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Abstract: This  is a survey  of methods of  analysis  of the hot-electron  phenomenon in semiconductors.  The  earliest  method  depended 
on three basic  assumptions:  smallness  of  the  deviation of f(p), the carrier  distribution  function,  from fo(E(p)), the  distribution in energy 
E, the conventional  relaxation-time  relation  between f - fo and dfo/dE; and  smallness of djo/dE. More  general  methods are associated 
with  giving up, successively in the reverse order, these  assumptions.  Procedures for obtaining and solving  equations  involving f o  only, 
based on a new approach  due to Levinson, are developed. An inherently  precise  method  for  calculating f and related  treatment  of 
differential  mobility,  which  requires  computer  implementation and which has  recently  come into use,  is  expounded.  Test  calculations 
for the case of  n-germanium are reported. 

1. Introduction 
This  is a survey of methods of theoretical analysis of 
the hot-electron  phenomenon in semiconductors.’ That is, 
of the effects of substantial displacement of the electron 
system from  thermal equilibrium with the lattice, by an 
electric field ( E )  driving a current  (or by light or  other 
energy-bearing disturbances). Interest and progress in  the 
subject have been considerably augmented by the recent 
work on dynamical instabilities in these systems. 

In  the conditions which normally apply,’ one may use 
a quasiclassical specification of the system of carriers 
(itinerant electrons or holes), with nondegenerate statistics. 
That is, assign each carrier, independently, time-dependent 
values of the Bloch state  quantum numbers: crystal momen- 
tum p (= ki times wavevector), spin  component and band. 
We may explicitly ignore the  band  and spin variables, 
however, since the way formulas are generalized to include 
them (to  take  into account  forces and scattering processes 
which change them) is obvious. We also ignore carrier- 
carrier  scattering,  although in some  practical  conditions 
this may not be justifiable and it may have a substantial 
e f f e ~ t . ~  Then  the  state of the hot-electron system is deter- 
mined by the  band energy function E@) and  the scattering- 
probability  function W(pl, p2) for transitions p1 -+ p2. 
The energy changes, E@,) - E(pl), of course  have an  
essential role. They are normally due to absorption  and 
emission of the lattice-vibration  phonons. The associ- 
ated displacement of the  phonon system itself from  thermal 
equilibrium is usually assumed negligible, though its 
neglect may not be justified in some circ~mstances.~  The 
foregoing  customary  assumptions are  not seriously restric- 
tive for present purposes. 
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Accordingly, the  state of the system is given apart  from 
fluctuations by the distribution  function f@), such that 
the drift velocity is 

u = z v@)f@) = (v) (1.1) 

and similarly for  other macroscopic quantities of interest, 
and f is governed by the Boltzmann  equation5 

af/at = -F.(a/dp)f -I- Bf, (1 . a  

Df = Z@’) (f@? W@’, P) - f@) W(P, P‘N (1.3) 

where F is  the force on a carrier, which we may take as 
the “Lorentz force” 

F = (fe)(E + (l/c)v X X). (1.4) 

In these equations Z or I@) stands  for integration Jd3p . 
over the Brillouin zone, the carrier velocity is 

v@) = aE/ap (1.5) 

and  the normalization,  in (1.1) and hereafter, is such that 

Z f  = 1.  (1.6) 

The second term of (1.3) may be  written as - f / ~ ,  where 
T@) is  the scattering  time defined by 

1/T ZZ I@’)  W@, p’). (1.7) 

Theoretical analysis has been concerned primarily with 
solution of the Boltzmann equation (1.2),  (1.3) for a steady 
state,  corresponding to a constant electric field with spatial 
homogeneity, and with the resulting drift velocity (1.1); 
secondarily with the response of this steady state to small 
perturbations, such as  the  static  and “a.c.” differential 
mobilities; and to a limited extent with diffusion, due to a 
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Boltzmann equation; (1.2) and (1.3) 

“NO STR~AMING” 
APPROXIMATION 

(2.6) or (2.27) 

Equation (2.7) Integral equation connecting f-fo or f l  with d fo /dE  Equations (3.5),  (3.10) 
(2.8) or (3.33) 

CONVENTIONAL RELAXATION-TIME 
APPROXIMATION 

f - f o  or f l  in  terms of d f 0 l d E  
(2.9) or (2.28) 

I Combine  with (3.8) 
ombine  with (3.6) or (3.8) + 
Equation (3.7) or (3.9) 

1 

7 
Integrodifferential  equation  for fo  Integrodifferential equation for f ,  - Equivalent of equation (3.14) 

(2.10)  (3.14) (3.34) -~ 
i l l  

f o  SLOWLY SLOWLY VARYING Numerical solution VARYING d(  In  f,) l d E  VARYING f o  SLOWLY 
(Similarly) 

by  iteration 
(3.35).  (3.36) 

I 

Differential equation for f o  electron  temperature T,  Algebraic formulas for 

(3.18) or (3.29),  (3.26) 

More  general  equation for T ,  

Figure 1 Synopsis of mathematical  content of Sections 2 and 3. 

gradient of carrier concentration or of ficld. The present 
work has the same  emphasis.  (Phenomena  such as the 
Gunn domains,  however,  involve large time-varying  excur- 
sions of the field;  also  diffusion  must  be  assumed to have 
significant  effect.) In general the hot-electron  Boltzmann 
equation cannot  be  solved  except by introducing approxi- 
mations,  such as are discussed in Sections 2 and 3, or by 
massive numerical  processing, as discussed in Section 4. 

Methods of solving (1.2), (1.3) by analytical, or limited 
numerical,  means entail reducing it to  an equation in a 
single  variable, which is necessarily the energy, E.6 The 
unknown of this equation will be the “energy distribution 
function” 

HE) = i (1.8) 

where the overhead bar means  average  over a surface  of 
constant energy: 

g(E1)$@1) = I@)  W@) - El) (1.9) 

for any function +@); the density of states is 

AE1) E I@)  KE@) - El). (1.10) 

Solution of an equation for fo(E) is, of course, of central 
interest in hot-electron  theory.  Except for the special  case 
of Ref. 9, both derivation and (except as discussed in 
Section 3) solution of this energy-variable equation require 
approximations.  These are discussed in Sections 2 and 3. 

Anisotropy, in the dependence of E@) on the direction 
of p or of Wbl, pz) on the directions of p1 and pz separately, 
is a complication which in general  requires additional 
approximations.  Even for Ohmic  conduction this is an 
incompletely  resolved  problem. It may  be  passed  over 
here,  however,  without  essentially  affecting the analysis. 
Therefore for most of Sections 2 and 3 we assume isotropy 
in E and W;’ and similarly the second  (magnetic  field) 
term of (1.4) is dropped: 

F = (&e)& (1.11) 

The theory is developed  first,  however, as far as possible 
without  assuming  isotropy: in Section 2, Eqs. (2.3)- 
(2.18); in Section 3, Eqs. (3.6),  (3.7) and the following 
equations with w in place of Wo. 

Figure 1 shows  results (in the boxes), and reasoning 
connecting  them, for these  two  Sections. The left  side, 13 
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corresponding to Section 2, represents the procedure  due 
to  Landau  and coworkers in  the 30’s; the remainder, 
corresponding to Section 3, develops the more general 
and serviceable formulation  introduced by Levinson in 
1964. The improvement is from left to right. 

The essential condition of validity for Sections 2 and 3 
is that f and fo  differ little. That is, surfaces of constant 
f should not deviate much from  the surfaces of constant 
E in p space. Section 3 attempts to develop the best avail- 
able means for calculating fo (E)  subject to this condition. 
Methods such as described in Section 4 are evidently 
required, in general, when one has  the substantial dis- 
placement of surfaces of constant f (characteristically an 
elongation in  the field direction, which has been termed 
“streaming”) that occurs in some conditions. Section 4 
discusses methods which provide essentially exact calcula- 
tion of the carrier  distribution, in principle for all cir- 
cumstances, but which require  computer implementation. 
They have been used successfully for cases which allow a 
two-dimensional specification of f@), as well as a one- 
dimension case. Extension to three-dimension cases does 
not  appear  to involve any essential difficulties, but only 
the necessary machine capacity. Sections 3 and 4 represent 
two limits in treatment, and there evidently is no available 
theory provjding for orders of approximation, and calcula- 
tion procedure, intermediate between these. 

2.  The conventional  approximations 
In this Section the traditional  procedure for obtaining 
a solution of the steady-state Boltzmann equation is 
expounded, with the emphasis on  the approximations 
entailed, and  no discussion of any particular application. 
A more general version allowing anisotropy  is given first; 
then (Eq. (2.19) onward) the conventional, more restricted 
but  more amenable, version is introduced. 

Equation (1.2) may be separated into  parts which are 
even and  odd  in p (or its equivalent for a many-valley 
band), in terms of the even and  odd parts of fa). Normally 
Df preserves this parity; and (so long as we have (1.11) 
rather  than (1.4)) F.(d/dp) interchanges even and  odd 
parities. Then the two equations are 

F*(a/dP)fodd = (9 - a/at)feven (2.1) 

F*(a/dp)feven = (9 - a/at)fodd. (2.2) 

Now if  we write 

f = fo(E@)) + f’@) (2.3) 

so that 

f’E f - j ,  f’ = 0 (2.4) 
” 

then f o  is analogous, here, to the  thermal  distribution 
function 

f d E )  = a e 
- E / k T  (2.5) 

in the  theory of Ohmic conduction. Although &(E) is in 
general far  from fs, it can still be reasonable to assume 
(with the expectation that f’  << fo) : 

Approximation (a) 

f‘ is odd  in p. (2.6) 

(Eq. (2.27) is the equivalent Approximation (a), below.) 
Then (2.1) and (2.2) become (when we also drop  the time 
dependence) 

Dfo = F.(a/aP)f’ (2.7) 

Df’ = F*(a/ap)fo = F.v  dfo/dE. (2.8) 

To solve (2.8) for f’  we may reasonably use the  standard 
“Ohmic” approximation 

Approximation (b) 

f ’  = -#@)v*F dfo/dE (2.9) 

where T‘ is not necessarily equal to the scattering time T 

defined in (1.7). The extent of validity of this customary 
Ansatz can be  taken  as similar to what it is for  the Ohmic 
case, and likewise  (see Footnote 17) for  its equivalent, 
(2.28). (For any  particular model, or simplifying situation, 
one  can  obtain a “best” approximate T‘ by means of 
Kohler’s minimum principle (see, for example, P. J. Price, 
IBM J. Res. Develop. 1, 239 (1957)); but for  the  hot- 
electron situation it should be recognized that,  for appre- 
ciable inelastic scattering, T’/T may be a functional of 
f o ( E ) . )  For  the spherical symmetry case of  (2.28), it can 
in any case be dispensed with by the means described in 
connection with Eqs. (3.33),  (3.34). 

By substituting (2.9) in (2.7)  we eliminate f‘ and obtain 
an equation for fo. It is expedient to average this  equation 
over a surface of constant energy. Then 

(5 f FF: (A d/dE B d2/dE2)) fo  = 0 (2.10) 

where the tensors A(E) and B(E) are given by 
” 

A E d(~’v)/ap, B r’vv 
” 

(2.11) 

and 5 is given  by substituting for W in (1.3) the kernel 
W(E, E’) obtained from W@, p’) by double application 
of the averaging (1.9), (1.10). 

The integrodifferential equation (2.10),  which is not very 
amenable to solution, may be converted into a differential 
equation by substituting for its first term a truncation of 
the formal expansion 

where 

(2.12) 
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1 
K,(E) = (l/n!) / dE' g(E')(E' - E)"( p ( E ' ,   E )  

- Bn.0 W(E,  E')) .  (2.13) 

Replacement of the series (2.12) by only its leading terms 
amounts  to 

Approximation (c) 
I 

N f o ( E )  is slowly varying. (2.14) 

On account of the detailed-balance relation 

v'. 
e - E ( ~ ~ ) / k T  W h 1 ,  p2> = e WPZ, PI) (2.15) - E ( p a ) / k T  

the coefficients (2.13) satisfy 
m 

(-l/kT)"K, = 0 ,  

I 

(2.16) 
"-0 

in agreement with 

D fB = 0. (2.17) 

In  the truncated series replacing (2.12), however, the  coefi- 
cients IC,, of the retained terms must be adjusted if the 
sum over these alone on the left of (2.16) is to be zero.' 
In particular, the second  order differential equation 

8 f n  Kofo + (K1 + FF A) dfo/dE 

+ ( - ( k n 2 K 0  + kTK1 + FF: B) d2fo/dE2 

= o  (2.18) 

results from  the first three  terms of (2.12), when K2 is 
replaced by kTKl - (kT)'K0 to satisfy this condition. 
Alternative approximations will  be more conveniently 
discussed with the formulation in Section 3. 

We now restate the foregoing, a little differently, for 
the case of spherical symmetry: 

E = E@), g = 4.lrp2/u, where v = dE/dp 

and 

W@, p') depends only on E@), E@') 

and the angle pip' 

For this case one may expand 
m 

f ( ~ )  = f(E, X) f l(E)Pz(x) 
I 10 

(still assuming (1.11) rather  than (1.4)) and 

W P ,  P') = W E ,  E', Y )  

= 2 WLE,   E ' )PZ(y)  
1 =o  

where 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

and  the Pz are the Legendre polynomials, which will be 
normalized to Pl(l) = 1. (The p used in (2.1 3) corre- 
sponds to Wo here.) The Boltzmann equation may corre- 
spondingly be separated into spherical-harmonic com- 
ponents. The I'th equation (coefficient of P z )  is 

1 dE' g(E')fz   (E')  Wz(E ' ,  E) - ; f , ( E )  
1 

2 1 +  1 

= FV 4t(E) (2.24) 

where l/r(E) is given by (1.7) in terms of Wn only and 
the first two of the 4t are 

(2.25) 

(2.26) 

For Approximation (a), the equivalent of Eq. (2.6) is 
to truncate the sum (2.21) to 

f = f a  + xf1 (2.27) 

accordingly dropping the f2  term of (2.26).' Then,  from 
(2.24) with 1 = 0 and 1 = 1,  we have two simultaneous 
equations for fa and f l .  For entirely isotropic scattering, 
(2.9) is exact with r' = 7; and then (2.6) is a less restrictive 
(even for spherical symmetry) equivalent of (2.27). With 
spherical symmetry, if the inelastic (e.g., optical-mode 
phonon)  component of the scattering is isotropic" one 
has from (2.24) for 1 = 1 a virtually exact version of Eq. 
(2.9): 

f l  = - T'UF dfo/dE. (2.28) 

In any case, by means of the formulation developed in 
Section 3, one may dispense with Approximation (b) and 
still obtain  equations of the desired form (see the discussion 
in connection with Eq. (3.34)). 

Substitution of (2.28) in (2.24) for 1 = 0 gives the 
spherical symmetry version of (2.10). Then  the equivalent 
of (2.18) is obtained similarly. For  the case of only acoustic- 
mode phonon, deformation-potentia1 coupled, scattering, 
a spherical-symmetry version of Eq. (2.18) was obtained 
in  the mid-30's by Landau and co-workers: and for  this 
case, in normal circumstances," it is virtually exact. 
Essentially (2.18) has been extensively applied since then 
to other cases, including valence semiconductors with 
scattering by optical-mode (as well as acoustic-mode) 
phonons," and polar  semiconductor^^^ with their different 
law of electron-lattice coupling. However, it  has come to 
be r e c ~ g n i z e d l ~ ' ' ~  that Approximation (a)-Eq. (2.6) or 
(2.27)"then has  no general validity. The surfaces of con- 
stant f i n  p-space can be far  from coincident with surfaces 
of constant E(p), and many terms of the sum (2.21) be 
appreciable. It appears that, except in special circum- 
stances, one  then has  to resort to  the methods discussed 15 
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in Section 4. When one  does  have the conditions for a 
valid  "one-dimensional"  analysis of the carrier distribu- 
tion-an equation for &(E) alone-there is still a question 
of the accuracy of Approximation  (c), or equivalents, and 
more  generally  of the most  suitable form of equation and 
its solution. This is discussed in Section 3. 

3. Levinson's formulation 
An equation of the type of (2.10) or of (2.18) does not 
represent the most  general, or necessarily the best, treat- 
ment of situations in which f@) may be  analyzed in terms 
of f o ( E )  alone.  What appears to be an effective  overall 
approach, for such situations, is described in  the present 
Section. It will be  shown that when all three basic  approxi- 
mations of Section 2 apply one may obtain equivalent 
but more tractable equations for fo; and  that Approxima- 
tion (c), and even Approximation (b), may be  given  up 
and one still has useful  procedures for obtainingf,.  Approx- 
imation (a)-the absence of appreciable "streaming"- 
remains the basic  condition. 

For the particular case of Ref. 9, the second order 
differential operator of (2.18) factorizes into two  first 
order operators: 

Q = LlLz (3.1) 

and so (2.18) is satisfied by the solution of 

Lzfo = 0, (3.2) 

which is given by a single integration. It was shown by 
Levinson" that (3.2) applies  generally: that is, for condi- 
tions essentially those leading to (2.18), one has 

i o  + W E )  dfo/dE = 0 (3.3) 

where U(E) is a prescribed functional of Wo(E,  E') or 
of iT .  Then (3.3) gives directly 

f o ( E )  = exp - / E  dE'/kT,(E'),  kT, = U. (3.4) 

Levinson's  basic equation, for the steady state, is 

0 = J(E) = JF + Js  (3.5) 

where g(El)J(El) is the net rate per unit time at which 
electrons  pass across the surface E@) = El in the direction 
of increasing  energy, and the two  terms on  the right of (3.5) 
are  the contributions to J due to the force F and the 
scattering  respectively.  One  may arrive at (3.5) by multi- 
plying the right-hand side of (1.2) by a step function of the 
energy and integrating  over  p-space. For the first term 
this gives 

JF = F*vf.  
- 

(3.6) 
By (2.3), f may  be  replaced by f '  on the right of (3.6). 
Equation (2.9) then gives 

JF = -FF:B dfo/dE (3.7) 

P. J. PRICE 

where B(E) is defined in (2.11). 

conditions (2.19) and (2.20), then by (2.19) and (2.21) 
If we assume (as in Ref. 16) the spherical-symmetry 

JF = g F ~ f 1  (3.8) 

exactly.  Then (2.28) gives 

J F - - __  ;F2~'u2  dfo/dE (3.9) 

in place  of (3.7). (The truncation (2.27) is involved in 
(3.9), but not in (3.Q) The second term of (3.5) is given 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

The equation obtained by substituting (3.9) and (3.10) 
into (3.5) 

dfo/dE = (3/7'u2F2) Js { i o )  (3.14) 

is the equivalent of (the spherical  symmetry  version of) 
Eq. (2.10). An equivalent of (2.18) is  obtained by using 
instead of the integral expression for Js{fo} the first two 
terms of the expansion  analogous to (2.12): 

J s  { f o )  = - &(E)  d"fo/dE". (3.15) 

We then obtain an equation of the form (3.3). If, as in 
(2.18), we force  consistency  with the fundamental relation 

J s { ~ B I  = 0 (3.16) 

by setting B1 = kTBo = D, then 

n=-0 

(3.17) 
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and hence for the “electron temperature” T,  of (3.4) 

T, /T  = 1 + (r’v2/3D)F2. (3.18) 

Levinson’‘  gives for the coefficient in (3.17) 

D(E) = 4 / dE’ g(E’)(E’ - E)’Wo(E, E’) .  (3.19) 

The exact  formulas for the first  two  coefficients in (3.15) 
are 

-gBo = Z(E1; E; E z )  W-(El, Ez) (3.20) 

-gB1 = E; Ez) ((E+ - E )  W-(&, Ez) 

- E- W+(El, a)) (3.21) 

in the notation (3.11), where 

W*(El, E z )  = 4((WO(El, E z )  f WO(Ez, El)). (3.22) 

Now, so long as the maximum  energy  change in scattering 
(& - El) is  small  compared to E, Wo(El, EL) can  be 
expected to vary little, with & - El held  fixed,  over the 
range of the second integral on the right of (3.11); and 
g(El)g(&) should also vary  little.  Accordingly we  may drop 
the W- term of (3.21). For the other term of (3.21), simi- 
larly the factor g(El)g(E2)  W+(El, I&) can be taken outside 
the second integral of (3.11), with E+ replaced by E in W+ 
.and g(El)g(E;) set equal to g(E)’. Then we obtain (with 
E = 2E.J 

The equivalent  result for Bo from (3.20) is 

Bo = g ll W + ( E  - +E, E + $E)€ tanh (e/2kT) de 
(3.24) 

since on account of the “detailed  balance” relation, (2.15), 

W+ sinh (E-/kT) + W- cosh (E-/kT) = 0. (3.25) 

The actual result of substituting the first  two  terms of 
(3.15) in (3.14) 

T, /T  = (Bl/BOkT) + (r’v2/3BokT)FZ (3.26) 

in general  differs from (3.18) in that B1 # BOLT, except 
in the limit kT >> (the predominant energy  change in 
scattering). For simple  dispersionless  optical-mode-phonon 
plus  elastic  scattering, in particular, 

Bl/BokT = (T0/2T) coth (T0/2T) (3.27) 

where kT, kthw, is the optical-mode quantum. In fact 
the truncation of (3.15) is admissible for the high  fields, 
and appropriate energies E, where kT,(E) is large  com- 
pared to the energy  changes in scattering. For weak  fields 
such that fo is  close to f B ,  however,  one  may  better  approxi- 
mate Js by truncating the series 

m 

Js = -fs D,(E) d“(fo/fB)/dE”. (3.28) 

Retaining the first term alone of the sum in (3.28) gives, 
in place of (3.26), 

Te/T  = 1 + (r’u2/3D1)F2. (3.29) 

Assumptions and reasoning  like  those  leading to (3.23) 
and (3.24) give, to  an equivalent approximation, 

n-1 

Dl = kTBo. (3.30) 

Thus Dl differs  numerically from the D given  by (3.19), 
again  unless kT is  large  compared to energy  changes in 
scattering. 

We cannot have a single equation like (3.26) or (3.29) 
applying  over the whole range of  field strengths.  But by 
assuming that T,(E) varies  inappreciably  over a range 
equal to the predominant  energy  change in scattering, 
so that fo(El) may  be  replaced by f o ( E )  exp (E - El)/kTe(E) 
in (3.10), one can obtain from (3.14) an algebraic equation 
for T.. With the same  assumption as leads to (3.23), (3.24) 
and (3.30) (but not that required to justify truncating 
(3.15), or (3.28)) this becomes 

Qr’v2F2 = 2(kTe)’g 

.l: W + ( E  - +e, E + &)G(E, T ,   T e )  de 

(3.31) 

G(e,  T ,   T , )  = sinh (& - &) 

For simple  dispersionless  optical-mode  plus  elastic scat- 
tering, (3.31) gives 

.sinh ( k ) / s i n h  (2) (3.32) 

with Dl given  by (3.30) and (3.24) for this case. Eq. (3.32) 
reduces to (3.26), with (3.27) and (3.30), for 2Te >> To; 
and to (3.29) for T,  N T. It should  be  recalled,  however, 
that where optical-mode  scattering is important we have 
still in effect  assumed  (in (3.23) etc.) that E >> ktw,; and 
results for the limit T,  ‘v T (and  more  generally, for small 
T/TJ may  accordingly  have a limited  applicability.  Figure 
2 displays the relation (3.32), as T,/T versus its left-hand 
side for some  values of TIT,. 

So far we have  been  concerned  with the integrodiffer- 
entia1 equation (3.14), which  was obtained  subject to any 
approximations  entailed in the use of (2.28). After dropping 
the fi term of (2.26), the resulting integral equation (2.24) 
for fi has a solution of form (2.28) only for some  cases.’? 17 
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Figure 2 T,/T (vertical scales)  versus  the  left-hand  side 
of Eq. (3.32), for the  values of T indicated on the curves 
with To = 440”. 

Given the assumed spherical symmetry (in addition to  the 
necessary dropping of the f z  term), however, there  is in 
this respect no essential difficulty with the formulation 
of the present Section. The equation for f l  is of form 

-Fur  4o/dE = M {  11 1, (3.33) 

where M is the integral operator (on fl)  appearing on  the 
left of  (2.24) for I = 1, after multiplying by -7. But (3.5) 
and (3.8)  give an exact equation fi = -(3/Fu)J8( fo) 
which can be substituted in (3.33) to give the integro- 
differential equation 

$TvF2dfo/dE M (  (1/v)Js { fo}  } (3.34) 

with kernel obtained from a convolution of Wo and W,. 
The procedures for estimating T,, and  that described 
below in terms of Eq. (3.33, should apply to (3.34) as 
well as  to (3.14). The corresponding generalizations of 
(3.27),  (3.32), etc. will involve additional terms in To like 
those in T0/2. 

Although it  has been useful to develop in some detail 
the approximate analytical solutions of  (3.14), the entailed 
restriction to E fairly large compared to energy changes 
in scattering implies a limit on their applicability. However, 
Eq. (3.14)-and, similarly, Eq. (3.34)“is suitable for 
numerical solution, without the approximations made in 
these analytical solutions, by iteration. An  appropriate 
iteration sequence is 

\ 

= A { f F ’ ) .  (3.35) 

The integrand of the integral on  the right of (3.33,  at 
convergence of the sequence, is - I/kT,(E) d(lnfo)/dE. 
Not only does this  iteration scheme not have the inherent 

18 stability of that described in Section 4; it has an inherent 
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instability. By  (2.15), for T, constant over the energy range 
of integration in Js the integrand of  (3.35) has  the sign 
opposite to  that of (l/kT) + d(lnfF’)/dE’, and its depend- 
ence on  the latter is monotonic. Therefore, when fp) is 
close to  the solution of (3.14), if it has T,(E) values which 
are  too large then (3.35) should give an fr”) with T, 
values which are  too small, and conversely. For low fields 
especially, a resulting alternation of errors can be unstable. 
This difficulty  was met, in  the calculation described below, 
by using instead of  (3.35) the sequence 

f:+‘) = (1 - a)f:’ + ail { fp’ } (3.36) 

and controlling the parameter a so as  to approach the 
fastest convergence compatible with stability. (Still, it is 
evident that this iteration scheme is a “high field” pro- 
cedure which cannot be expected to extend down to & = 0; 
the same reservation applies to  the method expounded in 
Section 4.) 

Since the iteration method described above is new, and 
may be considered to give the best possible “one-dimen- 
sional” calculation of the distribution  function on  the 
basis of the  Landau truncation of  (2.21) to its first two 
terms (2.27), a trial application was made. The case was 
n-germanium, with lattice scattering only, and intervalley 
scattering taken to be so weak that  it may  be  neglected in 
calculating the distribution in a single valley. The E@) 
function of a valley  was taken to be the “tensor-mass 
parabolic” p.(1/2m)-p with constant l/m tensor, and 
the in-valley scattering to be isotropic, elastic acoustic- 
mode-phonon plus single-energy (Atw, = kTo) optical-mode. 
Then 7’ = 7, and  the scattering rate may be written” 

1 
- = R ,  ( T / T J ~ / X  

+ Rz ( N 0 1 / ( X  + 1) + ( N o  + 1 ) 1 / ( X  - 1)) 

(3.37) 

where 

X E/kT,, No = l/(eT”IT - 1) (3.38) 

a n d d (  ) is to be taken as zero for negative argument. 
The parameters R,, R2 are acoustic-mode and optical-mode 
coupling constants. This system with axial symmetry is 
reduced to spherical symmetry by a linear transformation 
of p space, equivalent to having a “crystal momentum” 
equal to   p*(Q = 1/(2Em*), wherelg 

(3.39) 

With the actual scattering function (represented by  (3.37), 
(3.38)) and actual field strength E ,  this gives the correct 
energy distribution &(E); and  the correct drift velocity is 
the scalar product of l/m  and  the expectation of p* 
(which  will  be parallel to E) in this transformed system. 
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It will be of interest to compare the computed results 
with those given by the algebraic formulas. In  the limit 
represented by (3.26), the density-of-states factors 
.\/ ( X  f 1) occurring in  the evaluation of Bo or B1 may be 
replaced by 2/ X .  Then (3.26) would give 

” 
Te  To 

- - ‘Oth (5) + 3m*kTR2R T 2T 
F2 (3.40) 

where 

R = RI(T/TJ + R&NO + 1). (3.41) 

As expected, T,  is in this  approximation  independent of 
E.  To the same approximation the drift velocity would be 
po&(T/Te)?, where 

po = (4/3da)(e/m*R)(T,/T)’ (3.42) 

is the value the Ohmic mobility, in the E direction, would 
have if T were equal to l / ( R d X ) .  

In these calculations the field E was taken  to be in  the 
(1, 0, 0) direction; so that m* was the free electron mass 
divided by 8.39.’’ The value 440” was used for To. The 
results reported below are  for T = 300°, with R1 = 0.37 X 
l O I 3  sec-’ and Rz = 0.022 X 1013 sec-1.20 The iteration 
scheme ( 3 . 3 9 ,  (3.36) was implemented on  the APL ter- 
minal-based interactive  computation facility,” which 
allowed its  operation  to be monitored and freely inter- 
rupted  and controlled, and  the numbers  generated to be 
freely and selectively accessed. A “grid” of equally spaced 
Xvalues (varying in number, up  to 271 for E = 5000 V/cm, 
and  in spacing) was used to represent fo. 

A  feature of interest in  the results is the energy depend- 
ence of T,  and fl/fo, which are constant in  the approxima- 
tion represented by (3.40). Figure 3 shows To/Te and fl / fo  
versus X = E/kT,, for & = 1000 V/cm. (T,/T,(X) is 
more informative, displayed, than fo = exp - J”” (T,/T,) 
dX‘.) At higher fields the  sharp shoulders of these curves 
soften to smooth bends connecting the rising and flat 
parts, and  the location of these bends shifts slightly to 
the right; but  the curves remain otherwise similar.22 

Figure 4 compares the limiting value of fl / fo  for large X 
(indicated by the points) with the constant value given 
by (3.40) (lower curve) and with that given by (3.40) with 
the first term  on  the right replaced by 1, i.e., by (3.29) 
instead of (3.26) (upper curve). The points cross over from 
the “low field” to  the “high field” curve with increasing 
&, as they  should. The analogous  behavior was found  for 
the limiting value of T,/T, at large X ,  and  for ( X ) ,  but 
the displacements entailed in  the crossovers were less. For 
each of these two  quantities, a single curve may be con- 
structed from  the  two limiting curves and  the computed 
points; these are shown  in Fig. 5. Figure 6 shows drift 
velocity versus field.23 

It would be of interest to extend these computations to 
systems of many valleys with scattering between them, 

Figure 3 T J T ,  (lower curve, right scale) and f d f o  (Upper 
curve, left  scale) versus E/kT ,  for a field of 1000 V/cm. 

Figure 4 Limit of fl/fo, for large E,  versus field. Curves 
and  points  obtained  as described in  the text. 

Figure 5 Limit of T,/T., for large E (descending  curve, 
left scale) and expectation of E/kT ,  (ascending  curve,  right 
scale) versus field. 

c 5n t / i 3 0  
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X lo6 cm/sec 

I X 103 V/cm 

Figure 6 Drift  velocity  versus  field. 

especially  since  (see the discussion at the end of Section 4) 
the fundamental condition for validity of Eq. (3.14)  evi- 
dently  is  satisfied in the present  case. A change in the form 
of the equations is entailed,  however. The left-hand side 
of Eq. (3.9,  for each  valley, is no longer  zero; it is  equal 
to a  net  “upward” flow  of carriers, given  by an integral 
over  valley fo functions  times  intervalley W functions. 
Since this integral will extend  over at least the energy 
range to the band edge, it could not be  subsumed in Js 
for approximations  such as lead to (3.31). 

The main deficiencies  of the formulation developed in 
this  Section, and hence of the iterative solution of Eq. 
(3.14), appear to be  (a) that appreciable  (band-energy and 
scattering) anisotropy can be  adequately taken account of 
only in special cases; (b) that this formulation is not the 
lowest order in a  systematically  generated  sequence  of 
approximations, which could  deal  with the extent of devia- 
tion of f@) from fo(E).24 This  deviation  does not affect 
the validity of the methods  discussed in the following 
Section, which are quite general, but also their implemen- 
tation is more  demanding.  Obviously it would  still  be 
desirable to have  available the fullest  possible  extent of 
applicable “one dimensional” formulations. 

4. Precise calculations 
In general the complete solution of the Boltzmann equa- 
tion or  its equivalent, for the hot-electron distribution, 
is not available in closed form. But there are methods 
for systematic  numerical  evaluation. The cases  which these 
have  dealt  with, so far, have  been  reducible to two  dimen- 
sions in p space (i.e.,  systems  having  spherical  symmetry, 

for which f(p) has axial  symmetry and depends on p and 
the angle fl; and the n-Ge case  of the preceding  Section, 
which can be transformed to spherical  symmetry as indi- 
cated there), in addition to a one-dimension  case. The 
number of arithmetical operations required (for a given 
precision)  is proportional to, and many  times, the number 
of points in p space used  in  representing the distribution 
function; and this figure  determines the needed computer 
capacity. 

One of these  procedures is the Monte Carlo method,25 
which has been applied to the present  problem2‘ by 
Kurosawa2’ and by Boardman,  Fawcett and Rees.” The 
other, to be  discussed  here,  could  be  considered as a 
systemized, and arguably  preferable,  version of Monte 
Carlo” or 30 as based on a  description of the electron 
system in terms of  ensembles  differing from the conven- 
tional ensembles of statistical mechanics. The distribution 
is obtained as the result of repeated  application (iteration) 
of a  linear integral operator (in the form of  two  such 
operators applied successively). There should normally  be 
stable convergence (but see Footnote 39) to a  result which 
can be  expected to be independent of the starting function. 
The method, in various versions, has been  applied to 
several  hot-electron ~ys t ems .~ ’ -~~  In addition to these cal- 
culations of the hot-electron  steady state, the linear 
response to small may  be  obtained in 
terms of  sums  over the results of  successive  iteration^:^ 
as well as by a perturbation of the iterative computation 
i t s e ~ . ~ ~ , ~ ’  

The traditional “p-space”  ensemble for a  steady state 
may  be  considered as referring to a  set of single-particle 
states, i.e., here  a  set of p values {p)  = p“’, p”), . . , 
obtained by sampling p(t) for an individual  particle  (under- 
going the accelerations and scatterings  represented by F 
and W in (1.2) and (1.3)) at arbitrary times t l ,  t2, * . 
Then f@) describes (p) .  By sampling  instead at times 
correlated  with the scattering  events we  may obtain equally 
representative, but different,  ensembles. In particular, the 
t,, may  be the successive scattering times themselves. If 
the nth  scattering is the transition p:’ 4 pr’  then we have 
“before” and “after” ensembles (pb] = pL1), p r ) ,  . . 
p?), ... and {pa) pL1), p:), . . e  , with distribution 
functions fb@) and fa@), respectively.  Since {Pb} is the set 
of initial states of all the scattering  events, its distribution 
function must  be f times the scattering rate: 

A 

fb@) = (l/T@)) f@)/I (l/T)f (4.1) 

where the denominator on the right  conserves  normaliza- 
tion (I fb = Z f). 

The two distributions are connected by the relations 

fb = Afa (4.2a) 

f. = C f b  (4.2b) 
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where A and C are linear integral operators, given by 
(4.10) and by  (4.6). Then 

f b  = ACfb* (4.3) 

The iteration scheme referred to above is expressed  by 
g )  = AfLn-1) (4.4) 
f;’ = Cf?) (4.5) 

1 starting from f:), say, and continuing until the sequence 
of resulting functions is stationary. One may consider 
these successive functions as successive distribution func- 

at its own scattering times t,. Thus f:’ gives the distribu- 
tion of the initial p values of the set of particles; then fil) 

preceding the first scattering of each of the particles; and 
so on. Although these scatterings are not simultaneous 
(the set of t, for a given n are not all equal), nevertheless 
the sequence3’ - - f;-’), f‘”’ b Y s 9  f‘”’ f;+’), from this 
point of  view represents the thermalization of the system, 
from  an initial distribution f:’) and presumably to  an 
ultimate steady That is, one may  expect the itera- 
tion scheme (4.4),  (4.5) to converge for those hot-electron 
systems which do thermalize to a steady state. 

Because  of the relation between the  “a” and  “b” states, 
it is evident that 

v, tions 01 a set  of particles, with each particle “observed” 

9 gives the distribution of the pL1), the p values at  the instants 

c* = I@’) *@’).@’>W@’, P) (4.6) 

for any function #@). To obtain A it is convenient to 
introduce  the  operator Z such that, if # is a function of 
the  state of a particle, Z# is  the expectation of # at  the 
instant preceding the first subsequent scattering of a par- 
ticle after it is in a given initial state (with Z# considered 
as a function of the latter). Since ZJ, is the expectation of 
# at  the next “b” state following a given state, IJa(Z#) = 
Z fb#. Therefore Z j$ = Z (Z*f)#,  where Z* means the 
adjoint of Z.40 Hence f b  = Z*fB, or 

A = Z*. (4.7) 

Now, the probability that  the elapsed time to  the next 
collision, after a given initial state, will  exceed t is 

P(p, t )  = exp - dt’/~(p I t’)  s,‘ (4.8) 

where the argument (p I t )  means the state (p value) 
reached by an electron after a time t, starting from p, 
along the trajectory dp/dt = F.41 Then 

I = l- *(P 

By  (4.7),  (4.8) and (4.9) 

A +  = (1/7(p)) 1; #(p I t> exp dt’/7@ I t ’ )  
(4.10) 

with the left-hand side considered as a function of p. 
We  may  define a similar pair of operators 

EZ c (1/T), A E 7A (4.1 1) 

by removing the factors ~(p’) in (4.6) and l /~ (p )  in (4.10). 
Then by (4.1)42 

f = ACf. (4.12) 

This is an exact form of the Shockley-Chambers path 
integral formula. It follows directly from  the steady-state 
Boltzmann equation 

D/T + F. (d/ap)l f = cf (4.1 3) 

and the fact that  the operator on  the left is the inverse 
of 2 :43 
[ 1 / ~  4- F-(a/ap)]” = A. (4.14) 

Equation (4.1) then follows, by  (4.11), from comparison of 
(4.12) with (4.3). 

Perturbations of the steady state due  to small changes 
in F, and hence the differential mobility and  Hall effect, 
may be calculated by similar means.44 By  (4.13), the linear 
response Sf to a time-independent change 6F is given by 

[1/7 + F.(a/dp) - aisj = -(GF)*(d/dp)f 3 h(p) (4.15) 

and hence, by  (4.14), 

s j  = 2 h  + 2C2h  + AeAc2h + * * 

= T ( A ~  + A C A h  + e - . ) .  (4.16) 
The coefficient  of T on  the right of  (4.16) is  just equal 
to Zrml f;) for  the sequence (4.4), (4.5) when the initial 
function jLa) is h. Since A and C conserve normalization, 
the convergence of the series depends on  the fact that 
I h = 0. (The latter is similarly a condition for (4.15) to 
have a solution.) One might promote numerical conver- 
gence by introducing a projection operator fl, defined by 

fl+= # -  fZ* (4.17) 

where f is the normalized solution of Fq. (4.13), for 
example by the substitution A” -+ 02 in (4.16); or by a 
rearrangement of terms like that in (4.21).  (Because  of 
the eigenvalue equation (4.12), there is no formal resolvent 
for  the operator 1 - Je, and similarly with (4.3); but 
1 - 02c is not subject to this limitation.) 

Since the drift velocity is u = Zfv we have 6u = I l’h = 
Zf(isF)-(d/dp)l’, and hence the differential mobility is given 
bY 

6u = ( f e 6 8 ) -  ((d/dp)l’) (4.18) 21 
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where l’, the differential mean free is given by 

1‘ = ZT(V - u) + ZSZT(V - u) + * * * (4.19) 

with Z the adjoint of A as before, and4‘ 

s = e*. (4.20) 

The terms explicitly proportional to u, in (4.19), are 
necessary for convergence  of the sum.46 It may alterna- 
tively be expressed as 

1’ = (Zrv  - ZSZTV) + 2 (ZSZTV - ZSZSZTV) 

+ 3 (ZSZSZTV - ZSZSZSZTV) + * .  . . (4.21) 

The calculations for time-dependent perturbations are 
similar. If 6F varies as exp(iwt), there is an additional 
term +iw in [ ] on  the left of (4.15). This may be taken 
into account by the substitution l/r + iw + 1/r in the 
definition of 2. That is, A“+ A,,, where 

A ~ +  = lo dt +(p I t )  exp I’ dt’(iw + 1/r(p I t’)) 

(but still, as  in (4.11), A”, = TA”,). The alternatiue sub- 
stitutions (instead of replacing A“ by A”, and accordingly 
for A and Z) 

e-+ C- iw, C+ C -  iwr, S + S  - iwr (4.23) 

would generate power series in w represented by the formal 
substitution 

K + K +  K(-iwr)K+ K(-iwr)K(-iwr)K+ . . . , (4.24) 

where K is A + ACA + - - or Z ZSZ + . . . The 
term proportional to iw in the expansion for the differential 
mobility contributes to  the zero-frequency dielectric con- 
~ t an t .~ ’  

For or << 1 and fields such that r ‘V AT, we may take 

A,  e-’”‘A (4.25) 

and similarly for A” and Z .  The ‘‘self scattering” trans- 
formation of Rees28*32s37  and Skullerud4’ makes the sub- 
stitution 

-m (4.22) 

W P ,  P’) + W(P, P’) + (; - A) S”p - p’) 
(4.26) 

in  the preceding equations, where 13~( ) is the three-dimen- 
sional Dirac function and ro is a constant (l/I’, in Rees’ 
notation) not greater than  the minimum of T@); then 
all the calculations described here are changed accord- 
ingly,” but the resulting distribution functions, etc., should 
be unchanged. If ro is made sufficiently small, for given 
F and w, that (4.25) (with r0 in place of 7 in the exponent) 
is admissible, the latter will introduce a constant factor 
exp (-iinwr0) in  the nth term of (4.16) and of (4.19). Then 
the same operators and numerical processes  (defined for 

zero frequency, but containing the Rees substitution (4.26)) 
will be applicable to all frequencies w << 1/r0, with nro 
having the role of the time t in the evolution off .  Extensive 
calculations of differential mobility versus frequency have 
been made by Rees36’37 on this basis. In these calculations 
the number of iterations, and hence the amount of numer- 
ical processing, is increased by a substantial  factor of 
order r/r0.  Kwok, Lebwohl, Marcus and S c h u l t ~ ~ ~  have 
suggested that one would do better to just integrate the 
Boltzmann equation (1.2), over the t variable, to obtain 
f@, t )  or Sf as a function of t .  The A operator  is then not 
required in the computations; one has instead the differ- 
entiation for  the term F.(d/dp)f. They further propose 
to calculate n(-t)f instead of f ,  where the  operator n(t) 
is defined  by n(t)$@) = $@ I t ) .  This satisfies the  equation 

(a/w[n(- Of1 = [W- t>DWt>l[W- Of1 (4.27) 

so that even the F.(d/dp) operator is eliminated and only 
the modified scattering operator n(-t)5XI(t) remains in 
the “equation of motion.” 

For a system  with spherical symmetry, C may  be 
expanded in harmonics corresponding to (2.22), ZICIPl; 
and the analogous double expansion for A, Z,,,ZnAmnPtPm, 
will complete the relations (4.2), with fB and fb expanded 
as  in (2.21). (C is “diagonal in  this representation,” but 
A is not.) A suitable approximation might be to truncate 
the series to I ,  m, n 5 N for a suitable N ,  leaving an N- 
component scheme. For isotropic scattering, however, C 
reduces to C,; then, in (4.4), A may be replaced by Aoo. 
One thereby has an exact one-dimension scheme of equa- 
tions (i.e.,  with only the energy as independent variable), 
which  was  used  by B ~ d d . ~ ~  The kernel of Aoo is unfor- 
tunately a complicated function. It has a singularity 
(l/~ruF)ln(p/2jp - p’l) at E’ = E; this can be 
allowed for in the algorithm. For moderate fields one 
might attempt replacing Aoo by a simple form based on 
the first few moments of its kernel. 

The  iteration scheme (4.4), (4.5) has been implemented 
and tested for  the same n-Ge case,5o with the same param- 
eter values (To, m*, T, R1, R,) as in the computation 
described at  the end of Section 3; and the resulting values of 
drift velocity and average energy, for fields from 1000 to 
5000 V/cm,  were in satisfactory agreement. This is consist- 
ent with the situation that  the Landau  truncation (2.27)is a 
good approximation for this case and parameter values, 
according to  the estimation 

f d f o  3trl/fo>2 (4.28) 

(for small fl/fo) which with the fl/fo values of Figs. 3 
and 4 gives fz/fo less than 3%. Thus, by a choice of param- 
eter values for which good numerical agreement is to be 
expected, it has been possible to check against each other 
the procedures described in this Section, for  the steady 
state, and in Section 3. A similar numerical comparison 
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for  conditions  where j2/fo is not  small  accordingly  would 
also be  of  interest,  since  it  should give a measure of the 
accuracy of the  method of Section 3 when  streaming is 
appreciable. 
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