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Mathematical  Model  for  Pattern  Verification 

Abstract: Pattern  verification  is  mathematically  defined, an appropriate decision function is  derived,  and a measure  for  system  evalu- 
ation is given.  Two  basic  postulates are  set forth to fully define a verification  system:  each  known  class is expected,  with  nonzero 
probability, to be  verified  under the correct class label; and the pattern vector  extracted  during  verification  should  be  descriptive of 
the given  class,  independent of which  class  label  was  entered into  the system.  Through appropriate use of a priori  probabilities,  three 
types  of information  can be incorporated  into  the  theory:  the expected  number  of  times a given  class  will  require  verification, the 
expected  use of each  class  label by a given class, and the  likelihood that a particular  class  is  susceptible to “impostor”  patterns. 

Introduction 
This paper describes a mathematical model for pattern 
verification based upon various concepts from probability 
theory. Verification will be mathematically defined and 
contrasted to identification. The correct use of the  appro- 
priate  a  priori  probabilities and loss functions is stressed 
as a necessary contribution to  the decision process. How- 
ever, the theory  does not address the practical difficulties 
of satisfactorily estimating the probabilities of the various 
patterns.  Although  this theory was developed with verifi- 
cation of speakers as a prime  interest, the theory is appli- 
cable to any verification system, such as fingerprint verifi- 
cation and pathological verification. 

What happens in a verification system?  A pattern,  not 
necessarily a member of a known class, is presented to the 
system. A label is also presented to  the system asserting, 
truthfully or falsely, that  the  pattern belongs to a certain 
one of the classes known to  the system. Next, a  predeter- 
mined set of parameters, possibly depending upon which 
label was entered, is extracted from  the pattern.  Finally, the 
pattern is accepted or rejected as a member of the indicated 
class, depending upon  the values of the various  parameters. 
For example, in a  speaker verification system, a given 
person (the class) utters a predetermined phrase (the  pat- 
tern) which is analyzed by the system. Upon indicating to 
the system who he claims to be (the label), the system 
either accepts or rejects him. Three experimental investi- 
gations into speaker verification have been reported in 
Refs. 1-3. 

The authors are a t  the IBM Systems  Development  Division Laboratory in 
Raleigh, North Carolina. 

If we consider that all unusable patterns (e.g., an ink- 
blot would be considered unusable in a fingerprint verifi- 
cation system) are never presented to  the system, the  four 
principal differences that distinguish a verification proce- 
dure  from  an identification procedure  are: 

(1) An alien class, for which a priori  information is not 
available, is considered by the system. 
(2) Additional  information, the class label, is available for 
the decision. 
(3) The class label that is entered  can  determine which 
parameters are  to be  extracted from  the  pattern. 
(4) The decision involves only two  states, acceptance or 
rejection of the pattern. 

In identification, all possible classes are presumed  known, 
and  the decision amounts  to  the best match of the  pattern 
to a  particular class. 

The next section develops a decision theory based upon 
classical Bayesian statistics (see Refs. 4-8 for fundamentals 
of the theory), including a description of the a  priori 
probabilities required.. The last section defines various 
measures for evaluating  various parts of the verification 
process as well as  an over-all measure of the system’s 
performance. 

Decision  function 
We will be concerned with three random variables: C, the 
possible classes; L, the possible class labels; and V ,  the 
possible sample pattern vectors. We assume the system 71 7 
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involves M known classes, C1, C,, . . . , CM and a single 
alien class C, consisting of all unknown classes. Corre- 
sponding to each known class Ci is a label L = Li ,  ( j  = 1,  

V = vk, (k  = 1,2, . , N>. Each pattern vector is described 
by an n-component vector extractable from  the input  pat- 
tern to be  verified. The classes, labels, and pattern vector 
states are assumed to be mutually exclusive and exhaustive. 
In  our notation, we denote the probability that C = Ci by 
p(C,)  and the  conditional probability that C = C, given 
L = Li and V = Vk by p(Ci ILiV,), etc. Further, we  define 
Ci = { C,, C1, . . . , Ci Ci + . . . , C M }  and call it the 
impostor class. 

On  the basis of classical decision theory, we  will define 
a decision function for a verification system. We are dealing 
with a two-state decision process involving two sets of loss 
functions: 

X(ci(Cj) = the loss from classifying C j  as a member of 

... , M). The sample pattern vector can assume N states, 

- 

cj (reject a valid pattern), 

X(CiIci) = the loss from classifying a member of cj as 
Cj  (accept an invalid pattern), 

for j = 1, 2, .. , M .  

In order  for verification to be meaningful, the above loss 
functions are restricted to positive values. 

Recognizing that the decision depends upon the class 
label Li entered and  the  state of the extracted pattern 
vector Vk, we define the decision function 

Gi(Vk) = X(Ci\Ci)p(CiILiVJ - X(CjICi)p(CiILiV,). 

The accept/reject rule is to accept the pattern as valid 
if Gi(Vk) > 0 and reject the  pattern if Gj(V,) 5 0. using 
this rule together with the fact that the sum of the two loss 
functions associated with a particular class is positive, and 
defining the ratio 

we can rewrite the decision function as 

Gi(Vk) = P(CiILi V k )  - 6,. 

Using Bayes’ theorem and the laws  of total probabilities, 
we write 

to show that the  problem of estimating p(Ci ILi Vk) can be 
reduced to estimating p(C,) for i = 0, 1, . . . , M; p(LjlCi)  
for j = 1,2, . . . , M; andp(V,(L,C,)  for k = 1,2, . . . , N .  
In addition, a choice concerning the Bi’s must be made. 

Before we can show how one might determine the  above 
71 8 probabilities, we require the following two basic postulates 
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to fully define a verification system: 

Postulate I :  p(VklLiCi) = p(VkIC,), ( i  = 0, 1, 2, . . . , M). 
In the presence of the knowledge of the class C, ,  the pattern 
vector produced, V,, should be independent of the class label 
which was entered. 

This is not saying that V and L are independent, but that 
V is independent of L when C is given.  If this postulate 
does not hold for a particular system, the particular  pa- 
rameters used in Vk are less than ideal, and the verification 
system would not be as successful.” In other words, the 
pattern vector V should be descriptive of the class C,  
independent of  which class label has been entered into the 
system. 

Postulate I I :  p(CiLi) > 0, ( j  = 1,  2, -.- , M).  

The joint event that the class is Ci and the label Li is entered 
has nonzero probability. 

This says that each of the M known classes are expected, 
with a nonzero probability, to be verified under their 
correct label. Otherwise, p(CiLi) = 0 would imply that 
the class Ci should be considered as  an alien (a member 
of C,) and only (M - 1) known classes should be included 
in the system. Further reasons for these two postulates 
will become apparent  in  the following. 

We will assume that a set of labeled pattern vectors 
is available from which one could estimate the  conditional 
probability distributions p(VkIC,), (i = 0, 1 ,  2, , M), 
for each class. Applying Postulate I, we can then give 
an estimate of the probability p(V,ILiCi). In order to esti- 
mate the distribution for  the alien class, p(vkIcO), it seems 
conceivable that a representative set of pattern vectors, 
not  from  the members of the M known classes, could be 
used. This would require a large number of patterns ex- 
tracted from a wide spectrum of possible alien patterns. 
We are left with the need to estimate the a priori probabili- 
ties p(C,) and p(LiICi). These could be readily estimated 
if it were not for  the inclusion of the unknown class, 
represented by the alien class C,. For example, if p(C,> = 
0, one should be able to give a fair estimate of the p(C,) 
for each known class (1 _< i 5 M). However, it would 
seem quite difficult to give an estimate for the verification 
system usage by members of the alien class. Thus, the 
a priori probabilities, p(C,), for  all classes cannot be esti- 
mated,  but only the relative frequency, A of each known 
class C,: 

* If a pattern from an impostor class can be made to appear like a typical 
pattern from the true class, the verification system should accept it as valid. 

easily duplicated by an impostor. If this postulate is not assumed, knowledge 
Thus, characteristics should be extracted from the pattern so that they are not 

of the joint probability distribution p( V, L, 0 would be required. This appears 
very impractical, if not impossible, for  most verification systems. 
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Having  a priori knowledge of each of the M known 
classes, one should  be  able to estimate the conditional 
probabilities, p(LilCi). That is, how  often is a  particular 
known class, Ci, going to require verification under  a 
particular label, L,? For most systems, we propose that 
the p(Li\Ci) will be  quite large, with the p(Li\C,), j # i, 
being small. For lack of  specific information, one could 
choose these latter conditional probabilities to be  equal, 
once the p(LiICa) have been specified. 

To complete the specification of our problem, we need to 
determine the probabilities p(Co) and p(Li(Co). 

The likelihood that a particular class is susceptible to 
impostors is information available to a verification system 
that  an identification system doesn't have. We can use 
this to show that  an indirect method is available for esti- 
mating the a priori probabilities. 

We need to specify the susceptibilities p(Ci(Li), ( j  = 1 ,  
2, - . . , M). There exist upper limits for these probabilities 
once values have been assigned to  the relative frequencies, 
A ,  and to the a priori probabilities p(L,\C,), (i, j = 1, 2, 
. . .  , M). We have 

c P ( W i )  c P ( L C J  
i-0 i s 1  

with equality on the right whenever p(LiCo) = 0. 

probabilities, we have the relationship 
In terms of the previously specified frequencies and 

Note  that if p(Li\Ci) = 6,(, the Kronecker  delta, the above 
upper limit becomes one. Otherwise, the limit is less than 
one, reflecting the  fact  that  known classes, other  than Ci, 
will attempt  to be verified under the label Li. Whenp(C, ILi) 
is assigned a value less than  the upper limit, it indicates 
that some members of the alien class Co are expected to 
attempt verification under class label Li. 

Once  these M probabilities are specified, subject to  the 
above limits, one can easily determine the remaining 
unknown  quantity, p(Co), the probability of an alien class 
being presented to  the system, from  the relationship 

consists of the quantities Oi, p( V,ICi), A ,  p(L,  IC,), and 
p(CjILi). Given these probabilities, one can easily deter- 
mine all other probabilities related to the three  random 
variables, C, L, or V. Specifically, we  will  need 

and 

Using these quantities, we can now evaluate the various 
decision functions for each class through the following 
equation: 

In the next section, we  will  use these probabilities to 
give an expression for evaluating the verification system. 

One final but very important remark needs to be  made. 
For verification under  a  particular class label, say Li, only 
one a  priori susceptibility is required; namely, p(Ci\Lj). 
The  other ( M  - 1) susceptibilities do  not enter into  the 
calculation of the decision function.  This is not obvious 
from  the above  equations, since all M susceptibilities are 
required to calculate the p(Ci))s for  the known classes. 
To prove this, one can expand p(VkLj)  as 

P (  VkLJ = a( Vk I CO)P(L,) 
M + [P( v k  I ci) - P( vk I CO)] P(L,  CY)* 

i = 1  

Using the expression for p(Li), we are able to express 
the decision function in terms of the relative frequencies, 
f ; ,  as 

Since p(CiLi) > 0, by Postulate 11, the above  function 
will always be defined. Note  that i fp(LiICi) = p(CiILi), 
which implies p(Li )  = p(Ci), the above  equation gives 
p ( c o )  = 1.  In  other words, no alien patterns are ever 
presented to  the system. 

We now have specified the information that is required 
to carry out verification of an unknown pattern. This 

Note  that only the  true class susceptibility,p(CilLi), occurs 
in the above  equation, and  the probability of the alien class, 
p(Co), does not explicitly appear. This means that  the 
p(Ci[Lj) can be adjusted at  the time of the verification 
on  the basis of other available information, such as  an 
observer's estimation of how  certain he is about the true 
identity of the class before the  pattern vector is extracted. 71 9 
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This enables an observer, or the system for  that matter, to 
affect the outcome of the decision process. 

The strong effect of this a priori susceptibility on  the 
resulting decision can  be easily seen if  we assume that 
p(LjIC,) = c&, which implies that  all known classes will 
only  require verification under  their own class label.  This 
reduces the decision function to 

For this special case, we have  shown that  the value 
of the p(CilLi) can range between zero and one. Thus,  an 
observer can cause the verification to always reject or 
always accept the  pattern regardless of the  pattern vector 
extracted, or can influence the decision one way or the 
other to any degree he desires. 

System  evaluation 
As a measure for evaluating the resulting verification 
system, assuming we know  all the probabilities given in 
the last section, we will use the average expected loss per 
verification. To derive this measure, we need to know the 
probability that a loss will occur. As explained earlier, 
there are only  two types of losses in a verification system: 
accepting a member of the imposter class, or rejecting a 
member of the  true class. 

Denoting the event “acceptance” by the letter A ,  we 
define the probability of acceptance as 

where the summation includes only those terms which 
satisfy the indicated inequality. That is, the  random vari- 
ables L and V have to give a positive value to  the decision 
function to cause acceptance of the  pattern vector. 

Since we are concerned with only  two types of errors 
in a verification system, the following two  probabilities 
are of prime  importance: 
(1) The probability of acceptance given that a  known 
class, Cj, is to be verified under  its  own label, 

( j  = I ,  2 ,  - . e  , M ) .  

(2) The probability that it really was the  true class, C,, 
when a pattern was accepted under the label Li, 

P ( A  I C;Li)p(L,  I c,)P(cJ 
= n  

720 We can now define the average loss per verification, A, as 
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M 

A = [X(Cj I C;)P(C,LiR) + X(Ci I Ci)P(eiLi A ) ] ,  
i n 1  

where R represents the event of being rejected. The two 
joint probabilities  occurring in  the above equation  can be 
readily calculated from previous expressions. 

It is instructive to examine the range of possible values 
for A. For a perfect verification system, 
p(c;LiA) = p(C,L,R) = 0, 

and  the average loss per verification is zero. The maximum 
average loss results when the wrong decision is made  for 
each verification. Mathematically, this requires 

p(C’iLJ) = P(CjL,) 

and 

P(CiLiR) = P(CiLi>, 

which  gives 
M 

 AM^^ = Lx(c, I C;)P(c<Li) + ~ ( 6 j  I c ~ ) P ( c ~ L ; ) I  . 

This enables us to calculate the maximum average loss 
based upon a priori  information  only. 

Summary 
This  mathematical  model  should  prove useful in  the final 
design and evaluation of verification systems, once a reli- 
able estimate  can be obtained of  the probability  distribu- 
tions of the various class pattern vectors. We  have  shown 
that: 

(1) Alien class members can be accounted for by proper 
use of the  appropriate a priori probabilities. 
(2) An observer can affect the outcome of the decision 
by presetting the relevant a priori susceptibility. 
(3) The probability that a  particular class is accepted 
under  a  particular class label  can  be used to obtain a 
measure for evaluating the verification system. 

i = 1  

In  order  that all probabilities used in  the decision func- 
tion  and  other expressions are defined, we have required 
two basic postulates: 

(1) The  pattern vector probability  distribution from a 
particular class should  be  independent of the class label 
entered into  the system. 
(2) The  joint event that a known class is to be verified 
under  its  correct class label  should  have  nonzero  probabil- 
ity. 

Most  important, we have attempted  to define explicitly 
the difference between pattern verification and  pattern 
identification. This difference is accounted for primarily 
by the inclusion of an  additional variable, the class label 
under which the verification is to be performed. 
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