12

P. J. PRICE

The Theory of Hot Electrons

P. J. Price

Abstract: This is a survey of methods of analysis of the hot-electron phenomenon in semiconductors. The earliest method depended
on three basic assumptions: smallness of the deviation of f(p), the carrier distribution function, from fy(E(p)), the distribution in energy
E; the conventional relaxation-time relation between f — f, and df,/dE; and smallness of dfy/dE. More general methods are associated
with giving up, successively in the reverse order, these assumptions. Procedures for obtaining and solving equations involving f, only,
based on a new approach due to Levinson, are developed. An inherently precise method for calculating f and related treatment of
differential mobility, which requires computer implementation and which has recently come into use, is expounded. Test calculations

for the case of n-germanium are reported.

1. Introduction
This is a survey of methods of theoretical analysis of
the hot-electron phenomenon in semiconductors." That is,
of the effects of substantial displacement of the electron
system from thermal equilibrium with the lattice, by an
electric field (§) driving a current (or by light or other
energy-bearing disturbances). Interest and progress in the
subject have been considerably augmented by the recent
work on dynamical instabilities in these systems.

In the conditions which normally apply,” one may use
a quasiclassical specification of the system of carriers
(itinerant electrons or holes), with nondegenerate statistics.
That is, assign each carrier, independently, time-dependent
values of the Bloch state quantum numbers: crystal momen-
tum p (= /4 times wavevector), spin component and band.
We may explicitly ignore the band and spin variables,
however, since the way formulas are generalized to include
them (to take into account forces and scattering processes
which change them) is obvious. We also ignore carrier-
carrier scattering, although in some practical conditions
this may not be justifiable and it may have a substantial
effect.® Then the state of the hot-electron system is deter-
mined by the band energy function E(p) and the scattering-
probability function W(p;, p;) for transitions p; — p..
The energy changes, E(p;) — E(p,), of course have an
essential role. They are normally due to absorption and
emission of the lattice-vibration phonons. The associ-
ated displacement of the phonon system itself from thermal
equilibrium is usually assumed negligible, though its
neglect may not be justified in some circumstances.* The
foregoing customary assumptions are not seriously restric-
tive for present purposes.
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Accordingly, the state of the system is given apart from
fluctuations by the distribution function f(p), such that
the drift velocity is

u = Ivp)fp) = (v) 1.1y

and similarly for other macroscopic quantities of interest,
and f is governed by the Boltzmann equation®

of/ot = —F-(3/9p)f + D,
of = 10") (feHW ', p) — I®W(p, p))

1.2)
1.3)
where F is the force on a carrier, which we may take as
the “Lorentz force”

F = (£e)(& + (1/c)v X 30).

In these equations I or I(p) stands for integration fd°p - - -
over the Brillouin zone, the carrier velocity is

v(p) = JE/dp (1.5)
and the normalization, in (1.1) and hereafter, is such that

If=1. (1.6)

1.4)

The second term of (1.3) may be written as —f/7, where
7(p) is the scattering time defined by

1/ = 1) W, ). .7

Theoretical analysis has been concerned primarily with
solution of the Boltzmann equation (1.2), (1.3) for a steady
state, corresponding to a constant electric field with spatial
homogeneity, and with the resulting drift velocity (1.1);
secondarily with the response of this steady state to small
perturbations, such as the static and ‘‘a.c.” differential
mobilities; and to a limited extent with diffusion, due to a
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Integrodifferential equation for f,
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Algebraic formulas for
electron temperature 7',

(3.18) or (3.29), (3.26)

Differential equation for f,
(2.18)

More general equation for T,
E
(3.31), ete. folE)

Figure 1 Synopsis of mathematical content of Sections 2 and 3.

gradient of carrier concentration or of ficld. The present
work has the same emphasis. (Phenomena such as the
Gunn domains, however, involve large time-varying excur-
sions of the field; also diffusion must be assumed to have
significant effect.) In general the hot-electron Boltzmann
equation cannot be solved except by introducing approxi-
mations, such as are discussed in Sections 2 and 3, or by
massive numerical processing, as discussed in Section 4.

Methods of solving (1.2), (1.3) by analytical, or limited
numerical, means entail reducing it to an equation in a
single variable, which is necessarily the energy, E.° The
unknown of this equation will be the “‘energy distribution
function”

fAE)= s (1.8)

where the overhead bar means average over a surface of
constant energy:

S(ED(E) = I®) Y(p) §(E®@) — Ev) 1.9
for any function ¥(p); the density of states is
&(E) = I(p) d(E(p) — E)). (1.10)

JANUARY 1970

Solution of an equation for fo(E) is, of course, of central
interest in hot-electron theory. Except for the special case
of Ref. 9, both derivation and (except as discussed in
Section 3) solution of this energy-variable equation require
approximations. These are discussed in Sections 2 and 3.

Anisotropy, in the dependence of E(p) on the direction
of p or of W(p,, p.) on the directions of p; and p, separately,
is a complication which in general requires additional
approximations. Even for Ohmic conduction this is an
incompletely resolved problem. It may be passed over
here, however, without essentially affecting the analysis.
Therefore for most of Sections 2 and 3 we assume isotropy
in E and W;" and similarly the second (magnetic field)
term of (1.4) is dropped:

F = (*e)8. (1.11)

The theory is developed first, however, as far as possible
without assuming isotropy: in Section 2, Egs. (2.3)—
(2.18); in Section 3, Eqgs. (3.6), (3.7) and the following
equations with # in place of W,

Figure 1 shows results (in the boxes), and reasoning
connecting them, for these two Sections. The left side,
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corresponding to Section 2, represents the procedure due
to Landau and coworkers in the 30’s; the remainder,
corresponding to Section 3, develops the more general
and serviceable formulation introduced by Levinson in
1964. The improvement is from left to right.

The essential condition of validity for Sections 2 and 3
is that f and f, differ little. That is, surfaces of constant
f should not deviate much from the surfaces of constant
E in p space. Section 3 attempts to develop the best avail-
able means for calculating f,(E) subject to this condition.
Methods such as described in Section 4 are evidently
required, in general, when one has the substantial dis-
placement of surfaces of constant f (characteristically an
elongation in the field direction, which has been termed
“streaming’) that occurs in some conditions. Section 4
discusses methods which provide essentially exact calcula-
tion of the carrier distribution, in principle for all cir-
cumstances, but which require computer implementation.
They have been used successfully for cases which allow a
two-dimensional specification of f(p), as well as a one-
dimension case. Extension to three-dimension cases does
not appear to involve any essential difficulties, but only
the necessary machine capacity. Sections 3 and 4 represent
two limits in treatment, and there evidently is no available
theory providing for orders of approximation, and calcula-
tion procedure, intermediate between these.

2. The conventional approximations

In this Section the traditional procedure for obtaining
a solution of the steady-state Boltzmann equation is
expounded, with the emphasis on the approximations
entailed, and no discussion of any particular application.
A more general version allowing anisotropy is given first;
then (Eq. (2.19) onward) the conventional, more restricted
but more amenable, version is introduced.

Equation (1.2) may be separated into parts which are
even and odd in p (or its equivalent for a many-valley
band), in terms of the even and odd parts of f(p). Normally
Df preserves this parity; and (so long as we have (1.11)
rather than (1.4)) F-(8/dp) interchanges even and odd
parities. Then the two equations are

F-(3/0p)oas = (D — 9/00fcven 2.1
F-(8/0P) oven = (D — /30 oau- 2.2
Now if we write

1= f(E@) + @ 2.3)
so that

f=i-7 f=0 2.4)

then f, is analogous, here, to the thermal distribution
function

fo(E) = a e ™" (2.5)

in the theory of Ohmic conduction. Although fo(E) is in
general far from {5, it can still be reasonable to assume
(with the expectation that {' << fo):

Approximation (a)
f"is odd in p. 2.6)

(Eq. (2.27) is the equivalent Approximation (a), below.)
Then (2.1) and (2.2) become (when we also drop the time
dependence)

®fo = F-(9/9p)f’ @7
Df' = F-(3/3p)fo = F-v dfy/dE. .8

To solve (2.8) for f/ we may reasonably use the standard
“Ohmic” approximation

Approximation (b)
f'= — 7@y -Fdfo/dE 2.9

where 7’ is not necessarily equal to the scattering time 7
defined in (1.7). The extent of validity of this customary
Ansatz can be taken as similar to what it is for the Ohmic
case, and likewise (see Footnote 17) for its equivalent,
(2.28). (For any particular model, or simplifying situation,
one can obtain a “best” approximate 7' by means of
Kohler’s minimum principle (see, for example, P. J. Price,
IBM J. Res. Develop. 1, 239 (1957)); but for the hot-
electron situation it should be recognized that, for appre-
ciable inelastic scattering, 7’/ may be a functional of
fo(E).) For the spherical symmetry case of (2.28), it can
in any case be dispensed with by the means described in
connection with Egs. (3.33), (3.34).

By substituting (2.9) in (2.7) we eliminate f’ and obtain
an equation for f,. It is expedient to average this equation
over a surface of constant energy. Then

(® + FF: (A d/dE+ B d°/dE®)) fo = 0 2.10)

where the tensors A(E) and B(F) are given by

A= 3(v)/op, B=r1vwv (2.11)

and D is given by substituting for W in (1.3) the kernel
W(E, E’) obtained from W(p, p") by double application
of the averaging (1.9), (1.10).

The integrodifferential equation (2.10), which is not very
amenable to solution, may be converted into a differential
equation by substituting for its first term a truncation of
the formal expansion

Dfy = 3> Ku(E) d'fo/dE"

n=0

(2.12)

where
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K(B) = (1/n) [ 4B qENE ~ EY(TE, By

— 8.0 W(E, E"). (2.13)
Replacement of the series (2.12) by only its leading terms
amounts to
Approximation (c)
fo(E) is slowly varying. (2.14)
On account of the detailed-balance relation

EPVAT s ) = € EO T . b)) (2.15)
the coeflicients (2.13) satisfy

©

> (—1/kTV'K, = 0, (2.16)

n=0

in agreement with
Dfp = 0. 217

In the truncared series replacing (2.12), however, the coeffi-
cients K, of the retained terms must be adjusted if the
sum over these alone on the left of (2.16) is to be zero.®
In particular, the second order differential equation

Ofo = Kofy + (K, + FF : A) dfo/dE
+ (—*TY K, + kTK, + FF : B) d*f,/dE’
=0 (2.18)

results from the first three terms of (2.12), when K, is
replaced by kTK, — (kT)’K, to satisfy this condition.
Alternative approximations will be more conveniently
discussed with the formulation in Section 3.

We now restate the foregoing, a little differently, for
the case of spherical symmetry:

E= E(p), g= 4np’/v, wherev = dE/dp (2.19)
and
W(p, p") depends only on E(p), E(p")

and the angle §,p’. (2.20)

For this case one may expand

fp) = f(E, x) = Z f(E)P,(x) (2.21)

(still assuming (1.11) rather than (1.4)) and

W, p') = W(E, E', y) 2.22)

Z W(E, E)P,(»)

where

x = p-&/p§, y=pp'/or (2.23)

JANUARY 1970

and the P, are the Legendre polynomials, which will be
normalized to P,(1) = 1. (The 7 used in (2.13) corre-
sponds to W, here.) The Boltzmann equation may corre-
spondingly be separated into spherical-harmonic com-
ponents. The I'th equation (coefficient of P;) is

.
20+ 1

= Fo ¢,(E) (2.24)

[ ar sernenwie, & - L im

where 1/7(E) is given by (1.7) in terms of W, only and
the first two of the ¢, are

1(2 4

¢ =3 (pu EE)fl 223)
d 2(3 d

¢ =gl Tts (pu + dE>f2' (2.26)

For Approximation (a), the equivalent of Eq. (2.6) is
to truncate the sum (2.21) to

f="fo+ xf: (2.27)

accordingly dropping the f, term of (2.26).° Then, from
(2.24) with [ = 0 and !/ = 1, we have two simultaneous
equations for f, and f,. For entirely isotropic scattering,
(2.9) is exact with 7’ = 7; and then (2.6) is a less restrictive
(even for spherical symmetry) equivalent of (2.27). With
spherical symmetry, if the inelastic (e.g., optical-mode
phonon) component of the scattering is isotropic’® one
has from (2.24) for [ = 1 a virtually exact version of Eq.
2.9):

fi = —7'vF dfy/dE. (2.28)

In any case, by means of the formulation developed in
Section 3, one may dispense with Approximation (b) and
still obtain equations of the desired form (see the discussion
in connection with Eq. (3.34)).

Substitution of (2.28) in (2.24) for / = 0 gives the
spherical symmetry version of (2.10). Then the equivalent
of (2.18) is obtained similarly. For the case of only acoustic-
mode phonon, deformation-potential coupled, scattering,
a spherical-symmetry version of Eq. (2.18) was obtained
in the mid-30’s by Landau and co-workers;’ and for this
case, in normal circumstances,"’ it is virtually exact.
Essentially (2.18) has been extensively applied since then
to other cases, including valence semiconductors with
scattering by optical-mode (as well as acoustic-mode)
phonons,'? and polar semiconductors™ with their different
law of electron-lattice coupling. However, it has come to
be recognized™*'*® that Approximation (a)—Eq. (2.6) or
(2.27)—then has no general validity. The surfaces of con-
stant fin p-space can be far from coincident with surfaces
of constant E(p), and many terms of the sum (2.21) be
appreciable. It appears that, except in special circum-
stances, one then has to resort to the methods discussed
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in Section 4. When one does have the conditions for a
valid “one-dimensional” analysis of the carrier distribu-
tion—an equation for f,(E) alone—there is still a question
of the accuracy of Approximation (c), or equivalents, and
more generally of the most suitable form of equation and
its solution. This is discussed in Section 3.

3. Levinson’s formulation
An equation of the type of (2.10) or of (2.18) does not
represent the most general, or necessarily the best, treat-
ment of situations in which f(p) may be analyzed in terms
of fo(E) alone. What appears to be an effective overall
approach, for such situations, is described in the present
Section. It will be shown that when all three basic approxi-
mations of Section 2 apply one may obtain equivalent
but more tractable equations for fp; and that Approxima-
tion (c), and even Approximation (b), may be given up
and one still has useful procedures for obtaining f;. Approx-
imation (a)—the absence of appreciable “streaming”—
remains the basic condition.

For the particular case of Ref. 9, the second order
differential operator of (2.18) factorizes into two first
order operators:

Q= LL, 3.1)
and so (2.18) is satisfied by the solution of
szo = 0, (3.2)

which is given by a single integration. It was shown by
Levinson'® that (3.2) applies generally: that is, for condi-
tions essentially those leading to (2.18), one has

fo + U(E) dfo/dE = 0 G.3)

where U(FE) is a prescribed functional of Wy(E, E’) or
of ¥. Then (3.3) gives directly

E
fo(E) = exp —f dE'/kT(E"),

kT, = U. (3.4)

Levinson’s basic equation, for the steady state, is
0=JE)=Jp+ Js

where g(E)J(E,;) is the net rate per unit time at which
electrons pass across the surface E(p) = E; in the direction
of increasing energy, and the two terms on the right of (3.5)
are the contributions to J due to the force F and the
scattering respectively. One may arrive at (3.5) by multi-
plying the right-hand side of (1.2) by a step function of the
energy and integrating over p-space. For the first term
this gives

Jr = F-vf. (3.6)

By (2.3), f may be replaced by f’ on the right of (3.6).
Equation (2.9) then gives

Jp = —FF:B dfo/dE

3.5

3.7

where B(E) is defined in (2.11).
If we assume (as in Ref. 16) the spherical-symmetry
conditions (2.19) and (2.20), then by (2.19) and (2.21)

Jp = %val 3.8)
exactly. Then (2.28) gives
Jp = —3Ft"" dfy/dE 3.9

in place of (3.7). (The truncation (2.27) is involved in
(3.9), but not in (3.8).) The second term of (3.5) is given
by an integral operation on f,(E):

g(E)Js(E) = ng{fo}

= I(E,; E; E,) fo(E\)Wo(E,, E,) (3.10)
where
IEs; E; E) $(E,, Ep)
= ‘/Li dE, g(E,)
[k, aE @i, B — 608, B
=2 /‘“ dE_ Sg(E.)
E—-}~TE—|
[ B, e B EME, B @3.11)
with
E, = }(E, 4+ E) (3.12)
and
Sg (x) = hoox>0 (3.13)
—1, x < 0.

The equation obtained by substituting (3.9) and (3.10)
into (3.5)

dfo/dE = (3/7'0°F?) Js{fo}

is the equivalent of (the spherical symmetry version of)
Eq. (2.10). An equivalent of (2.18) is obtained by using
instead of the integral expression for Js{f;} the first two
terms of the expansion analogous to (2.12):

(3.14)

Isifo} = —Z;) B.(E) d"fo/dE". (3.15)

We then obtain an equation of the form (3.3). If, as in
(2.18), we force consistency with the fundamental relation

Jsifs} =0 (3.16)
by setting B, = kTB, = D, then

__ o zf_o>
Js = — D(E) (kT + JE @3.17
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and hence for the “‘electron temperature” T, of (3.4)
T./T = 1+ (+'v*/3D)F*, (3.18)
Levinson'® gives for the coefficient in (3.17)

D(E) = —%f dE’ g(E'YE' — E)*W,(E, E"). (3.19)

The exact formulas for the first two coefficients in (3.15)
are

—gB, KE; E; Ey) W_(E,, E) (3.20)
I(E,; E; Ey) ((E+ — EYW_(E,, Ey)

— EW.(E, E)) (321)

—gB,

in the notation (3.11), where
W.(E, E)= %(( Wo(E,, E,) £ Wy(Es, El)) (3.22)

Now, so long as the maximum energy change in scattering
(E; — E,) is small compared to E, Wy(E,, E,) can be
expected to vary little, with E, — E; held fixed, over the
range of the second integral on the right of (3.11); and
g(E)g(E,) should also vary little. Accordingly we may drop
the W_ term of (3.21). For the other term of (3.21), simi-
larly the factor g(E:)g(E;)W . (E,, E,) can be taken outside
the second integral of (3.11), with E, replaced by Ein W,
and g(E)g(E,) set equal to g(E)’. Then we obtain (with
€= 2E)

B, = %gf W.(E — 1e, E + %5)62 de. (3.23)
‘The equivalent result for B, from (3.20) is

B, = gf W.(E — ¢, E + 3€)e tanh (¢/2kT) de
" (3.24)

since on account of the “detailed balance” relation, (2.15),
W, sinh (E_/kT) + W_ cosh (E_/kT) = 0. (3.25)

The actual result of substituting the first two terms of
(3.15) in (3.14)

T./T = (By/BokT) + (+'v°/3Bok T)F* (3.26)

in general differs from (3.18) in that B, 3 BykT, except
in the limit k7 >> (the predominant energy change in
scattering). For simple dispersionless optical-mode-phonon
plus elastic scattering, in particular,

B,/B.kT = (T,/2T) coth (T,/2T) (3.27)

where kT, = 4w, is the optical-mode quantum. In fact
the truncation of (3.15) is admissible for the high fields,
and appropriate energies E, where kT (E) is large com-
pared to the energy changes in scattering. For weak fields
such that f; is close to fz, however, one may better approxi-
mate Jg by truncating the series

JANUARY 1970

Js = —fs ; D.(E) d"(fo/15)/dE". (3.28)

Retaining the first term alone of the sum in (3.28) gives,
in place of (3.26),

T./T = 1+ (+'v*/3D)F". (3.29)

Assumptions and reasoning like those leading to (3.23)
and (3.24) give, to an equivalent approximation,

D, = kTB,. (3.30)

Thus D, differs numerically from the D given by (3.19),
again unless kT is large compared to energy changes in
scattering.

We cannot have a single equation like (3.26) or (3.29)
applying over the whole range of field strengths. But by
assuming that T.(E) varies inappreciably over a range
equal to the predominant energy change in scattering,
so that f,(E;) may be replaced by f(E) exp (E — E,)/kT.(E)
in (3.10), one can obtain from (3.14) an algebraic equation
for T,. With the same assumption as leads to (3.23), (3.24)
and (3.30) (but not that required to justify truncating
(3.15), or (3.28)) this becomes

3TF = 2(kT.)’g
f W.(E — ie, E + 36)G(e, T, T,) de
(3.31)

. € _¢
G(e, T, T.) = sinh (—ZkT 2kTe>

. € €
“sinh (ZkT)/ cosh <2kT>'

For simple dispersionless optical-mode plus elastic scat-
tering, (3.31) gives

", (2Tﬁ>. <To To>
3p, £ = \77, /) 8inh o7 T a7,

-sinh <2TI°,6>/sinh (%) (3.32)

with D, given by (3.30) and (3.24) for this case. Eq. (3.32)
reduces to (3.26), with (3.27) and (3.30), for 27, > T,;
and to (3.29) for T, ~ T. It should be recalled, however,
that where optical-mode scattering is important we have
still in effect assumed (in (3.23) etc.) that E >> hw,; and
results for the limit 7. ~ T (and more generally, for small
T/T,) may accordingly have a limited applicability. Figure
2 displays the relation (3.32), as T,/T versus its left-hand
side for some values of T/T,.

So far we have been concerned with the integrodiffer-
ential equation (3.14), which was obtained subject to any
approximations entailed in the use of (2.28). After dropping
the f; term of (2.26), the resulting integral equation (2.24)
for f; has a solution of form (2.28) only for some cases.”
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Figure 2 T./T (vertical scales) versus the left-hand side
of Eq. (3.32), for the values of T indicated on the curves
with T, = 440°.

Given the assumed spherical symmetry (in addition to the
necessary dropping of the f, term), however, there is in
this respect no essential difficulty with the formulation
of the present Section. The equation for f, is of form

—For dfo/dE = M{f.}, (3.33)

where M is the integral operator (on f;) appearing on the
left of (2.24) for I = 1, after multiplying by — 7. But (3.5)
and (3.8) give an exact equation f; = —(3/Fu)Js{fe}
which can be substituted in (3.33) to give the integro-
differential equation

YroF’dfo/dE = M{(1/v)]s{fo}} (3.39)

with kernel obtained from a convolution of W, and W,.
The procedures for estimating T,, and that described
below in terms of Eq. (3.35), should apply to (3.34) as
well as to (3.14). The corresponding generalizations of
(3.27), (3.32), etc. will involve additional terms in T, like
those in T,/2.

Although it has been useful to develop in some detail
the approximate analytical solutions of (3.14), the entailed
restriction to E fairly large compared to energy changes
in scattering implies a limit on their applicability. However,
Eq. (3.14)—and, similarly, Eq. (3.34)—is suitable for
numerical solution, without the approximations made in
these analytical solutions, by iteration. An appropriate
iteration sequence is

(nt+1) 1 (3 1 ()
fo (E) = epr FE (T/Uz (()n) Js{fo })E dE’

= A{fV}. (3.35)
The integrand of the integral on the right of (3.35), at
convergence of the sequence, is —1/kT.(E) = d(Inf,)/dE.

Not only does this iteration scheme not have the inherent
stability of that described in Section 4; it has an inherent

instability. By (2.15), for T, constant over the energy range
of integration in Jg the integrand of (3.35) has the sign
opposite to that of (1/kT) + d(Inf{*)/dE’, and its depend-
ence on the latter is monotonic. Therefore, when f{ is
close to the solution of (3.14), if it has T.(E) values which
are too large then (3.35) should give an f"*" with T,
values which are too small, and conversely. For low fields
especially, a resulting alternation of errors can be unstable.
This difficulty was met, in the calculation described below,
by using instead of (3.35) the sequence

1Y =1 — a)fs” + aA{f”}

and controlling the parameter a so as to approach the
fastest convergence compatible with stability. (Still, it is
evident that this iteration scheme is a “high field” pro-
cedure which cannot be expected to extend down to & = 0;
the same reservation applies to the method expounded in
Section 4.)

Since the iteration method described above is new, and
may be considered to give the best possible “one-dimen-
sional” calculation of the distribution function on the
basis of the Landau truncation of (2.21) to its first two
terms (2.27), a trial application was made. The case was
n-germanium, with lattice scattering only, and intervalley
scattering taken to be so weak that it may be neglected in
calculating the distribution in a single valley. The E(p)
function of a valley was taken to be the ‘‘tensor-mass
parabolic” p-(1/2m)-p with constant 1/m tensor, and
the in-valley scattering to be isotropic, elastic acoustic-
mode-phonon plus single-energy (#w, = kT,) optical-mode.
Then 7' = 7, and the scattering rate may be written™®

(3.36)

1= R (1/T)V X
+ R (N.A(X + 1) + (N, + DV(X — 1)
(3.37)
where
X= E/kT,, N,=1/("""—1) (3.38)

and \/ () is to be taken as zero for negative argument.
The parameters R;, R, are acoustic-mode and optical-mode
coupling constants. This system with axial symmetry is
reduced to spherical symmetry by a linear transformation
of p space, equivalent to having a ‘“‘crystal momentum”
equal to p*(E) = \/ (REm*), where"’

1 1 (&} 1 {&\°
oL )
m my & my &
With the actual scattering function (represented by (3.37),
(3.38)) and actual field strength &, this gives the correct
energy distribution fo(E); and the correct drift velocity is

the scalar product of 1/m and the expectation of p*
(which will be parallel to &) in this transformed system.

(3.39)
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It will be of interest to compare the computed results
with those given by the algebraic formulas. In the limit
represented by (3.26), the density-of-states factors
\/ (X == 1) occurring in the evaluation of B, or B, may be
replaced by \/ X. Then (3.26) would give

I, _ T, T, 2 2

T~ 2r (2T> t 3krRR T (3.40)
where

R = R(T/T,)+ R,(2N, + 1). 3.41)

As expected, T, is in this approximation independent of
E. To the same approximation the drift velocity would be
w &(T/ Te)%, where

po = (4/3V m)(e/m*RYT,/T)} (3.42)

is the value the Ohmic mobility, in the & direction, would
have if T were equal to 1/(R V'X).

In these calculations the field & was taken to be in the
(1, 0, 0) direction; so that m* was the free electron mass
divided by 8.39." The value 440° was used for 7,. The
results reported below are for 7 = 300°, with R, = 0.37 X
10" sec™! and R, = 0.022 X 10"® sec™™.*® The iteration
scheme (3.35), (3.36) was implemented on the APL ter-
minal-based interactive computation facility,”* which
allowed its operation to be monitored and freely inter-
rupted and controlled, and the numbers generated to be
freely and selectively accessed. A “grid” of equally spaced
X values (varying in number, up to 271 for § = 5000 V/cm,
and in spacing) was used to represent f,.

A feature of interest in the results is the energy depend-
ence of T, and f,/f,, which are constant in the approxima-
tion represented by (3.40). Figure 3 shows T,/T, and f,/{,
versus X = E/kT,, for & = 1000 V/cm. (T,/T«(X) is
more informative, displayed, than f, = exp — fX (T,/T.)
dX'.) At higher fields the sharp shoulders of these curves
soften to smooth bends connecting the rising and flat
parts, and the location of these bends shifts slightly to
the right; but the curves remain otherwise similar.”®

Figure 4 compares the limiting value of f,/f, for large X
(indicated by the points) with the constant value given
by (3.40) (lower curve) and with that given by (3.40) with
the first term on the right replaced by 1, i.e., by (3.29)
instead of (3.26) (upper curve). The points cross over from
the “low field” to the “high field” curve with increasing
&, as they should. The analogous behavior was found for
the limiting value of 7,/T. at large X, and for (X), but
the displacements entailed in the crossovers were less. For
each of these two quantities, a single curve may be con-
structed from the two limiting curves and the computed
points; these are shown in Fig. 5. Figure 6 shows drift
velocity versus field.”®

It would be of interest to extend these computations to
systems of many valleys with scattering between them,
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Figure 3 T.,/T. (lower curve, right scale) and fi/fo (upper
curve, left scale) versus E/kT, for a field of 1000 V/cm.

Figure 4 Limit of fi/f,, for large E, versus field. Curves
and points obtained as described in the text.
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Figure 5 Limit of T./T., for large E (descending curve,
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scale) versus field.
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Figure 6 Drift velocity versus field.

especially since (see the discussion at the end of Section 4)
the fundamental condition for validity of Eq. (3.14) evi-
dently is satisfied in the present case. A change in the form
of the equations is entailed, however. The left-hand side
of Eq. (3.5), for each valley, is no longer zero; it is equal
to a net “upward” flow of carriers, given by an integral
over valley f, functions times intervalley W functions.
Since this integral will extend over at least the energy
range to the band edge, it could not be subsumed in Jg
for approximations such as lead to (3.31).

The main deficiencies of the formulation developed in
this Section, and hence of the iterative solution of Eq.
(3.14), appear to be (a) that appreciable (band-energy and
scattering) anisotropy can be adequately taken account of
only in special cases; (b) that this formulation is not the
lowest order in a systematically generated sequence of
approximations, which could deal with the extent of devia-
tion of f(p) from fo(E).”* This deviation does not affect
the validity of the methods discussed in the following
Section, which are quite general, but also their implemen-
tation is more demanding. Obviously it would still be
desirable to have available the fullest possible extent of
applicable “one dimensional” formulations.

4. Precise calculations

In general the complete solution of the Boltzmann equa-
tion or its equivalent, for the hot-electron distribution,
is not available in closed form. But there are methods
for systematic numerical evaluation. The cases which these
have dealt with, so far, have been reducible to two dimen-
sions in p space (i.e., systems having spherical symmetry,

for which f(p) has axial symmetry and depends on p and
the angle p/f\; ; and the n-Ge case of the preceding Section,
which can be transformed to spherical symmetry as indi-
cated there), in addition to a one-dimension case. The
number of arithmetical operations required (for a given
precision) is proportional to, and many times, the number
of points in p space used in representing the distribution
function; and this figure determines the needed computer
capacity.

One of these procedures is the Monte Carlo method,**
which has been applied to the present problem®® by
Kurosawa®™ and by Boardman, Fawcett and Rees.”® The
other, to be discussed here, could be considered as a
systemized, and arguably preferable, version of Monte
Carlo® or *° as based on a description of the electron
system in terms of ensembles differing from the conven-
tional ensembles of statistical mechanics. The distribution
is obtained as the result of repeated application (iteration)
of a linear integral operator (in the form of two such
operators applied successively). There should normally be
stable convergence (but see Footnote 39) to a result which
can be expected to be independent of the starting function.
The method, in various versions, has been applied to
several hot-clectron systems.?'”** In addition to these cal-
culations of the hot-electron steady state, the linear
response to small perturbations®*** may be obtained in
terms of sums over the results of successive iterations,®
as well as by a perturbation of the iterative computation
itself.3%%7

The traditional “u-space” ensemble for a steady state
may be considered as referring to a set of single-particle
states, i.e., here a set of p values {p} = p*, p*®, --- ,
obtained by sampling p(?) for an individual particle (under-
going the accelerations and scatterings represented by F
and W in (1.2) and (1.3)) at arbitrary times ¢, tp, « -
Then f(p) describes {p}. By sampling instead at times
correlated with the scattering events we may obtain equally
representative, but different, ensembles. In particular, the
t, may be the successive scattering times themselves. If

the nth scattering is the transition p{” — p{™ then we have

“before” and “after” ensembles {p.,} = p{*, pi®, *--
", -+ and {p.} = p", p¢?, --- , with distribution
functions f,(p) and f.(p), respectively. Since {p,} is the set
of initial states of all the scattering events, its distribution

function must be f times the scattering rate:
@) = (/@) f@)/1 1/7)f @.n
where the denominator on the right conserves normaliza-

tion (I f, = I'j).
The two distributions are connected by the relations

fo = Afa (4.2a)

fa = Ch (4.2b)
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where 4 and C are linear integral operators, given by
(4.10) and by (4.6). Then

= AC}.. @4.3)
The iteration scheme referred to above is expressed by

W gD 4.4)
= CR (4.5)

starting from ., say, and continuing until the sequence
of resulting functions is stationary. One may consider
these successive functions as successive distribution func-
tions o1 a set of particles, with each particle “observed”
at its own scattering times f,. Thus f* gives the distribu-

tion of the initial p values of the set of particles; then £V

gives the distribution of the p{"’, the p values at the instants
preceding the first scattering of each of the particles; and
so on. Although these scatterings are not simultaneous
(the set of ¢, for a given n are not all equal), nevertheless
the sequence®® - -« f7U, fW i 4D L. from this
point of view represents the thermalization of the system,
from an initial distribution §!* and presumably to an
ultimate steady state.’® That is, one may expect the itera-
tion scheme (4.4), (4.5) to converge for those hot-electron
systems which do thermalize to a steady state.

Because of the relation between the “a” and “‘b” states,

it is evident that

Cy = Ip") @)@ W', p) (4.6)

for any function y¥(p). To obtain A4 it is convenient to
introduce the operator Z such that, if ¢ is a function of
the state of a particle, Zy is the expectation of y at the
instant preceding the first subsequent scattering of a par-
ticle after it is in a given initial state (with Zy considered
as a function of the latter). Since Zy is the expectation of
¥ at the next “b” state following a given state, I f(Zy) =
I fo. Therefore I fiy = I (Z*f)¢, where Z* means the
adjoint of Z.*° Hence f;, = Z*f,, or

A= Z%, “.n

Now, the probability that the elapsed time to the next
collision, after a given initial state, will exceed ¢ is

P, 1) = exp — f ar' /(o | ) 4.8)

where the argument (p | ) means the state (p value)
reached by an electron after a time ¢, starting from p,
along the trajectory dp/dt = F.*' Then

zy = f W | D(—dP(p, 1)/dr) dt

- f ¥ | P, ) i/ | 0. 4.9)
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By (4.7), (4.8) and (4.9)

ay = /1) [ ay@ new [ dv/ao) 1)
- ° (4.10)

with the left-hand side considered as a function of p.
We may define a similar pair of operators

C=cU/d), A=r4 4.11)

by removing the factors r(p’) in (4.6) and 1/7(p) in (4.10).
Then by (4.1)*?

f= A€, 4.12)

This is an exact form of the Shockley-Chambers path
integral formula. It follows directly from the steady-state
Boltzmann equation

[1/7 + F-6/op) f = Cf (4.13)

and the fact that the operator on the left is the inverse
of 4:*

[1/7+ F-@/op)] ' = A. @.19)

Equation (4.1) then follows, by (4.11), from comparison of
(4.12) with (4.3).

Perturbations of the steady state due to small changes
in F, and hence the differential mobility and Hall effect,
may be calculated by similar means.** By (4.13), the linear
response of to a time-independent change 6F is given by

[1/7+ F-(8/dp) — Cl6f = —(5F)-(3/0p)f = h(p) (4.15)
and hence, by (4.14),
8f = Ah + ACAh + ACACAn + ---

= 7(Ah + ACAh + --). (4.16)
The coefficient of 7 on the right of (4.16) is just equal
to 2., fi™ for the sequence (4.4), (4.5) when the initial
function 7 is 4. Since 4 and C conserve normalization,
the convergence of the series depends on the fact that
I h = 0. (The latter is similarly a condition for (4.15) to

have a solution.) One might promote numerical conver-
gence by introducing a projection operator £, defined by

W=y¢y—fI 4.17)

where f is the normalized solution of Eq. (4.13), for
example by the substitution 4 — QA4 in (4.16); or by a
rearrangement of terms like that in (4.21). (Because of
the eigenvalue equation (4.12), there is no formal resolvent
for the operator 1 — AC, and similarly with (4.3); but
1 — QAC is not subject to this limitation.)

Since the drift velocity isu = I fv we have 6u = I'l'h =
1 {(5F)-(8/0p)l', and hence the differential mobility is given
by

su = (£ed8)- ((3/dp)l’) @.18)
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34,35

where V', the differential mean free path, is given by

V=2Zr(v—u)+ ZSZr(v —u) + --- 4.19)
with Z the adjoint of 4 as before, and*®
S = C*. 4.20)

The terms explicitly proportional to u, in (4.19), are
necessary for convergence of the sum.*® It may alterna-
tively be expressed as

V = (Zrv — ZSZ1v) + 2 (ZSZ1v — ZSZSZ1v)

+ 3(ZSZSZrv — ZSZSZSZv)+ --- . (4.21)

The calculations for time-dependent perturbations are
similar. If 6F varies as exp(iw?), there is an additional
term +iw in [ ] on the left of (4.15). This may be taken
into account by the substitution 1/7 — iw 4 1/7 in the
definition of A. That is, 4 — A, where

Av=[ avoioew [ ate+ 1/ )
- ‘ (4.22)

(but still, as in (4.11), 4, = 7A4,). The alternative sub-
stitutions (instead of replacing 4 by A, and accordingly
for 4 and Z)
C—oC—iv, C—HC—iwr, S—8—ivr

(4.23)

would generate power series in w represented by the formal
substitution

K— K+ K(—iwr)K+ K(—iwt)K(—iwr)K+ -+, (4.24)

where Kis A + ACA+ ---or Z+ ZSZ+ -+ . The
term proportional to iw in the expansion for the differential
mobility contributes to the zero-frequency dielectric con-
stant.*’

For wr << 1 and fields such that r ™~ Ar, we may take

A, ~e 4 (4.25)

and similarly for 4 and Z. The “self scattering” trans-
formation of Rees®®'**'®*" and Skullerud*” makes the sub-
stitution

W, p’) — W, p') + (i — —:—)> & — 1)

oo TP (4.26)
in the preceding equations, where 8°( ) is the three-dimen-
sional Dirac function and 7, is a constant (1/T, in Rees’
notation) not greater than the minimum of 7(p); then
all the calculations described here are changed accord-
ingly,*® but the resulting distribution functions, etc., should
be unchanged. If 7, is made sufficiently small, for given
F and w, that (4.25) (with 7, in place of 7 in the exponent)
is admissible, the latter will introduce a constant factor
exp (—inwr,) in the nth term of (4.16) and of (4.19). Then
the same operators and numerical processes (defined for

zero frequency, but containing the Rees substitution (4.26))
will be applicable to all frequencies w << 1/79, with nr,
having the role of the time # in the evolution of f. Extensive
calculations of differential mobility versus frequency have
been made by Rees®*®®” on this basis. In these calculations
the number of iterations, and hence the amount of numer-
ical processing, is increased by a substantial factor of
order 7/7,. Kwok, Lebwohl, Marcus and Schultz*® have
suggested that one would do better to just integrate the
Boltzmann equation (1.2), over the ¢ variable, to obtain
f(p, ©) or 6f as a function of ¢z. The 4 operator is then not
required in the computations; one has instead the differ-
entiation for the term F-(3/dp)f. They further propose
to calculate II(—#)f instead of f, where the operator 1I(#)
is defined by II(O)Y(p) = yY(p | ). This satisfies the equation

(8/9DIII(—nf] = [TI(— HDUMNIII(— 1] 4.27)

so that even the F-(9/dp) operator is eliminated and only
the modified scattering operator II(— )DII(?) remains in
the “equation of motion.”

For a system with spherical symmetry, C may be
expanded in harmonics corresponding to (2.22), Z,GP;;
and the analogous double expansion for 4, 2,.2,4,.,P; P,
will complete the relations (4.2), with £, and £ expanded
as in (2.21). (C is “diagonal in this representation,” but
A is not.) A suitable approximation might be to truncate
the series to I, m, n < N for a suitable N, leaving an N-
component scheme. For isotropic scattering, however, C
reduces to Cy; then, in (4.4), 4 may be replaced by Ag.
One thereby has an exact one-dimension scheme of equa-
tions (i.e., with only the energy as independent variable),
which was used by Budd.®' The kernel of Ay is unfor-
tunately a complicated function. It has a singularity
(/xrF)n(p/2)p — p'|) at E' = E; but® this can be
allowed for in the algorithm. For moderate fields one
might attempt replacing 4y, by a simple form based on
the first few moments of its kernel.

The iteration scheme (4.4), (4.5) has been implemented
and tested for the same n-Ge case,”® with the same param-
eter values (7,, m*, T, R;, Ry) as in the computation
described at the end of Section 3; and the resulting values of
drift velocity and average energy, for fields from 1000 to
5000 V/cm, were in satisfactory agreement. This is consist-
ent with the situation that the Landau truncation (2.27)is a
good approximation for this case and parameter values,
according to the estimation

fo/fo 2 3(f1/To)’

(for small f,/f,) which with the f,/f, values of Figs. 3
and 4 gives f5/f, less than 39%,. Thus, by a choice of param-
eter values for which good numerical agreement is to be
expected, it has been possible to check against each other
the procedures described in this Section, for the steady
state, and in Section 3. A similar numerical comparison

4.28)
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for conditions where f,/f, is not small accordingly would
also be of interest, since it should give a measure of the
accuracy of the method of Section 3 when streaming is
appreciable.
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Carlo is proportional to the number of arrivals in a
“cell,” N, say, its error ~N,™2 may be much greater
than for an iterative procedure with a comparable
amount of numerical processing. On the other hand,
in a problem where not all of the particle variables
are of interest in the final result one may accomplish
a saving in memory requirement, with Monte Carlo,
by not storing successive values of such variables after
they have served their purpose by influencing the gen-
eration of the subsequent values.

P. 1. Price, Bull. Am. Phys. Soc. 4, 129 (1959).
H. F. Budd, Proceedings of the International Confer-
ence on the Physics of Semiconductors, Kyoto 1966,
paper X-5. For the particular case considered by Budd
one has an exact “one-dimension” equation involving
the E variable only, but it is of a more complicated
form than the equations of Section 3.

H. D. Rees, Physics Letters 26A, 416 (1968); J. Physics
and Chemistry of Solids 30, 643 (1969). It should be
noted that the normalization of the Legendre polyno-
mials in these papers differs from the P:(1) = 1 used
here.

P. J. Price, IBM Research Report RW-98, published
in Proceedings of the International Conference on the
Physics of Semiconductors, Moscow 1968, paper XV-1.
Among misprints in the published version, it should
be noted that the operator on the right of Eq. (5)
should be “G,” not “C”; and in the fifth line after
Eq. (2) “states after” should read “states before and
after.” There should be no minus sign in the exponent
of Eq. (7); the exponent will then be negative.

P. J. Price, Proceedings of the International Confer-
ence on the Physics of Semiconductors, Rochester
1958, paper E6. (An error in Egs. (8) and (9) is
corrected in Ref. 35.)

P. J. Price, Chapter 8 in Fluctuation Phenomena in
Solids, R. E. Burgess, ed., Academic Press, New York,
1965.

H. D. Rees, Solid State Communications 7, 267 (1969).
H. D. Rees, IBM J. Res. Develop. 13, 537 (1969).
This peculiar combination of u-space and ~-space, in
which for each particle its collision times are ‘“used
as a clock,” so that the time evoluticn of the system
can be specified with this synchronization of particle
events, has been named by the writer a synchronous
ensemble.

It is not quite necessarily so. The hot-electron system
in question may not have a normalizable steady state.
(This situation corresponds to convergence of the inte-
gral in Eq. (3.4) when the upper limit is infinity.")
One does not deal with an infinite energy range in
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practice; and in lien of actual departures from the
assumed model of the solid (additional bands, scat-
tering processes, avalanche processes, etc., coming in
at higher energies) which quench the “escape effect”
instability, one might choose to introduce the energy
cutoff in such a way as to represent a system having
the stability property. One should not exclude the possi-
bility of the thermalization rate being very small for
some region of p-space (perhaps tending to zero for
E — ), with corresponding behavior of the f, and
f» functions in the iteration scheme (4.4), (4.5). But
in any case it is stability on iteration of the actual
computational algorithm, imperfectly representing the
analytical operations, and not of the latter, which is in
question. The general existence, and importance, of the
underlying stability are clear, however. They have been
particularly stressed by Rees.

For an operator G and functions ¢, ¢ in general, the
adjoint G* satisfies I¢p(Gy) = Iy(G*¢). The adjoint
of an integral operator is obtained by interchanging the
variables in the kernel, and the adjoint of 9/9p is
—3/9p.

Here, and in the equations following, F can be the
full Lorentz force (1.4), though we are going to be
concerned only with the case (1.11).

We might base the iteration scheme on (4.12), just as
well as on (4.3). In the work of Rees, because of his
“self scattering” artifice in the Boltzmann equation,
there is no difference between these two procedures.
Equivalently, [ 1 = is the inverse of A. For
the justification of these statements see P. J. Price,
IBM J. Res. Develop. 2, 200 (1958). See also L. V.
Keldysh, Soviet Physics—JETP 21, 1135 (1965), in
particular Eq. (23).

For diffusion, the source term on the right of (4.15) is
—v-grad f. For hot electrons the response coefficient,
the diffusivity, is not in general given simply by the
expectation of some electron variable, as in (4.18)
for the differential mobility. The theory of diffusion
of hot electrons is discussed in Refs. 34, 35. For calcula-
tions of the hot-electron diffusivity tensor, see Patrick
Hu and P. J. Price, IBM Research Report NW-18
(1967) (for the classic case of Ref. 9); G. Persky
and D. J. Bartelink, Physics Letters 28A, 749 (1969)
(p-germanium); W. Fawcett and H. D. Rees, Physics
Letters 29A, 578 (1969) (n-GaAs).

In papers of the writer cited here, C is denoted by
M and its adjoint by £, and Z is denoted by Q.

The nth term of (4.19) is the expectation of fy(p|t)dt
integrated from the (n — 1)th scattering to the nth
scattering following the initial state, with ¢(p) = v(p)
—u

H. R. Skullerud, J. Physics D (British Journal of Ap-
plied Physics, Series 2) 1, 1567 (1968).

In particular, the “scattering time” replacing =(p)
in all functions and operators will be a constant, 7.
The resulting saving in arithmetical operations in the
numerical implementation of A4, etc., will be offset by
the greater number of iterations required for a given
precision.

Private communication.

The one-dimension scheme of the preceding para-
graph is, of course, applicable to this case, and has
been applied to it by Budd.®
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