.e. steady state) the total rate at which each com-
ponent leaves the tower must be the same as the total
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rate at which it is fed to the column. It is this fact which
is used to derive the individual summands in Egs. (1).
As these relations which are used as auxiliary formulae
to accelerate or induce convergence in iterative methods
for solving distillation problems have been derived several
places in the literature they will not be rederived here.

Existence and uniqueness proofs

The Holland equations for a complex column (multiple
feeds and side-draws) [see Holland", Billingsley®] where
the total withdrawal rate of the bottom product stream
and of each side-draw are specified are

0
GOEB——Z F; =0

B £
bico s=1 bic’

)
(o
G,EW,—Z r bics =0,
BRI CIEE
s=1,2,3,--,8,

where the variables are defined in the section on nomen-
clature. The unknowns in these equations are the 6,,
s=0,1, .-+, S. All known quantities are positive and
an overall material balance around the unit requires

>F—-B— > W,=D>0. )

i

To simplify subsequent discussion a vector, ® = (8, 6,,
0, -++ , 05)7, will be termed positive or non-negative if
andonlyif 6, > O0or 8, 2 0,s= 0,1, --- , .S. Only non-
negative vectors, ®, will be considered henceforth. Ob-
viously, a positive solution, ® = (1, 1, --- , 1) exists
when all the d;, b; and w,, are values actually taken from
an operating unit since, in this case, a component ma-
terial balance around the entire unit yields

F?:bi‘l‘d«'"‘zwn

or
B= 2 b= 3 F/Il + @d/b)+ 22 (wi/bi)]
Ws = Z wis = Z (wis/bi)bi-

It will be shown that a positive solution exists for arbi-
trary positive values of (d;/5;). and the (w;,/b,). provided
only that the specified positive values B and W,, s =
1,2, ---, S satisfy Eq. (2).

Certain partial derivatives required later are collected
at this point for convenience. To simplify notation let

8
Bi' =1+ (di/b:)ebs + 2_; (wi/b:).0, > 0. 3)
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Then,

8B:/96, = _(di/bi)cB?,

8p:/36, = —(W«'p/bi)c»@?,

32.3.'/603 = 2(di/bi)36?’

9*B:/36; = 2(ws/b.)BS,
0°8:/960 80, = 2(d:/b:)e(W.n/b:).Bi,
3°B:/80, 30, = 2(wip/b:).(Wia/ b:)Bi,

8Go/80, = 2. (d:/b).Fifi > 0,

i

8Ga/36, = D, (wi/b).FiBI > 0,

1

9G,/30y = 0, D_ (w:/b:)(ds/b:). Fi87 > 0,
3G,/96, = 0, 3 (wi/b:)o(Wip/b). Fiff:

= (4,/6,) 8G,/88, > 0,
3G./36, = 6, D> (wi/b).Fi:

— 20 (wi/b).FiB;
d; Wip
-2+ () e 2 (2)0]

Wis 2
—(8o/8,)(0G,/38,)
- Y 4G,/86, < 0,

Pis#pz0

8°Go/30: = —2 3 (wi,/b)IFB® < 0,

il

il

8°G./96° = 2 3 [1 + (—Z—") 8+ > (%) 0,,]

1 pHEe

2
(%—) FiBI>0 (4

Further, by summing Eqgs. (1) one obtains using Eq. (3),

S
Gsor = B+ 20 W, — 20 167 — (di/b).0]FiB,

which may be rearranged using Eq. (2) to

D — 3 (d:/b).0FiB; = Gsuy = 0, (5)

where any solution of Egs. (1) will necessarily be a so-
lution of the set

Ga(®)=0, S=1,2,3,"‘,S+1, (6)

and vice versa.
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The main result of this paper may now be stated as a
theorem.

Theorem 1. If the total flow rate of each product stream
from a staged process is specified in accordance with Eq.
(2), then a unigue positive finite solution, ®* = (6%, 0%,
0%, --- , 05)7, to Egs. (I) exists, provided only that the
remaining (known) variables therein are positive and finite.
In a sense this is the strongest possible useful theorem
since the quantities (d;/b;), and (w;,/b.). must be positive
and finite when derived from positive values of the b,
d; and w,,. The proof of Theorem 1 will be by induction.

Proof: Assume first that a solution exists for Egs.
(1) when there are only S — 1 side-draws so that s =
1,2, .-+, 8 — 1. Then that same solution is also a solu-
tion for Eqs. (6) with s = 1, 2, --- , §. With D relabeled
as Wy, 6, relabeled as 6 and (d;/b;). relabeled as (w; s/b;)..
This solution will be denoted as ©*(0) = [0, 6%(0), 6%(0),
%), --- , 0§(0)]T. Thus, the overhead product in the
case of S — 1 side-draws is to become the Sth side-draw
in the case of S side-draws, with the additional stream
being incorporated as a new overhead product stream.
Hence, when there are S side-draws, ©*(0) satisfies all
but the first of Eqs. (1) with s = 1, 2, --- , S. Now each
of Egs. (1) is, in the region of interest, a continuous
function of each 8,, s = 0, 1, --- , S. Therefore ©*(0)
is a point on the continuous curve

O*(8o) = [6o, 0%(60), 6%(6,), -+ , 656",

where each point on ©@*(f,) satisfies all except perhaps
the first of Egs. (1) with s = 1,2, 3, --+ , S. ©*(f,) exists
since it contains ©*(0); the question which must be an-
swered is “does @*(f,) intersect the surface G, = 07"
To demonstrate that it does four conditions will be estab-
lished concerning Eqgs. (1). They are

A. The continuous surface G, = 0 is restricted to a finite
part of the first orthant.

B. ©*(6,) is positive except at the point ®#(0) where
it is non-negative.

C. ©%(0) lies below the surface G, = 0, that is
G,[0*(0)] < 0.

D. The directional derivative of G, in the direction of
®*(8,) is positive and bounded away from zero so
long as ®*(8,) lies below or on G, = 0; that is
Gol®*(6)] < 0.

Condition A. To show that the surface G° = 0 is
confined to a finite part of the first orthant note first that
Egs. (1) [or Egs. (6)] satisfy the conditions of the implicit
function theorem [see for instance Flemming’] in the
region of interest. Hence, for fixed values of G,, in par-
ticular G, = 0,s = 0,1, 2, - - - , S each of Egs. (1) defines
one of the 6, in terms of the remaining 6,. Thus, using
Eqgs. (4)
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Figure 2 The function G’

Figure 3 The surface G, = 0.
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36, {g,-0  9Go/d0, <0 ™

on the level surface G, = 0, or any level surface of G,
for that matter. Furthermore, on the 6,-axis, 8, = 0 for
all p # s so that G, reduces to

GY6)=B— Y E (®)

2 TF /)6

with appropriate changes in nomenclature when s = 0.
Equations (4) and (8) show that
(@) 8G,/30, >0 for 6,> 0,
(b) Gy (= ») = B> 0,
© GO =B—2,F<0,
d) &°G/de> < 0 for 6,> 0,
(e) G} is continuous except at
8, = —(bs/ws). < 0.
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Figure 4 The function G,°.

Figure 5 The surface G, — 0.
8,0

0.>0

6,>0

(f) In view of (a) through (¢) GJ has the form shown in
Fig. 2, and G) = 0 has exactly one positive root, §°.

Thus, the G, = 0 surface intersects each coordinate axis
exactly once. This, together with Eq. (7), shows the surface
G, = 0 in the first orthant must lie within the region for
which 0, < 6%, s = 0, 1, 2, , S. Indeed any
3-dimensional cross-section of G, = 0 must have the
general form depicted in Fig. 3.

Condition B. To show that ©*(f,) is positive except
at the point ©*(0) where it is non-negative requires exam-
ination of the somewhat more complicated surfaces
G, = 0, s # 0. It is first noted that the surface G, = 0
can intersect no hyperplane on which 8, = 0 since at
6, = 0, G, = W, > 0. Consequently, G, = 0 can inter-
sect no coordinate axis except perhaps the f.-axis. On
this axis G, becomes
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(wia/bi)cex F? .
el B (wia/bi)caa

Inspection of this relation, together with Eqs. (4), shows

(@) 9G%/30, < 0 for 6> 0,

(B) A @)= W, — 3., F1 <0,

(© Gy(O)y=W,> 0,

(d) &°G%/d6> > 0 for 6,> 0,

(e) G° is continuous except at 6, = —(b;/w;), < 0.

(f) In view of (a) through (¢) G° has the form shown in
Figure 4, and G° = 0 has exactly one positive root, 8.

Gg(ea) = Ws -

Thus the G, = 0 surface intersects the 6,-axis exactly
once.

Further examination of the surface G, = 0, s # 0
shows that it cannot exist in the positive orthant for
8, < @,. To see this consider

90, __9G,/a0,
a0, |¢.—o 9G,/d9,
_ _[_@@_&@_ acp]
63 000 0.9 aer pirFEDPFES 605

aGs>‘1 9,
== = > > .
<60T >0‘!_0, for 6, > 0 < 4,
Thus @*(6,) is confined to the region 8, > 67,,5s=1,2,--- ,
S. Hence ©*(8,) is positive except when 6, = 0.

To complete the picture of the surface G, = 0 one
notes with the aid of Egs. (4) that

29,
a4,

_9G./88,

oo~ 9G.J06, < 0

so that any 3-dimensional cross section of G, = 0 is as
depicted in Fig. 5 if the cross section is not orthogonal
to the f,-axis and is as depicted in Fig. 3 otherwise.

Condition C. To show that ©®*(0) lies below the surface
G, = 0 requires a somewhat more involved construction.
Consider then the line from the origin, §, = 0, s = 0,
1, ---, .S, through the point @*(0) as is shown in Fig. 6
for the case S = 2. The tangent to this line is the vector
8, where

o, = §%(0)/[0*0)-O*O)F

is the sth component of ¢ and the dot product is the
usual vector inner product. The gradient of G, is the
vector, Gy, of partial derivatives of G,. Now

3G, {= 0,
Y
* (>0, s 0 since 6% > 4,

s =0

so that the derivative, dG,/do, of G, in the direction of
¢ is positive, and

dG,/ds = [6-Go]t > 0. ©
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Figure 6 Intersection of surfaces G, —= 0 with the hyper-
plane 6, = 0.

Furthermore, this quantity is a continuous function of
each @ so that it assumes in the region 0 < 8, < 6% a
minimum value, (dGo/dc)”, which, in view of 3°G,/d6>
from Egs. (4), occurs at ©F = (8%, 8%, --- , 85)" (see
for instance Hyder and Simpson®). At the origin G, =
B — >, F® < 0 so that at a distance (—B + »_; F%)/
(dG,/dos)” from the origin on the line through ©*(0),
Gy 2 0. This line must then intersect G, = 0 exactly once
because of the continuity of G, and the constant sign
of dG,/ds (see for instance Hyder and Simpson®). Denote
this point of intersection by ©° = (0, ¢°, --- , 89"

It now must be shown that ®*(0) is nearer the origin
than ©°, that is 7 = «6*(0) where « > 1. To this end,
note that Gy(@°) = 0 = G, [@*(0)] by construction so
that according to Eq. (2)

—Go@®") + B + i {—G,I0*()] + W,}
= =D+ 2 F/ < X F.
Then by use of Egs. (1) and (3) there is
2. Fi©®") + Z 22 (wia/b). OO Fip 10%(0)]
< 2 F
which, since the F? are independently positive, requires

8
B0 — 1 4 B,10*(0)] 2_31 (W;/b:).05(0) < O
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for each i. From Eq. (3) it is seen that

8
D (wio/b)0%0) = {BIO*O T — 1,

a=1
so that the last previous inequality becomes

B8:0°) — B,[0*(0)] < 0,

or since 6, = 0 in both ©° and *(0),

S -1
[1 + 2 (’;—) ae*:(O)]
8 -1
< [1 + 3 (lZ—) 0";(0)] .

Term by term inspection of this expression shows a > 1.
Hence ©*(0) is nearer the origin than ©°, Consequently,

Eq. (9) shows that G, [©*(0)] < 0. This had been assumed
in a previous paper, Ref. 6.

Condition D. The intersection of all surfaces G, = 0,
s= 1,2, ---,.5is represented as a function of 8, by the
curve ©*(8,). The existence of this curve has been estab-
lished in the region G, < 0,0, > 6,,s = 1,2, --- , S.
Because of the continuity of all functions involved, ©*(6,)
is a continuous vector function of 6,. It is conceivable,
however, that this curve never leaves the region G, < 0.
In this case it would not intersect the surface Gy, = 0 and
consequently no solution to Egs. (1) would exist. The
behavior of ©*(f,) is investigated in the following para-
graphs by determining the sign of the derivative of G,
in the direction of the tangent to ©*(6,).

Let », be proportional to the cosine of the angle be-
tween the 6,-axis and the tangent to ®*(6,). Thus, 3, =
7.(65). Now at any point ©*(6,) must be orthogonal to
the normal to each surface G, = 0, p = 1,2, --- , S.
This is expressed by
E N E)G,,/BB, = O;

2=0

p=112"",S- (10)

The number of unknowns, %,, exceeds by one the number
of Egs. (10); hence, 5, will be set equal 1 so that Eqgs. (10)
become

An = —v, an
where

9G,/90, --- 9G,/d0s
4= . .

6(;5/801 M 8(;3/605

n= (M, Mg -, 18)

v = (8G1/860, 3G5/30q, - -+ , 3G 5/d0,)"

D. S. BILLINGSLEY

From Egs. (4) it is seen that

(a) each element of v is positive,

(b) each element of 4 which is not on the principal
diagonal is positive,

(c) each principal diagonal element of A is negative,

(d) 4 is diagonally dominant by columns. That is, if
4 = (a,,), then |a,.| > Z: |a,.], where Z’ denotes
that a,, is omitted.

It is desired to show that 5 is positive. To this end
define the diagonal matrix, M = (m,,), to have m,, =
—90G,/86, (> 0) and m,, = 0 for r # s. Equation (11)
may then be manipulated as follows.

[M+ A+ Mn=—7,

[ — (4+ MM (—M)y = —7.

Now all principal diagonal elements of 4 + M are zero.
In view of the diagonal dominance of A and the fact
that only the principal diagonal elements of M~ ! are

non-zero, each being the reciprocal of the corresponding
element of M, the product (4 + M) M = (c,.) has

s
max , le,,| < 1.
15858 r=1

It is known from matrix theory (see Varga’, pp. 17, 20,
84) that the spectral radius does not exceed the left side
of this relation and that if the spectral radius of an ir-
reducable matrix, say (4 + M) M, is less than unity
then [I — (4 + M)M 'T* exists and

U~ A4+ MM =14+ 3 4+ M 'Y
k=1

With this relation Eq. (11) becomes

7= M“{I + 2[4+ M)M"ll"}v- (12)

Since each element in every factor on the right side of
Eq. (12) is non-negative no subtraction occurs and 7 is
positive,

1],>0,S=0,1,"‘,S. (13)

In view of Egs. (13) ©®*(8,) cannot enter the region
8, < 6*%(0), and moreover, it intersects the boundary of
the positive orthant only once, namely at the point ©*(0).
The tangent to ®*(6,) is the vector =, where

7= 1/(n-m)! > 0
is the sth component of =. Now then,
7,0G,/86, >0, s=0,1,---,S

so that the derivative, dGy/dr, of G, in the direction of <
is positive, and

dGo/dr = (z-Go)f > 0.

IBM J. RES. DEVELOP.




Furthermore, this quantity is a continuous function of
each 0 so that in the region, §*(0) < 0, < ¢%,5 = 0, 1,

2, ---, 8, it assumes a minimum value, (dG,/dr) . Recall
that the continuous surface G, = 0 is confined to the
region 0 < 8, < #%,s= 0,1, --- , S, and therefore at

a distance not exceeding — Go[O@*(0)]/(dGo/dr)” from
©*(0) along ©*(8,), GolO®*(8,)] > 0. Because of the con-
tinuity of G, = 0 and of ©*(6,), these two must intersect.
Since dG,/dr does not change sign, only one such inter-
section is possible. Denote this intersection by O*(6%)
or simply ®*, The solution to Egs. (1) is then ®* when
s=1,2, -+ ,8, and this has been shown to result from
the supposition that a positive solution exists for these
equations when s = 1,2, --- , 8 — 1.

It remains only to show that a solution exists when
s = 1 = 8. To this end, one notes first that in the case
S = 1, the curve ®*(f,) becomes the plane curve
G.(8,, 6:) = 0. Since, as mentioned previously, G; sat-
isfies the conditions of the implicit function theorem,
G, = 0 specifies 8; as a function of §,. Now the only way
the arguments 4, B, C and D relied on the induction
assumption was that it guaranteed the existence of ©*(0).
Thus, if G,(0, 6,) = 0 can be shown to possess exactly
one solution, the preceding derivation will hold for the
case S = 1. This has already been accomplished, however,
in argument B, since G4(0, 6,) is the same as G°(9,).
Figure 7 depicts the situation in the case S = 1.

It is to be noted that this proof remains valid when
the total amount of the same fixed subset of components
is specified in each product stream. This is because the
only requirement on the summations over components
is that they include all components which have been
specified in the product streams.

Summary

For the first time it is shown that a solution to the Holland
equations exists and is unique at each iteration performed
to obtain the answer to a distillation problem, provided
the total withdrawal rate of each product stream is spec-
ified.

Notation

A = matrix defined after Eq. (11)

b, = rate of flow of component i in the bottom
product stream

B = total rate of flow of the bottom product
stream. B = Z,- b;

d; = rate of flow of component i in the overhead
product stream

D = total rate of flow of the overhead product
stream. D = Y. d;

s = feed rate of component i in a single feed

F) = total rate of feed of component i to the unit

G,, G, = functions defined by Egs. (1) and (5)

JANUARY 1970

of

6y (69)

0 b5
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Figure 7 Intersection of curves Go — 0 and ©6*(8,) when

S=1.

G, G = functions G, and G,, respectively, evaluated
with all but one 8 set to zero

G, = the gradient vector of G,

dG,/dec = the derivative of G, in the direction of ¢

dG,/dr = the derivative of G, in the direction of =

(dG,/ds)” = the minimum value of dG,/ds in the region
000"

(dG,/dr)” = the minimum value of dG,/dr in the region
0*0) =0 =06

I = the unit matrix (main diagonal elements
each = 1, all other elements = Q)

M = matrix defined after Eq. (11)

S = number of side-draws from the unit

Wi = flow rate of component i in the sth side-
draw up from the bottom of the unit

w, = total flow rate of the sth side-draw up from

the bottom of the unit. W, = Z,- Wia

Greek letters

@ = constant defined after Eq. (9)

B;, B,[@] = variable defined by Eq. (3), and evaluated
at the point (8y, 6,, --- , 0,)

v = vector defined after Eq. (11).

s = variable defined prior to Eq. (10)

7 = vector defined after Eq. (11)

0, = (d;/b;)/(d;/b.), for all components

8, = (W:s/b:)/(W;s/b). for all components

0*(6,) = an element of the solution to Egs. (6) with

6, regarded as a parameter

39

MULTICOMPONENT DISTILLATION




40

6% = the value of 6, at which the surface G, = 0
intersects the #,-axis

a, = the value of 8, at which the surface G, = 0
intersects the 6,-axis; s = 1, 2, --- , S.

6. = the value of 8, at which the line through the

origin and the point [0, §%(0), 8%(0),- - - ,8%(0))
intersects the surface G, = 0

® = the vector (8, 01, 0, -+ , 85)". This re-
presents a point in the space spanned by
the 0,, s =0,1,2,---,8

O*(0,) = the vector {8, 0%(80), 6%(B0), -+ , 0%(65)} "

e = the vector (8%, 8%, -+, 657

Q° = the vector (0, 67, 6, --- , 89"

o = distance from the origin toward the point

©° along the line between these points. ¢ is
positive when © is non-negative

g, = the s-th component of the tangent to the
line between the origin and ©°-o, = 6%(0)/
CROTN O

¢ = the tangent to the line between the origin
and ©° Since the line is straight, ¢ re-
presents a vector of unit length along this
line. 6 = (0, o1, 02, *++ , 05)"

T = the distance from ©%*(0) along the curve
defined by ©(6,). = is positive when O is
non-negative.

T, = the s-th component of the tangent to the
curve defined by ©*(@6,). =, = n./(n-n)

< = the tangent to the curve defined by ©*(6,).
T = (10, Ty, **° » Ts)T

Subscripts

c denotes the last previously computed value
of the quantity to which it applies

i denotes component number

D, q, F, S denote side-draw number. Except where

otherwise specified these assume the values
1’ 2’ s, S
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Appendix

In connection with the specific example of Ref. 5, Pro-
fessor Holland has pointed out to the author that the
limits on the value of a purity specification for which
the Holland equations are applicable are easily found.
For the case of a binary mixture separated in a simple
column where the mole fraction, x;, of one component
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in the bottoms product is specified there is
bi = f‘t/[l + (di/bi)co]’ l= 1, 2
X1 = bl/(bl + ba),

so that

limx; = £,/(f + f2)s

6—0

lim x, = f1/(d1/by).

1 [/ (d/b0)e] + U/ (do/b2). 1

If, for instance, the specifications are f, = 80, f, = 20
and x; is the mole fraction of the lighter component in
the bottoms,

80 80/(b,/d)).
80 > '
100 2 2 [80/(b1/dy).] + [20/(ba/de).]

For the case of x; = 0.1 there is

[8/(d\/b1).] + [2/(da/bo).] 2 80/(dr/b)es

from which 36 (dy/b). < (d:/by)., so that if on any it-
eration (d,/b1), < 36 (dy/bs)., then 8 < 0. Note further
that simply setting # = 0 is unsuitable since then b, = f;
and there is no distillate. Obviously if (d,b,) < 36 (do/bs)
in the actual solution another method is required. A
similar argument may be applied to situations where
the product temperature is specified. Thus, the conditions
given previously by Lyster, et al.’ are seen to be necessary
but not sufficient to insure a solution to the Holland
equations in the case of a purity specification.
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