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On the Equations of Holland  in the Solution of 
Problems  in  Multicomponent  Distillation 

Abstract: Holland developed certain  equations  to be used to  accelerate or induce  convergence  in  multicomponent  distillation calcula- 
tions. In practice  this  procedure  has  been the most  successful of any  adjunct to the  basic  Thiele-Geddes or Lewis-Matheson  procedure 
for solving  these  problems. It is of importance,  therefore, to ascertain the conditions  under  which the Holland  equations can be 
guaranteed to possess the required  type  of solution at each  iteration.  The  types of specifications  which  fulfill  these conditions are 
determined. 

Introduction 
Holland’ suggested a  procedure for accelerating or in- 
ducing convergence in  the solution of multicomponent 
distillation problems. In practice this  procedure has been 
the most successful of any  adjunct to the basic Thiele- 
Geddes’ or Lewis-Matheson3 procedure for solving multi- 
component  distillation problems. When  coupled with 
other computational  improvements such as  the tridiagonal 
matrix  solution as carried out by Ball: the “constant 
composition” heat balance calculation suggested by 
Holland’ and  the author’s  “adaptive  parameter  adjust- 
ment” scheme5 for improving the ‘‘&-method” of deter- 
mining stage  temperatures, the fastest and most widely 
applicable  algorithm  known to the  author results. 

I t  is of importance, therefore, to ascertain the conditions 
under which the  Holland equations  can be guaranteed 
to possess the required  type of solution at  each iteration. 
It is often assumed that such a solution exists and is unique 
under  any circumstances which may occur during the 
course of computation.  Without  resorting to pathological 
situations, however, it is a  straightforward  procedure to 
exhibit counterexamples to this  assumption when the 
temperature of a product stream is specified or  the mole 
fraction is specified for a  component in a product stream. 
This was done  in Ref. 5 and  an example is also given in 
the appendix to this paper. On the  other  hand, as will 
be  proven subsequently, when the  total flow of each 
product  stream is specified a unique positive finite solution 
to the  Holland equations always exists. 

For a full  treatment of the way in which the subsequent 
Eqs. (1) arise the reader is referred to Holland.’ More 
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briefly, using the  diagram of a complex column as given 
in Fig. 1, we have a device for separating  a vapor-liquid 
mixture of various chemical compounds (“components”) 
into different fractions represented by the streams leaving 
the unit. The purpose of this  fractionation is to  obtain 
in  the  bottom product  stream (“bottoms”) a  preponderance 
of those  compounds having relatively large molecular 
weights (“heavies”), to  obtain in the overhead product 
stream (“distillate”) a  preponderance of those  compounds 
having relatively small molecular weights (“lights”) and 
to  obtain  in each remaining product  stream (“side-draw”) 
a  mixture with a  preponderance of compounds having 
molecular weights within a narrow range. Many columns 
have only one feed and  no side-draws, and  are accordingly 
referred to as simple columns, as distinguished from  the 
complex column depicted in Fig. 1 .  

A column, or tower, is operated by supplying heat, 
Qn, through the reboiler at  the  bottom of the tower and 
abstracting  heat, Qc, through  the condenser at  the  top 
of the tower. Liquid, L, from each plate falls to  the next 
lower plate while vapor, V, rises to  the next higher plate, 
thus causing the higher compounds to become more con- 
centrated in  the upper part of the unit while the heavier 
components become more  concentrated in  the lower part 
of the unit; however, all  components are present to some 
extent throughout  the tower. Also sometimes used though 
not shown in Fig. 1 are interheaters and intercoolers 
which supply and  abstract  heat  at various places along 
the tower. The  operation of a tower is determined by 
many things such as  the  total  rate of feed at each feed 
location, the  rate  at which heat is supplied to  and  ab- 
stracted from  the tower, the  total  rate (“withdrawal rate”) 
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Figure 1 A complex  distillation  column. 

at which each product stream is produced and the relative 
locations of the feed streams, product stream, inter- 
heaters and intercoolers. Regardless of how the column is 
operated, however,  when conditions do not change  in 
time (i.e. steady state) the  total rate at which each com- 

34 ponent leaves the tower must  be the same as the total 

rate at which it is fed to the column. It is this fact which 
is  used to derive the individual summands in Eqs. (1). 
As these relations which are used as auxiliary formulae 
to accelerate or induce convergence in iterative methods 
for solving distillation problems have been  derived  several 
places  in the literature they will not be rederived here. 

Existence  and  uniqueness proofs 
The Holland equations for a complex column (multiple 
feeds and side-draws) [see Holland', Billingsley'l where 
the total withdrawal rate of the  bottom product stream 
and of each side-draw are specified are 

G n =  B -  FP = o  

( 1  1 

(2) 0.F: 
G ,  W ,  - = 0 ,  

s = 1 , 2 ,  3 ,  . . .  , S ,  

where the variables are defined in  the section on nomen- 
clature. The unknowns in these equations are the e., 
s = 0, 1, . . , S.  All known quantities are positive and 
an overall material balance around  the unit requires 

C F P - B - " W ~ = D > O .  (2) 
* 

To simplify subsequent discussion a vector, 0 = (4, el ,  
&, . . - , O s ) T ,  will  be termed positive or non-negative if 
and only if 0, > 0 or 8, 2 0, s = 0, 1, . . . , S .  Only non- 
negative vectors, 0, wiU be considered henceforth. Ob- 
viously, a positive solution, O = (1, I ,  . . . , l l T  exists 
when all the di, bi and wis are values actually taken from 
an operating unit since, in this case, a component ma- 
terial balance around  the entire unit yields 

Fg = bi 4- di + w,. 

or 

It will  be shown that a positive solution exists for arbi- 
trary positive values of (di/bJC and the (wi8/bi)= provided 
only that  the specified  positive  values B and W., s = 
1, 2, . . , S satisfy Eq. (2). 

Certain partial derivatives required later are collected 
at this point for convenience. To simplify notation let 

PT' E 1 + (di/bi),eo + (Wia/bi)cea > 0 .  (3)  
S 

* = I  
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= - [ 1 + (t) e, + (s) ep] 
,#a bi c 

.(:) c F"IpT 

.($pal c > 0 (4) 

Further, by summing Eqs. (1) one obtains using Eq. (3), 
S 

GS+I  G B + - [Pr' - (d i /b , ) ,Oo]e@,  
* = 1  

S 

= G. = 0 ,  
a = ,  

which may be rearranged using Eq. (2) to 

D - (di/bi),BoFyP; E Gs+l  = 0 ,  ( 5 )  

where any solution of Eqs. (1) will  necessarily be a so- 
lution of the set 

G,(@) = 0, s = 1 ,2 ,  3 ,  . . *  , S +  1, (6) 

and vice  versa. 
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The main result of this paper may now be stated as a 
theorem. 

Theorem 1. If  the total flow rate of each product stream 
from a staged process is specijied in accordance with E q .  
(2), then a unique positive finite solution, O* = (e*,, 07, 
e*,, 1 , to Eqs. ( I )  exists, provided only that the 
remaining (known) variables therein are positive and finite. 
In a sense this is the strongest possible useful theorem 
since the quantities (d,/b& and (wi8/bi)c must be positive 
and finite when derived from positive values of the bi, 
di and wis. The proof of Theorem 1 will be by induction. 

Proof: Assume first that a solution exists for Eqs. 
(1) when there are only S - 1 side-draws so that s = 

1, 2, . . . , S - 1. Then  that same solution is also a solu- 
tion for Eqs. (6) with s = 1, 2, . . . , S.  With D relabeled 
as Ws, 0, relabeled as O s  and (di/bi)c relabeled as (w, s/bi).. 
This solution will be denoted as @*(O) _= [0, e:(O), e*,(O), 
O$(O), , Og(0)'J'. Thus, the overhead product in the 
case of S - 1 side-draws is to become the  Sth side-draw 
in the case of S side-draws, with the additional stream 
being incorporated as a new overhead product  stream. 
Hence, when there are S side-draws, @*(O) satisfies all 
but the first of Eqs. ( 1 )  with s = 1, 2, . . . , S .  Now each 
of Eqs. (1) is, in  the region of interest, a continuous 
function of each e,, s = 0, 1, . . . , S.  Therefore @*(O) 
is a point on  the continuous curve 

@*(e,) = [e,, e m , ) ,  e w , ) ,  . . . , e~(e,)i', 

where each point on @*(e,) satisfies all except perhaps 
the first of Eqs. (1) with s = 1, 2, 3, . . . , S.  @*(e,) exists 
since it  contains @*(O); the question which must be an- 
swered is "does @*(e,) intersect the surface Go = O?' 
To demonstrate that it  does four conditions will be estab- 
lished concerning Eqs. (1). They are 

A. The continuous surface Go = 0 is restricted to a finite 

B. @*(e,) is positive except at the  point @*(O) where 

C .  @*(O) lies  below the surface Go = 0, that is 

D. The directional derivative of Go in the direction of 
@*(e,) is positive and bounded away from zero so 
long as @*(e,) lies  below or  on Go = 0; that is 

part of the first orthant. 

it is non-negative. 

Go[@*(O)l < 0. 

~,[@*(e,)l 5 0. 

Condition A .  To show that the surface Go = 0 is 
confined to a finite part of the first orthant note first that 
Eqs. ( 1 )  [or Eqs. (6)] satisfy the conditions of the implicit 
function theorem [see for instance Hemming7] in  the 
region of interest. Hence, for fixed values of G,, in par- 
ticular G, = 0, s = 0, 1, 2, . . . , S each of Eqs. ( 1 )  defines 
one of the 8, in terms of the remaining 0,. Thus, using 
Eqs. (4) 35 
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Figure 2 The  function GO’. 

Figure 3 The surface GO = 0. 
e,>o 

on  the level surface Go = 0, or any level surface of Go 
for  that matter. Furthermore,  on  the 0,-axis, 0, = 0 for 
all p # s so that Go reduces to 

with appropriate changes in nomenclature when s = 0. 
Equations (4) and (8) show that 
(a) dGo/aO, > 0 for 0, 2 0, 
(b) G: (.t a) = B > 0, 
(c) Gi (0) = B - xi F: < 0, 
(d) d2G:/d0t < 0 for 0, 2 0, 
(e) G: is continuous except at 

36 e, = - ( b i / ~ i ~ ) c  < 0. 

Figure 4 The  function G,’. 

Figure 5 The surface G, = 0. 
0 

(f) In view  of (a) through (e) G: has  the  form shown in 
Fig. 2, and G: = 0 has exactly one positive root, 0:. 

Thus,  the Go = 0 surface intersects each coordinate axis 
exactly once. This,  together with Eq. (7), shows the surface 
Go = 0 in the first orthant must lie within the region for 
which 0, 5 e+,, s = 0,  1, 2, . . .  , S .  Indeed  any 
3-dimensional cross-section of Go = 0 must have the 
general form depicted in Fig. 3. 

Condition B. To show that @*(eo) is positive except 
at the  point @*(0) where it  is non-negative requires exam- 
ination of the somewhat more complicated surfaces 
G ,  = 0, s # 0. It is first noted that  the surface G, = 0 
can intersect no hyperplane on which 0, = 0 since at 
0, = 0, G, = W, > 0. Consequently, G, = 0 can inter- 
sect no coordinate axis except perhaps the O,-axis. On 
this  axis G, becomes 
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Inspection of this  relation,  together with Eqs. (4), shows 

(a) ac:/ae, < o for e 2 0, 

I 
i 

(b) G:(f m) = W, - xi FY < 0, 
(c) G:(O) = W, > 0, 

(e) Gp is continuous except at e, = - (b i /wis )G < 0. 
(f) In view of (a) through (e) Ct has  the  form shown in 

Figure 4, and G: = 0 has exactly one positive root, 0;. 

Thus  the G, = 0 surface intersects the O,-axis exactly 
once. 

Further examination of the surface G, = 0, s # 0 

CI (d) dZGt/dOz > 0 for 8, 2 0, 

k shows that it cannot exist in  the positive orthant  for 
8, < 0;. To see this consider 

aG,/a e, 

e, 80, 0, 80, p ; T # p f l l  

Thus @*(eo) is confined to  the region e,> e:, s= 1,2, . . . , 
S .  Hence @*(eo) is positive except when 0, = 0. 

To complete the picture of the surface G ,  = 0 one 
notes with the  aid of Eqs. (4) that 

I 

so that  any 3-dimensional cross section of G, = 0 is as 
depicted in Fig. 5 if the cross section is not  orthogonal 
to the 0,-axis and  is  as depicted in Fig. 3 otherwise. F 

Condition C. To show that @*(O) lies below the surface 
Go = 0 requires a somewhat more involved construction. 
Consider  then the line from  the origin, 8, = 0, s = 0, 
1 ,  . . . , S,  through  the point @*(O) as is shown in Fig. 6 
for  the case S = 2. The tangent to this line is the vector 
d, where 

us = e*,(o)/[@*(o).@*(o)l+ 
is the  sth component of d and  the  dot  product  is  the 
usual vector inner  product. The gradient of Go is the 
vector, Go, of partial derivatives of Go. Now 

s = 0  

us dc, I- O' " 8  > 0 ,  s z o since e: 2 e; 
SO that  the derivative, dG,/du, of Go in  the direction of 
d is positive, and 

I dGo/du = [d.GO]* > 0. 
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Figure 6 Intersection of surfaces G ,  = 0 with the  hyper- 
plane tb = 0. 

Furthermore, this  quantity is a  continuous  function of 
each 0 so that it assumes in  the region 0 5 0, 5 0; a 
minimum value, (dGo/du)-, which, in view  of 8'Go/ae~ 
from Eqs. (4), occurs at 0' = (e',, e:, . . .  , e;)' (see 
for instance Hyder  and Simpson'). At the origin Go = 
B - xi F," < 0 so that at a  distance (- B + xi FY)/ 
(dGo/du)- from  the origin on  the line through @*(O), 
Go 2 0. This line must then intersect Go = 0 exactly once 
because of the continuity of Go and  the constant sign 
of dGo/du (see for instance Hyder  and Simpson'). Denote 
this  point of intersection by = (0, e:, . . . 9 0,")'. 

It now must be shown that @*(O) is nearer the origin 
than Go, that is 0; = olO:(O) where a > 1 .  To this  end, 
note that Go(@') = 0 = G, [@*(O)] by construction so 
that according to  Eq. (2) 

-GO(@') i- B i- -G,[@*(O)l -t W. 1 
S 

S = l  

= - D  + Fq < FY. 

Then by use of Eqs. (1) and (3) there is 

which, since the FY are independently positive, requires 
S 

M@~) - 1 + P,~@O*(O)I ( ~ i . m c e : w  < 0 
* = l  37 
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for each i. From Eq. (3) it  is  seen that 

S 

C ( w i 8 / b i ) c e w )  = ~P,[@*(o)I]-' - 1, 
*=l  

so that the last previous  inequality becomes 

M @ O )  - P,[@*(O)l < 0, 

or since Bo = 0 in both 0' and @*(O), 

Term by term inspection of this expression  shows a > 1. 
Hence @*(O) is nearer the origin than 0'. Consequently, 
Eq. (9) shows that Go [@*(O)] < 0. This had been  assumed 
in a previous paper, Ref. 6. 

Condition D .  The intersection of all surfaces G, = 0, 
s = 1 , 2, . . , S is represented as a function of Bo by the 
curve @*(e,). The existence of this curve has been estab- 
lished in the region Go < 0, 0, 2 e;, s = 1, 2, . . , S .  
Because  of the continuity  of all functions involved, @*(Bo) 
is a continuous  vector function of Bo. It is conceivable, 
however, that this curve  never  leaves the region Go < 0. 
In this case it would not intersect the surface Go = 0 and 
consequently no solution to Eqs. (1) would  exist. The 
behavior of @*(eo) is  investigated in the following para- 
graphs by determining the sign  of the derivative of Go 
in the direction of the tangent to @*(eo). 

Let 11. be proportional to the cosine of the angle  be- 
tween the 8,-axis and the tangent to @*(eo). Thus, 7. = 
q8(Bo). Now at any point @*(eo) must  be orthogonal to 
the normal to each  surface G, = 0, p = 1 , 2, - . . , S .  
This is expressed by 

7.. aG,/dO. = 0 ,  p = 1, 2, f s. (10) 
I - 0  

The number of unknowns, os, exceeds  by one the number 
of Eqs. (10);  hence, qo will  be  set equal 1 so that Eqs. (10) 
become 

where 

A =  

From Eqs. (4) it is  seen that 

(a)  each  element of y is positive, 
(b)  each  element of A which is not on the principal 

(c)  each  principal  diagonal  element of A is negative, 
(d) A is diagonally  dominant by columns. That is, if 

A = (u,,), then larrl > x: (ursl, where x' denotes 
that urr is omitted. 

diagonal is positive, 

It is desired to show that r]  is  positive. To this end 
define the diagonal matrix, M = (m7.,), to have m,, = 
-aG./ae. (> 0) and mra = 0 for r # s. Equation (11) 
may then be manipulated as follows. 

["+ ( A +  M ) l 7 =  -7, 

[Z - (A + M)M"] (-M)r] = -7. 

Now all principal  diagonal  elements of A + M are zero. 
In view  of the diagonal  dominance of A and the fact 
that only the principal  diagonal  elements of M-' are 
non-zero,  each  being the reciprocal of the corresponding 
element of it4, the product ( A  + M) M' = (CJ has 

max 1 ~ ~ 1  < I .  

It is known from matrix  theory (see  Varga', pp. 17, 20, 
84) that the spectral radius does not exceed the left  side 
of this relation and that if the spectral radius of an ir- 
reducable  matrix,  say ( A  + M) M-', is  less than unity 
then [Z - ( A  + M)W1]-' exists and 

s 

lSSSS r - 1  

m 

[ I  - ( A  + M)"']" = I + [ ( A  + M)M-'Ik. 
k - 1  

With this relation  Eq. (11)  becomes 

r]  = "I{ z + 2 [ ( A  + M)"'l*}T. 
k - 1  

Since  each  element in every factor on the right  side of 
Eq. (12) is non-negative no subtraction occurs and 7 is 
positive, 

va > 0, s = 0,1, . * *  , s. (1  3) 

In view  of Eqs. (13) @*(eo) cannot enter the region 
0. < B:(O), and moreover, it intersects the boundary of 
the positive orthant only  once,  namely at the point @*(O). 
The tangent to @*(e,) is the vector c, where 

7. = V 8 / ( V *  7)' > 0 

is the sth component of c. Now then, 

r.aGo/db', > 0, s = 0, 1, e * *  , S 

so that  the derivative, dGo/dT, of Go in the direction of T 
is  positive, and 

dGo/dr = (c.Go)' > 0. 
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Furthermore, this quantity is a continuous function of 
each 0 so that in the region, O*,(O) 5 8, 5 e:, s = 0, 1, 
2, . . . , S, it assumes a minimum value, (dGo/dT)-. Recall 
that the continuous surface Go = 0 is confined to the 
region 0 5 0, 5 e:, s = 0, 1, . . . , S,  and therefore at 
a distance not exceeding - Go[@*(0)]/(dGo/d~)- from 
@*(O) along @*(eo), Go[@*(Oo)] > 0. Because of the con- 
tinuity of Go = 0 and of @*(eo), these two must intersect. 
Since dGo/dT does not change sign, only one such inter- 
section is possible. Denote this intersection by @*(@) 
or simply @*. The solution to Eqs. (1) is  then @* when 
s = 1, 2, . , S,  and this  has been shown to result from 
the supposition that a positive solution exists for these 
equations when s = 1,2,  . . . , S - 1. 

It remains only to show that a solution exists  when 
s = 1 = S .  To this end, one notes first that  in  the case 
S = 1, the curve @*(e,) becomes the plane curve 
G1(Oo, 0,) = 0. Since, as mentioned previously, GI sat- 
isfies the conditions of the implicit function theorem, 
GI = 0 specifies €J1 as a function of Bo. Now the only way 
the arguments A ,  By C and D relied on  the induction 
assumption was that it guaranteed the existence of @*(O). 
Thus, if G1(O, e,) = 0 can be shown to possess  exactly 
one solution, the preceding derivation will hold for  the 
case S = 1. This has already been accomplished, however, 
in argument B, since G,(O, e,) is the same as G;(O,). 
Figure 7 depicts the situation in the case S = 1. 

It is to be noted that this proof remains valid when 
the  total amount of the same fixed subset of components 
is specified in each product stream. This is because the 
only requirement on  the summations over components 
is that they include all components which have been 
specified in the product streams. 

Summary 
For the first time it is shown that a solution to  the Holland 
equations exists and  is unique at each iteration performed 
to obtain the answer to a distillation problem, provided 
the  total withdrawal rate of each product stream is spec- 
ified. 

Notation 
A = matrix defined after Eq. (11) 
bi = rate of  flow  of component i in the bottom 

product stream 
B = total rate of  flow  of the bottom product 

stream. B = xi bi 
d ,  = rate of  flow  of component i in  the overhead 

product stream 
D = total  rate of  flow  of the overhead product 

stream. D = di 
f i  = feed rate of component i in a single  feed 
F": = total rate of feed of component i to  the unit 
Go, G ,  = functions defined  by Eqs. (1) and ( 5 )  

\ Go=O 

-"-"""""" 

/ 
k q 0 )  = 0; 

1 

n- 
Figure 7 Intersection of curves Go = 0 and 8* (00)  when 
s =  1 .  

G:, G: = functions Go and G,, respectively, evaluated 

Go = the gradient vector of Go 
dGo/du = the derivative of Go in the direction of d 
dGo/dT = the derivative of Go in the direction of T 
(dGo/da)- = the minimum value of dG,/du in the region 

(dGo/dT)- = the minimum value of dGo/dT in the region 

with all but one 0 set to zero 

O j @ ~ @ +  

@*(O) 5 0 5 0' 
I = the unit matrix (main diagonal elements 

M = matrix defined after E q .  (11) 
S = number of side-draws from  the unit 
W i a  = flow rate of component i in the  sth side- 

W. = total flow rate of the  sth side-draw up from 

each = 1 , all  other elements = 0) 

draw up from  the bottom of the unit 

the bottom of the unit. W, = xi w i ,  

Greek letters 
ff = constant defined after E q .  (9) 
pi, pi[@] = variable defined  by Eq. (3), and evaluated 

Y = vector defined after Eq. (11). 
11. = variable defined prior to Eq. (10) 
11 = vector defined after Eq. (11) 

at  the point (eo, 01, . . . , e,) 

eo = (di/bi)/(di/b& for all components 
8, = (wi8/bi)/(wi8/bi)c for all components 
O:(O0) = an element of the solution to Eqs. (6) with 

eo regarded as a parameter 39 
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= the value of 0, at which the surface Go = 0 
intersects the 0,-axis 

= the value of 0, at which the surface G. = 0 
intersects the 0,-axis; s = 1, 2 ,  * * , S. 

= the value of 0. at which the line through the 
origin and  the point 10, 0:(0), 0*,(0); . . ,eg(O)l 
intersects the surface Go = 0 

= the vector (eo, el, 02, . . . , O s ) T .  This re- 
presents a  point in  the space spanned by 
the e,, s = 0, 1, 2, . . . , S 

= the vector {eo, e;(eo), e:(eo), + . . , eg(e,)} 
= the vector (e:, e:, . . . , 0;)' 
= the vector (0, e:,  e:, . . . , 0;)" 
= distance from  the origin toward  the point 

eo along the line between these points. u is 
positive when 0 is non-negative 

= the s-th component of the tangent to  the 
line between the origin and O0.u, = 0:(0)/ 

= the tangent to  the line between the origin 
and 0'. Since the line is straight, d re- 
presents a vector of unit length along  this 
line. d = (0, ul, u2, . . . , us)T 

= the distance from @*(0) along the curve 
defined by @(eo). r is positive when 0 is 
non-negative. 

= the s-th  component of the tangent to the 
curve defined by @*(e,). r, = v 8 / ( v .  7)' 

= the tangent to  the curve defined by @*(e,). 

[0*(0)@*(0)1~ 

7 = (70, 71, . . . , T S Y  

Subscripts 
C denotes the last previously computed value 

of the quantity to which it applies 
i denotes  component  number 
p ,  q, r ,  s denote side-draw number. Except where 

otherwise specified these assume the values 
1 , 2 ,  . . .  , s 
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Appendix 
In connection with the specific example of Ref. 5, Pro- 
fessor Holland has pointed out to the  author  that  the 
limits on  the value of a  purity specification for which 
the Holland  equations are applicable are easily found. 
For  the case of a binary mixture separated in a simple 
column where the mole fraction, xl, of one  component 

in  the  bottoms product is  specified there is 

bi = f i / [ l  + (d,/bi),O], i = 1,  2 

so that 

If, for instance, the specifications are f l  = 80, f 2  = 20 
and x1 is the mole fraction of the lighter component in 
the bottoms, 

For  the case of x1 = 0.1 there is 

from which 36 (dz/bz)c 5 (dl/bl)c,  so that if on any it- 
eration (d1/bJc < 36 (d2/bz),, then 0 < 0. Note  further 
that simply setting 0 = 0 is unsuitable since then bi = f i  

and there is no distillate. Obviously if (dlbl) < 36 (d,/bz) 
in  the  actual solution another method is required. A 
similar argument may be applied to situations  where 
the product  temperature is specified. Thus,  the conditions 
given previously by Lyster,  et a1.l' are seen to be necessary 
but  not sufficient to insure  a  solution to  the  Holland 
equations  in the case of a purity specification. 
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