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Mathematical Model for Pattern Verification

Abstract: Pattern verification is mathematically defined, an appropriate decision function is derived, and a measure for system evalu-
ation is given. Two basic postulates are set forth to fully define a verification system: each known class is expected, with nonzero
probability, to be verified under the correct class label; and the pattern vector extracted during verification should be descriptive of
the given class, independent of which class label was entered into the system. Through appropriate use of a priori probabilities, three
types of information can be incorporated into the theory: the expected number of times a given class will require verification, the
expected use of each class label by a given class, and the likelihood that a particular class is susceptible to “impostor™ patterns.

Introduction

This paper describes a mathematical model for pattern
verification based upon various concepts from probability
theory. Verification will be mathematically defined and
contrasted to identification. The correct use of the appro-
priate a priori probabilities and loss functions is stressed
as a necessary contribution to the decision process. How-
ever, the theory does not address the practical difficulties
of satisfactorily estimating the probabilities of the various
patterns. Although this theory was developed with verifi-
cation of speakers as a prime interest, the theory is appli-
cable to any verification system, such as fingerprint verifi-
cation and pathological verification.

What happens in a verification system? A pattern, not
necessarily a member of a known class, is presented to the
system. A label is also presented to the system asserting,
truthfully or falsely, that the pattern belongs to a certain
one of the classes known to the system. Next, a predeter-
mined set of parameters, possibly depending upon which
label was entered, is extracted from the pattern. Finally, the
pattern is accepted or rejected as a member of the indicated
class, depending upon the values of the various parameters.
For example, in a speaker verification system, a given
person (the class) utters a predetermined phrase (the pat-
tern) which is analyzed by the system. Upon indicating to
the system who he claims to be (the label), the system
either accepts or rejects him. Three experimental investi-
gations into speaker verification have been reported in
Refs. 1-3.
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If we consider that all unusable patterns (e.g., an ink-
blot would be considered unusable in a fingerprint verifi-
cation system) are never presented to the system, the four
principal differences that distinguish a verification proce-
dure from an identification procedure are:

(1) An alien class, for which a priori information is not
available, is considered by the system.

(2) Additional information, the class label, is available for
the decision.

(3) The class label that is entered can determine which
parameters are to be extracted from the pattern.

(4) The decision involves only two states, acceptance or
rejection of the pattern.

In identification, all possible classes are presumed known,
and the decision amounts to the best match of the pattern
to a particular class.

The next section develops a decision theory based upon
classical Bayesian statistics (see Refs. 4-8 for fundamentals
of the theory), including a description of the a priori
probabilities required. The last section defines various
measures for evaluating various parts of the verification
process as well as an over-all measure of the system’s
performance.

Decision function

We will be concerned with three random variables: C, the
possible classes; L, the possible class labels; and V, the
possible sample pattern vectors. We assume the system
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involves M known classes, C;, C,, --- , Cy and a single
alien class C, consisting of all unknown classes. Corre-
sponding to each known class C;isalabel L = L;,(j =1,
- -+, M). The sample pattern vector can assume N states,
V="V,k=1,2,---,N). Each pattern vector is described
by an n-component vector extractable from the input pat-
tern to be verified. The classes, labels, and pattern vector
states are assumed to be mutually exclusive and exhaustive.
In our notation, we denote the probability that C = C; by
p(C;) and the conditional probability that C = C; given
L= L;and V = V, by p(C;|L;V?), etc. Further, we define
C,i=1{C,Cy, - ,C _;,C; 41, -+, Cy} and call it the
impostor class.

On the basis of classical decision theory, we will define
a decision function for a verification system. We are dealing
with a two-state decision process involving two sets of loss
functions:

NC;|C,) = the loss from classifying C; as a member of
C; (reject a valid pattern),

NC;|C;) = the loss from classifying a member of C; as
C; (accept an invalid pattern),

forj=12--- , M

In order for verification to be meaningful, the above loss
functions are restricted to positive values.

Recognizing that the decision depends upon the class
label L; entered and the state of the extracted pattern
vector V,, we define the decision function

Gi(V) = NCICHP(CIL;V,) — NC;IC)p(Ci|L; V).

The accept/reject rule is to accept the pattern as valid
if G;(V;) > 0 and reject the pattern if G;(¥,) < 0. Using
this rule together with the fact that the sum of the two loss
functions associated with a particular class is positive, and
defining the ratio

Nc; | C)

%= NG TC) NG Oy

we can rewrite the decision function as
G,(Vy) = P(Ci(Lin) — 0,

Using Bayes’ theorem and the laws of total probabilities,
we write

(Vi | C;L)p(L; | C;)p(C))

I’(Ci | L; V;,) =

P( VkLa') ’
to show that the problem of estimating p(C;|L;V,) can be
reduced to estimating p(C;) fori = 0,1, --- , M; p(L;|C))
forj=1,2,.--- , M;and p(V;|L;C)fork=1,2,--- ,N.

In addition, a choice concerning the 6;’s must be made.
Before we can show how one might determine the above
probabilities, we require the following two basic postulates
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to fully define a verification system:
Postulate 1: p(VleZC‘I) = p(VkIC’l)’ (l = O; 13 2: Y M)

In the presence of the knowledge of the class C,, the pattern
vector produced, V,,, should be independent of the class label
which was entered.

This is not saying that ¥ and L are independent, but that
V is independent of L when C is given. If this postulate
does not hold for a particular system, the particular pa-
rameters used in V;, are less than ideal, and the verification
system would not be as successful.* In other words, the
pattern vector ¥ should be descriptive of the class C,
independent of which class label has been entered into the
system.

Postulate 11: p(C;L;) > 0, G=1,2,-++ , M)

The joint event that the class is C; and the label L; is entered
has nonzero probability.

This says that each of the M known classes are expected,
with a nonzero probability, to be verified under their
correct label. Otherwise, p(C;L;) = 0 would imply that
the class C; should be considered as an alien (a member
of Cy) and only (M — 1) known classes should be included
in the system. Further reasons for these two postulates
will become apparent in the following.

We will assume that a set of labeled pattern vectors
is available from which one could estimate the conditional
probability distributions p(V|C)), ( = 0, 1, 2, --- , M),
for each class. Applying Postulate I, we can then give
an estimate of the probability p(V;|L;C;). In order to esti-
mate the distribution for the alien class, p(V;|Co), it seems
conceivable that a representative set of pattern vectors,
not from the members of the M known classes, could be
used. This would require a large number of patterns ex-
tracted from a wide spectrum of possible alien patterns.
We are left with the need to estimate the a priori probabili-
ties p(C;) and p(L;|C;). These could be readily estimated
if it were not for the inclusion of the unknown class,
represented by the alien class C,. For example, if p(Cp) =
0, one should be able to give a fair estimate of the p(C;)
for each known class (1 < i < M). However, it would
seem quite difficult to give an estimate for the verification
system usage by members of the alien class. Thus, the
a priori probabilities, p(C;), for all classes cannot be esti-
mated, but only the relative frequency, f; of each known
class C;:

p(C) _ _ p(C) (i =

=T )~ wCy

* If a pattern from an impostor class can be made to appear like a typical
pattern from the true class, the verification system should accept it as valid.
Thus, characteristics should be extracted from the pattern so that they are not
easily duplicated by an impostor. If this postulate is not assumed, knowledge
of the joint probability distribution p(V, L, C) would be required. This appears
very impractical, if not impossible, for most verification systems.
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Having a priori knowledge of each of the M known
classes, one should be able to estimate the conditional
probabilities, p(L;|C;). That is, how often is a particular
known class, C;, going to require verification under a
particular label, L;? For most systems, we propose that
the p(L;|C;) will be quite large, with the p(L;|C)), j # i,
being small. For lack of specific information, one could
choose these latter conditional probabilities to be equal,
once the p(L;|C;) have been specified.

To complete the specification of our problem, we need to
determine the probabilities p(C,) and p(L;|Co).

The likelihood that a particular class is susceptible to
impostors is information available to a verification system
that an identification system doesn’t have. We can use
this to show that an indirect method is available for esti-
mating the a priori probabilities.

We need to specify the susceptibilities p(C;|L;), (j = 1,
2, -+, M). There exist upper limits for these probabilities
once values have been assigned to the relative frequencies,
fi, and to the a priori probabilities p(L;|C)), (G, j = 1, 2,

-, M). We have

p(L,-C,—) < p(L;C))
Z p(LiCi) Z p(L,-C,«)

i=0 =1

0 < p(C; Ly =

with equality on the right whenever p(L;C;) = 0.
In terms of the previously specified frequencies and
probabilities, we have the relationship

p(L;C5)f; X
2 p(Li | €.

Note that if p(L;|C;) = §;;, the Kronecker delta, the above
upper limit becomes one. Otherwise, the limit is less than
one, reflecting the fact that known classes, other than C;,
will attempt to be verified under the label L,;. When p(C;|L;)
is assigned a value less than the upper limit, it indicates
that some members of the alien class C, are expected to
attempt verification under class label L;.

Once these M probabilities are specified, subject to the
above limits, one can easily determine the remaining
unknown quantity, p(Cy), the probability of an alien class
being presented to the system, from the relationship

1 _ s~ p(L; | Cf;
p(Cy) i=1 P(C:‘ | L;)

Since p(C;L;) > 0, by Postulate II, the above function
will always be defined. Note that if p(L;|C;) = p(C;|L)),
which implies p(L;) = p(C;), the above equation gives
p(Cy) = 1. In other words, no alien patterns are ever
presented to the system.

We now have specified the information that is required
to carry out verification of an unknown pattern. This

0 < p(C; L)<

NOVEMBER 1969

consists of the quantities 8;, p(V,|C)), f;, p(L;|C;), and
p(C;|L;). Given these probabilities, one can easily deter-
mine all other probabilities related to the three random
variables, C, L, or V. Specifically, we will need

1 ,
C)= """ =1,2,:, M),
P( ) Z p(L,» | Ci)fi (l )
i=1 P(Ci | L;)
and
| C. )
o) = ML COC) G ),

Using these quantities, we can now evaluate the various
decision functions for each class through the following
equation:

p( Vi | Ci)P(L:' ' Ci)p(ci)
p( Vij)

In the next section, we will use these probabilities to
give an expression for evaluating the verification system.

One final but very important remark needs to be made.
For verification under a particular class label, say L;, only
one a priori susceptibility is required; namely, p(C;|L;).
The other (M — 1) susceptibilities do not enter into the
calculation of the decision function. This is not obvious
from the above equations, since all M susceptibilities are
required to calculate the p(C;)’s for the known classes.
To prove this, one can expand p(V;L;) as

Gi( Vi) =

—9,.

p(Vil;) = p(Vi | Co)p(L;)
+ ; [p(Vi | C) — p(Vy | Co)) p(L; C)).

Using the expression for p(L;), we are able to express
the decision function in terms of the relative frequencies,

fi, as

G V) = {[P( Vi | CHp(L; | C)f;]

) AN
: [P( Vi | Co) p(C; | L)) f

+ ; [P( Vi | Ci) - P( Vi ] Co)]

X P(Li l Ci)fi:'} — 0;.

Note that only the true class susceptibility, p(C;|L;), occurs
in the above equation, and the probability of the alien class,
p(C,), does not explicitly appear. This means that the
p(C;IL;) can be adjusted at the time of the verification
on the basis of other available information, such as an
observer’s estimation of how certain he is about the true
identity of the class before the pattern vector is extracted. 719
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This enables an observer, or the system for that matter, to
affect the outcome of the decision process.

The strong effect of this a priori susceptibility on the
resulting decision can be easily seen if we assume that
p(L;|C)) = §;;, which implies that all known classes will
only require verification under their own class label. This
reduces the decision function to

Gi(Vy) =

p(Vi | CIp(C; | L) _ _
(Vi | Cp(C; | L) + p(Vi | Co)p(C; | Lj)

For this special case, we have shown that the value
of the p(C;|L;) can range between zero and one. Thus, an
observer can cause the verification to always reject or
always accept the pattern regardless of the pattern vector
extracted, or can influence the decision one way or the
other to any degree he desires.

;.

System evaluation
As a measure for evaluating the resulting verification
system, assuming we know all the probabilities given in
the last section, we will use the average expected loss per
verification. To derive this measure, we need to know the
probability that a loss will occur. As explained earlier,
there are only two types of losses in a verification system:
accepting a member of the imposter class, or rejecting a
member of the true class.

Denoting the event “acceptance” by the letter 4, we
define the probability of acceptance as

p(A4) = 20 > p(L; V),

i=1 k=1
Gi(Vi)>0

where the summation includes only those terms which
satisfy the indicated inequality. That is, the random vari-
ables L and ¥ have to give a positive value to the decision
function to cause acceptance of the pattern vector.

Since we are concerned with only two types of errors
in a verification system, the following two probabilities
are of prime importance:

(1) The probability of acceptance given that a known
class, C;, is to be verified under its own label,

N

p(4|CL) = 2 pVvi|Cy),
G,’(I;;k)l>0

(G=1,2,---, M).

(2) The probability that it really was the true class, C;,
when a pattern was accepted under the label L;,

p(A , CJ'Lf)p(Lf , CJ')p(Cf)

2 (A4 | C.LYp(L; | C)p(Cy)

i=0

P(Ci [ AL:‘) =

We can now define the average loss per verification, A, as
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M

A= 2 INC; | C)p(C;L;R) + NC; | C)p(CiL; A)],

i=1

where R represents the event of being rejected. The two
joint probabilities occurring in the above equation can be
readily calculated from previous expressions.

It is instructive to examine the range of possible values
for A. For a perfect verification system,

P(C—':'LiA) = p(C;L;R) = 0,
and the average loss per verification is zero. The maximum

average loss results when the wrong decision is made for
each verification. Mathematically, this requires

p(CiLiA) = P(C‘LJ’)
and
P(C:L;R) = p(C;L)),

which gives
M
Ayvax = Z_; D‘(Ci I éf)P(éa'Lf) + )\((j:’ | Cf)P(C:'Lf)]-

This enables us to calculate the maximum average loss
based upon a priori information only.

Summary

This mathematical model should prove useful in the final
design and evaluation of verification systems, once a reli-
able estimate can be obtained of the probability distribu-
tions of the various class pattern vectors. We have shown
that:

(1) Alien class members can be accounted for by proper
use of the appropriate a priori probabilities.

(2) An observer can affect the outcome of the decision
by presetting the relevant a priori susceptibility.

(3) The probability that a particular class is accepted
under a particular class label can be used to obtain a
measure for evaluating the verification system.

In order that all probabilities used in the decision func-
tion and other expressions are defined, we have required
two basic postulates:

(1) The pattern vector probability distribution from a
particular class should be independent of the class label
entered into the system.

(2) The joint event that a known class is to be verified
under its correct class label should have nonzero probabil-
ity.

Most important, we have attempted to define explicitly
the difference between pattern verification and pattern
identification. This difference is accounted for primarily
by the inclusion of an additional variable, the class label
under which the verification is to be performed.
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