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Strain and Temperature Distributions in a Thermally

Activated Cantilever

This communication describes the use of a mathematical
model to predict the behavior of an electromechanical
semiconductor oscillator.' The device being simulated is
a silicon cantilever (Fig. 1), free at one end, periodically
heated on a small segment of one surface by an embedded
resistor, and having as heat sink the fixed-end mechanical
support (pedestal) on the opposite surface. The model
defines the strain and temperature distributions in the
cantilever as functions of geometry, material constants,
and input power; its application is to determine the condi-
tions that will maximize strain in the region near the
pedestal for a specified power source. Although experi-
mental results are given only for the device described, the
model is analytically general enough to permit the manipu-
lation of parameters for design purposes.

The equation of motion is based on a thermodynamic
potential that is consistent with our expectations for the
solution; that is, we have assumed that the potential
includes only such terms as will reproduce the properties
of interest in the cantilever. All other interactions are
considered to be higher-order effects and external forces
are ignored. (We assume, for example, that the cantilever
material is isotropic; if a more complex phenomenon were
to be considered, the equation of motion would reflect the
addition of appropriate terms to the potential.) By apply-
ing Hamilton’s principle to a generalized potential and
including an energy dissipation term to account for damp-
ing, the equation of motion and the appropriate spatial
boundary conditions can be rigorously developed.”’?®
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Figure 1 Cantilever geometry. (Approximate dimensions:
L = 350 mils, A = 5 mils, W, = 30 mils, b = 5 mils.)
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Under the simplifying assumptions, however, the equation
for this model reduces to one obtainable from the Euler-
Bernoulli simple beam theory.*'®

An analytical temperature distribution, found by the
method of images, is used for heating frequencies above
10 Hz, leaving only cases approaching dc to be evaluated
numerically. (A single numerical differentiation of a dis-
crete-point field will yield reasonable accuracy for the
low-frequency case.) The solution for strain distribution
is given in integral form, which has only a first order
derivative of the temperature distribution, so that solu-
tions can be found for either type of temperature profile.

Equation of motion
The equation of motion can be shown to be

(ER*/12)8iw(x, §) + phdiw(x, t)

— (ph’/12)0297w(x, 1)

h/2
¥ coumlx, §) = (@E/3) f VO:T(x, v, §) dy, (1)
—h/2
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Figure 2 Method of images. The sink images (dashed
lines) extend to —oo in the x direction and there is an
infinite number of sink and source (solid-line) images; a
few are shown for illustration.

where w(x, f) is the displacement from the x axis of a
point on the neutral axis of the cantilever; x, y, z and ¢
are the Cartesian coordinates (Fig. 1) of the system and
the time, respectively; d, and 9, are partial differential
operators with respect to x and ¢, respectively; E is Young’s
elastic modulus; % is the cantilever thickness; p is the
cantilever material density; ¢ is the coefficient of damping;
« is the coefficient of thermal expansion; and T is the
temperature distribution.

Equation (1) is essentially that of a simple damped
harmonic oscillator, with higher-order effects omitted
under the assumptions given above (isotropic material,
no external forces) and the approximation® that plane
sections normal to the neutral axis at equilibrium remain
so under thermal excitation. The damping is proportional
to velocity and the coefficient ¢ is determined empirically
by measuring the time ? required for the displacement
amplitude to decay to 1/e of its resonant value. For the
simple damped oscillator ? = 2m/c, where m is the mass;
for the cantilever we write £ = 2ph/c for a point on the
neutral axis. The quality Q of the device is also related to
t by O = wt/2, where w is the resonant frequency.
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Temperature distribution

The instantaneous power supplied to the heating element
comprises a dc potential ¥z and an ac potential Vg(w)
applied across the element, and is given by

2
P=—(Vs+ Vgcoswt)® = Re 2 a, exp (inwt), (2)

1

R n=0

where R is the resistance of the heater and the a, are
V3 + VE)/2R, 2V V/R, and V}/2R respectively.

The temperature distribution is a scalar quantity and
can be written as a sum of terms corresponding to the
Fourier components of the input power. The diffusion
equation is

k32 + 80T = a.T, (3)

where % is the coefficient of thermal diffusivity and 3, fol-
lows our convention. The point-source solution of Eq. (3)
is integrated over the spatial extension of the periodic
sources and sinks and over their temporal contributions.
By applying steady-state conditions (i.e., heat sources
turned on and heat sinks attached in the infinite past),
a spatial boundary at infinity for the pedestal, and heater
dimensions from x = a to x = a + b (Fig. 1), and by
adding the contribution of each frequency component of
the temperature, we have for the steady-state solution

T(x, y, 1)
2 ) dr
- ;( . dmk(r — 1)
« {fa+ dt.q, exp [ian — m]
r2
i — a]}) - @

where g, is a constant proportional to the amplitude of
the heat supply;

r=[x—£&)°+ (v — &)

£, and £, are source or sink coordinates parallel to x and y
respectively; and P,(£,) is proportional to the amplitude
of the heat absorption at the sink.

The assumptions made are that the pedestal is a perfect
heat sink, i.e., that

+ f_ dg, P,(£.) exp l:inwr —

T(x <0,y = —h/2,1) = 0; (5)

that no heat is lost by convection at the surface; and that
the temperature is not a function of z. (This last assump-
tion is warranted because the cantilever is symmetric with
respect to the x-y plane and is relatively wide, so that
fringe effects can be ignored.) The temperature distribu-
tion is found by applying the method of images® (Fig. 2)
to an infinite-strip approximation of the finite cantilever
device. If the actual temperature approaches zero rapidly

IBM J. RES. DEVELOP.




enough at the ends of the cantilever, this an excellent
assumption for the end conditions and the cantilever
length L can be assumed to be infinite. The steady-state
temperature distribution satisfying the derivative boundary
conditions is then

T(x, », 0
2

= 2 ealx, ») exp (inwi)

n=0

= = exp (inwt) ert <m_w>’
- Z Z 27!'/( {>/a déquKO[ k

N=—® n=0

X {(x - &)+ [y _ (4N—;—1_)_h]}]
+ /_Om dg. P.(£.) K°[<m7w>

X {(x - &)+ [y - (A—NZ_—I)—h] }]} , ()

where K, is the zero-order modified Bessel function of the
second kind. This equation does not hold for frequencies
approaching zero because the temperature at x = L does
not approach zero for dc and because 9,7 for x = L need
not be zero in our model.

The unknown sink strength P,(£,) in Eq. (6) is deter-
mined uniquely by the boundary condition of Eq. (5) for
each n, due to the independence of the sources. The P,
can be determined numerically by approximating the inte-
grals by a two-point quadrature (trapezoidal rule) and
collecting like terms of P, at discrete points of &, to obtain
a complex linear system of equations in the complex variable
unknown P,. This system can be solved numerically using
an existing Gauss-Jordan elimination subroutine with full
pivoting.” The first integral term of Eq. (6) represents the
constant terms of the linear system of equations and can
be calculated directly; since its range of integration is the
small distance b, fewer points are needed to span the range
than are required for the second integral. It was found
empirically that seventeen points are usually adequate.
Since P, is significant only near the source, an optimal
step size for the second integral is 0.1%4, or 0.5 mil for a
nominal 4 of 5 mils. When the heating source is located
in the positive half-plane, an adequate decay length for
P, is 24 intervals (12 mils), resulting in a 25 X 25 matrix
system. If the heater is located in the negative half-plane,
however, a decay length of 48 intervals is needed and the
matrix is 49 X 49.

The solution of Eq. (6) is approximated by numerical
integration, except at the zeros of the K, argument. In
the region for which the argument i"\'fy of K, approaches
zero, the asymptotic behavior of K is

lim Ko(iéy) = lim Ilnvy 4 constant.

v-0 ¥—0

NOVEMBER 1969

This function can be integrated analytically in the region
0 + < ¥ < 1 such that contributions by any smaller P
are insignificant. For the numerical integration we use the
alternative definition

Ko(ity) = ker () + i kei (v),

where ker and kei are called Kelvin functions® and can be
obtained easily by polynomial approximation within an
error of 107°.

The number N of images needed must be increased at
very low frequencies. If we arbitrarily decide to ignore
any contribution of the Bessel function K, whose amplitude
is less than e, then the relation between N, the number of
images necessary, and nw for acceptable N is

Qnw/k)} Nh + (1/2) In [(nw/k)I NH] = 4, (N

as can be derived from the large-argument expansion of K.

Strain distribution

After separating temperature into sums of time- and space-
dependent products, we can write the displacement re-
sponse to the temperature driving force in a similar way:

2

wix, 1) = E w,(x) exp (inwt), (8)
n=0

where w,(x) is defined by this equation and satisfies, for

each n, the same boundary conditions as w(x, 1), namely,

w(0, 1) = 3,w(0, 1) = 0; (9a)

h/2
AL, i) + (/) [ 37O, L) ay = o,
—h/2

h/2
(L, 1) + (4a/K) f YO.T(y, L, ©) dy = 0. (9,
—h/2

Equation (9a) corresponds to fixed conditions at x = 0,
and Egs. (9b) correspond to the presence of no moments
or shearing forces at the free end, x = L. Using these
conditions and dropping the third term in Eq. (1) as a
useful corollary approximation, we have for the displace-
ment

wix, 1) = (—4a/K) Z::O exp (inwi) fo G,.(x, x)

h/2
X f Yoo, ¥ dy' dx', (10)
—h/2

where G,(x, x’) is the Green’s function corresponding to
the n’th component of displacement. (The Green’s func-
tions are linear combinations of trigonometric and hyper-
bolic functions, have continuous derivatives up to the
third order at points in the cantilever, and satisfy the same
boundary conditions as w.)

The strain distribution is obtained in a straightforward
manner from Eq. (10), and is the real part of
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Figure 3 Phase lag of temperature at the upper surface
relative to a point heat source located at x — —13 mils, vs.
distance from the heat source.

Figure 4 Normalized temperature |¢(x)|/|@source, w = 10 Hz|
at the upper surface vs. heating frequency for various dis-
tances from a point source located at x — —13 miles (h =
16 mils).
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—y0w(x, £) = (—4a/K)y ; exp (inwt)

L
X [[ ax’ 92G.(x, x")
0

h/2

X V' 0, eu(X, ¥ dy' dx' — 8,G.(x, 0)

—h/2
h/2

X f ¥ 9,0.(0, ¥) dy’]- 11y
—h/2

Results and discussion
Because a dc temperature distribution contributes negli-
gibly to the strain and because the contribution of the 2w
mode to the temperature field and hence the strain can be
made very small relative to the contribution of the » mode,
the following discussion and the results presented are with
respect to the » mode only. (The qualitative discussion is
not affected by this restriction.)

At any instant, a temperature wave is propagated from
the heating element at phase velocity

nw[ﬁ— tan™" <_Ir_n&>:\—l & (2knw)?
dx Re ¢, - e

(see Ref. 10 for a one-dimensional problem). The heating
rate is nw; therefore if we define some arbitrarily small
region about the heat source, the percentage of total heat
restricted to that region will be greater at the higher fre-
quencies. However, the phase of the temperature at a point
away from the source, relative to the maximum tempera-
ture at the source (on the upper surface of the cantilever),
is almost a linearly increasing function of distance (Fig. 3).
Thus, before a distant point attains its maximum possible
temperature (compatible with a given power input), the
source is already so much lower in temperature that it
effectively competes as a sink for the outward heat flux.
This implies that the temperature is a maximum at the
lowest frequency (Figs. 4 and 5; ac power is about 1 mW).

The cantilever is bent by preferential heating on the
upper surface, according to the forcing function

h/2
92 yT(x, y, 8) dy.

—h/2
If the temperature is constant in either the x or the y
direction, or is a linear function of x, then the forcing
function and strain are zero.

At very low frequencies of heat input, the temperature
is fairly constant along x and y; hence it contributes
neglibly to the strain. The largest drop in temperature
along y, for 0 < x < L, occurs at the pedestal edge,
because this is also the first point of the heat sink. This
point is further complicated because

w07, 1) =0
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Figure 5 Normalized temperature | (x)|/|@source, w = 10 He|
at the upper surface vs. distance from the pedestal edge
(x=0).

and all its higher derivatives are zero, whereas w is cer-
tainly not zero at x = 07. Generally the strain at x = 0
(the pedestal edge) is a maximum. From the above equation
we can intuitively postulate that to minimize the radius
of curvature

[62T(x, », 0]

of the temperature distribution in the x direction (and
hence maximize its inverse), the heating element must be
sufficiently isolated from the sink that the temperature
can build up to a sharp peak, yet not so isolated that
decay in the x direction is too slow. There is a compromise
in maximizing the temperature drop along y to obtain
maximum strain. Figure 6 indicates that, to optimize
strain for a device of the specified geometry, the heater
element must be located within a certain range of the
pedestal: 3 mils < x = a < 16 mils. For heaters whose
inside edges are located at x = 0 and x = —2 mils,
respectively, the strains measured at the pedestal are lower,
by 179, and 499, respectively, than the lowest value mea-
sured for a heater within the optimum range. As shown by
Fig. 6, for heaters within the optimum range of x the
strain varies from maximum to minimum by only 2.99.
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Figure 6 Maximum strain at the upper surface vs. distance
from the pedestal edge (x = 0).

Figure 7 Maximum strain at x = 35 mils vs. driving fre-
quency. (Experimental strain normalized to 3.62, theoretical
strain to 1.13; both X 10-%. Experimental resonant frequency,
3645.5 Hz; theoretical value, 3609.1 Hz.)
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As is true for most mechanical vibrating devices, the
cantilever is very sensitive to driving frequency. This
dependency is shown in Fig. 7, where relative peak strain
at a point 35 mils from the heat sink is plotted against
driving frequency. The calculated Q of 1900 is in excellent
agreement with the experimental value of 1950. The empir-
ical damping coefficient ¢ is based on a Q of 1950, and its
consistency is confirmed by this agreement.

The experimental values of strain were measured with
a piezoresistive bridge fabricated as part of the cantilever.
Again, the very good agreement between the analytical
and experimental curves confirms the mathematical model.

The strain distribution is linearly dependent on ¥ and
V¢ but, from the discussion of temperature, we observe
that maximizing ¥ minimizes the power channeled into
the 2w mode. If w is the resonant frequency, this maximi-
zation best utilizes the input power.
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Resonant frequency is plotted against strain for several
cantilever lengths in Fig. 8. The curve indicates that there
is an optimal resonant frequency or length. (The experi-
mental points were obtained by sand-trimming the canti-
lever length, a process which changes the value of Q. Each
experimental point therefore lies on a separate curve, cor-
responding to the different values of Q. The theoretical
curve, however, was computed only for Q = 1950.)

Summary
A simplified model for a transverse vibrating beam has
been shown to characterize the cantilever very well. The
forcing function is dependent on temperature field, which
is found by the method of images. Time-dependent con-
tributions to the temperature distribution are conveniently
included in the well-tabulated modified Bessel function K,.
If Green’s functions are used to solve the equation of
motion, the solution can be given in integral form. This is
advantageous if the temperature forcing function is in
discrete form, especially since its derivatives are needed.
Variation of input parameters has led to optimum design
for the cantilever, as can be inferred from the graphs and
the discussion of results. Computer runs that simulate
additional experimental devices give strains which are of
the correct order of magnitude. Both the experiments and
the simulation foster confidence in the model as to its
characterization of device behavior for design purposes.
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