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This communication describes the use of a  mathematical 
model to predict the behavior of an electromechanical 
semiconductor  oscillator.’ The device being simulated is 
a silicon cantilever (Fig. l),  free at  one  end, periodically 
heated on a  small segment of one surface by an embedded 
resistor, and having as heat sink the fixed-end mechanical 
support (pedestal) on  the  opposite surface. The model 
defines the strain and temperature  distributions in  the 
cantilever as functions of geometry, material  constants, 
and input power; its  application is to determine the condi- 
tions that will maximize strain in the region near  the 
pedestal for a specified power source. Although experi- 
mental results are given only for  the device described, the 
model is analytically general enough to permit the manipu- 
lation of parameters for design purposes. 

The equation of motion is based on a  thermodynamic 
potential that is consistent with our expectations for  the 
solution;  that is, we have assumed that  the potential 
includes only such terms as will reproduce the properties 
of interest in the cantilever. All other interactions are 
considered to be higher-order effects and external forces 
.are ignored. (We assume, for example, that  the cantilever 
material is isotropic; if a more complex phenomenon were 
to be considered, the equation of motion would reflect the 
addition of appropriate terms to the potential.) By apply- 
ing Hamilton’s principle to a generalized potential and 
including an energy dissipation term to account for  damp- 
ing,  the equation of motion  and  the  appropriate  spatial 
boundary  conditions can  be rigorously d e ~ e l o p e d . ~ ’ ~  
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Figure 1 Cantilever geometry. (Approximate dimensions: 
L = 350 mils, h = 5 mils, W c  = 30 mils, b = 5 mils.) 

Under  the simplifying assumptions, however, the equation 
for this  model reduces to  one obtainable from  the Euler- 
Bernoulli simple beam 

An analytical  temperature  distribution, found by the 
method of images, is used for heating frequencies above 
10 Hz, leaving only cases approaching dc  to be evaluated 
numerically. (A single numerical differentiation of a dis- 
crete-point field will yield reasonable accuracy for the 
low-frequency case.) The solution for  strain distribution 
is given in integral  form, which has only a first order 
derivative of the temperature  distribution, so that solu- 
tions  can  be found  for either  type of temperature profile. 

Equation of motion 
The equation of motion  can be  shown to be 
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Temperature distribution 
The instantaneous power supplied to  the heating element 
comprises a dc potential VB and an ac potential V,(W) 
applied across the element, and is given by 

- 
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Figure 2 Method of images. The sink images (dashed 
lines)  extend to -cc in the x direction and there is an 
infinite number of sink and  source  (solid-line) images; a 
few are shown for illustration. 

where w(x, t )  is the displacement from the x axis of a 
point on  the neutral axis of the cantilever; x, y ,  z and f 
are  the Cartesian coordinates (Fig. 1) of the system and 
the time, respectively; a, and a, are partial differential 
operators with respect to x and t ,  respectively; E is Young's 
elastic modulus; h is the cantilever thickness; p is the 
cantilever material density; c is the coefficient  of damping; 
a is the coefficient of thermal expansion; and T is the 
temperature distribution. 

Equation (1) is essentially that of a simple damped 
harmonic oscillator, with higher-order effects omitted 
under the assumptions given above (isotropic material, 
no external forces) and the approximation3 that plane 
sections normal to  the neutral axis at equilibrium remain 
so under thermal excitation. The damping is proportional 
to velocity and  the coefficient c is determined empirically 
by measuring the time 5 required for  the displacement 
amplitude to decay to l/e of its resonant value. For  the 
simple damped oscillator i = 2m/c, where rn is the mass; 
for the cantilever we write t = 2ph/c for a point on  the 
neutral axis. The quality Q of the device is also related to 

71 2 t by Q = wt/2, where w is the resonant frequency. 

1 
R n-0 

2 

P = - ( Vs + Va cosut)2 = R e  a, exp ( i n w t ) ,  (2 )  

where R is the resistance of the heater and the an are 
(2V: + V&'2R, 2VB V,/R, and Vi /2R respectively. 

The temperature distribution is a scalar quantity and 
can be written as a sum of terms corresponding to  the 
Fourier components of the input power. The diffusion 
equation is 

k(a: + a z ) ~  = a , ~ ,  (3) 

where k is the coefficient  of thermal diffusivity and a, fol- 
lows our convention. The point-source solution of Eq. (3) 
is integrated over the spatial extension of the periodic 
sources and sinks and over their temporal contributions. 
By applying steady-state conditions (i.e., heat sources 
turned on and  heat sinks attached in the infinite past), 
a spatial boundary at infinity for  the pedestal, and heater 
dimensions from x = a to x = a + b (Fig. l), and by 
adding  the  contribution of each frequency component of 
the temperature, we have for  the steady-state solution 

T ( x ,  Y 9 2 )  

4k(t - r)  
r 2  1 

where qo is a constant proportional to  the amplitude of 
the heat supply; 

r = [(x - tzI2 + (Y - L)~II"; 

tz and tu are source or sink coordinates parallel to x and y 
respectively; and P,,(t,) is proportional to  the amplitude 
of the heat  absorption at  the sink. 

The assumptions made are  that  the pedestal is a perfect 
heat sink, i.e., that 

T(x < 0 ,  y = - h / 2 ,  t )  = 0 ;  ( 5 )  

that no heat is lost by convection at  the surface; and  that 
the temperature is not a function of z. (This last assump- 
tion is warranted because the cantilever is symmetric with 
respect to  the x-y plane and  is relatively  wide, so that 
fringe effects can be ignored.) The temperature distribu- 
tion is found by applying the method of  images' (Fig. 2) 
to  an infinite-strip approximation of the finite cantilever 
device. If the actual  temperature approaches zero rapidly 
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enough at  the ends of the cantilever, this an excellent 
assumption for  the end conditions and  the cantilever 
length L can  be assumed to be infinite. The steady-state 
temperature distribution satisfying the derivative boundary 
conditions is then 

T ( x ,  Y ,  t )  

= C qn(x, Y )  exp (inat) 
2 

n-0 

where KO is the zero-order modified  Bessel function of the 
second kind. This equation does not hold for frequencies 
approaching zero because the temperature at x = L does 
not approach zero for dc  and because 8,T for x = L need 
not be zero in our model. 

The unknown sink strength Pn(tZ) in Eq. (6) is deter- 
mined uniquely by the boundary condition of Eq. (5) for 
each n, due to  the independence of the sources. The P, 
can be determined numerically by approximating the inte- 
grals by a two-point quadrature (trapezoidal rule) and 
collecting like terms of Pn at discrete points of & to obtain 
a complex linear system of equations in the complex variable 
unknown P,. This system can be  solved numerically using 
an existing Gauss-Jordan elimination subroutine with full 
pivoting.' The first integral term of Eq. (6) represents the 
constant terms of the linear system of equations and can 
be calculated directly; since its range of integration is the 
small distance b, fewer points are needed to span the range 
than are required for the second integral. It was found 
empirically that seventeen points are usually adequate. 
Since P, is  significant  only near the source, an optimal 
step size for  the second integral is O.lh, or 0.5 mil for a 
nominal h of 5 mils.  When the heating source is located 
in the positive half-plane, an adequate decay length for 
P, is 24 intervals (12 mils), resulting in a 25 X 25 matrix 
system. If the heater is located in the negative half-plane, 
however, a decay length of 48 intervals is  needed and  the 
matrix is  49 X 49. 

The solution of Eq. (6) is approximated by numerical 
integration, except at  the zeros  of the KO argument. In 
the region for which the argument i'y of KO approaches 
zero, the asymptotic behavior of KO is 

lim Ko(i4y) = lim In y + constant. 
7 - 0  Y -0 

This function can be integrated analytically in the region 
0 + 5 y << 1 such that contributions by any smaller P 
are insignificant. For  the numerical integration we  use the 
alternative definition 

Ko(i'y) = ker (7) + i kei (y), 

where ker and kei are called Kelvin functions' and can be 
obtained easily  by polynomial approximation within an 
error of IO-'. 

The number N of images  needed must be increased at 
very low frequencies. If we arbitrarily decide to ignore 
any contribution of the Bessel function KO whose amplitude 
is less than e-', then the relation between N ,  the number of 
images  necessary, and nw for acceptable N is 

( 2 n w / k ) + ~ h  + (1/2) In [ ( n w / k ) ' ~ h ]  = 4, (7) 

as can be derived from the large-argument expansion of KO. 

Strain  distribution 
After separating temperature into sums of time- and space- 
dependent products, we can write the displacement re- 
sponse to  the temperature driving force in a similar way: 

a 

w ( x ,  t )  = *,(x) exp ( i n a t ) ,  ( 8) 

where *,,(x) is defined  by this equation and satisfies, for 
each n, the same boundary conditions as w(x, t),  namely, 

* = 0  

w ( 0 ,  t )  = d,w(O, t )  = 0; ( 9 4  

afw(L, t )  + (4a/h") y T ( y ,  L ,  r) dy  = 0 ,  
h / 2  1 h / 2  

h / 2  

l h , 2  
d ; w ( L ,  t )  + (4a/h") yd,T(y,  L ,  t )  dy  = 0. (9b) 

Equation (9a) corresponds to fixed conditions at x = 0, 
and Eqs. (9b) correspond to  the presence of no moments 
or shearing forces a t  the free end, x = L. Using these 
conditions and  dropping the third  term in Eq. (1) as a 
useful corollary approximation, we have for the displace- 
ment 

w ( x ,  t)  = (-4a/h3) exp (inwt) lL  G,(x ,  x') 
n-0 

x [ I 2  y'a:,p,(x', y ' )  dy' dx ' ,  (10) 
h / 2  

where Gn(x, x ) )  is the Green's function corresponding to 
the n'th component of displacement. (The Green's func- 
tions are linear combinations of trigonometric and hyper- 
bolic functions, have continuous derivatives up to  the 
third  order at points in the cantilever, and satisfy the same 
boundary conditions as w.) 

The strain distribution is obtained in a straightforward 
manner from Eq. (lo), and is the real part of 71 3 
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Distance from heat source in m i l s  

Figure 3 Phase  lag of temperature at the upper  surface 
relative to a point heat source  located at x = “ 1 3  mils, vs. 
distance from the heat  source. 

Figure 4 Normalized temperature w = lOHzj 
at the upper surface vs. heating frequency for various  dis- 
tances from a point  source located at x = -13  miles ( h  = 
16 mils). 

I Driving frequency in Hz 71 4 
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Results and  discussion 
Because a dc temperature  distribution  contributes negli- 
gibly to the strain and because the contribution of the 2w 
mode to  the temperature field and hence the strain  can  be 
made very small relative to  the contribution of the w mode, 
the following discussion and  the results presented are with 
respect to the w mode only. (The qualitative discussion is 
not affected by this restriction.) 

At any instant, a  temperature wave is propagated from 
the heating element at phase velocity 

nu[$ tan-’ (e)]-’ E (2knw)* 

(see Ref. 10 for a one-dimensional problem). The heating 
rate is nw; therefore if  we define some  arbitrarily  small 
region about  the  heat source, the percentage of total heat 
restricted to  that region will  be greater at  the higher fre- 
quencies. However, the phase of the temperature at a point 
away from  the source, relative to the maximum tempera- 
ture  at  the source (on the upper surface of the cantilever), 
is almost a linearly increasing function of distance (Fig. 3). 
Thus, before a distant  point  attains its  maximum possible 
temperature (compatible with a given power input), the 
source is already so much lower in temperature that  it 
effectively competes as a sink for  the  outward  heat flux. 
This implies that  the temperature is a maximum at  the 
lowest frequency (Figs. 4 and 5; ac power is about 1 mW). 

The cantilever is bent by preferential  heating on  the 
upper surface, according to  the forcing  function 

a,” [,,, YT(x ,  Y ,  d d y .  
h / 2  

If the temperature is constant in either the x or  the y 
direction, or is a  linear  function of x ,  then  the forcing 
function and  strain  are zero. 

At very low frequencies of heat  input,  the temperature 
is fairly constant  along x and y ;  hence it contributes 
neglibly to  the strain. The largest drop  in temperature 
along y ,  for 0 5 x 5 L, occurs at the pedestal edge, 
because this is also the first point of the heat  sink.  This 
point is further complicated because 

w(o- ,  t )  = 0 
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10 Hz 
h = 4  mils 

listance from nrrleml in mil? 

Figure 5 Normalized temperature I~(x)l/lp,..,..., w = 10 Hz1 
at the  upper surface vs. distance from the pedestal edge 
( x  = 0). 

and all  its higher derivatives are zero, whereas w is cer- 
tainly not zero at  x = 0'. Generally the strain at x = 0 
(the pedestal edge) is a maximum. From  the above equation 
we can intuitively postulate that  to minimize the radius 
of curvature 

of the temperature  distribution  in the x direction (and 
hence maximize its inverse), the heating element must be 
sufficiently isolated from  the sink that  the temperature 
can build up to a sharp peak, yet not so isolated that 
decay in  the x direction is too slow. There is a compromise 
in maximizing the temperature drop along y to obtain 
maximum strain.  Figure  6 indicates that,  to optimize 
strain  for a device  of the specified geometry, the heater 
element must be located within a  certain  range of the 
pedestal: 3 mils 5 x = a 5 16 mils. For heaters whose 
inside edges are located at x = 0 and x = -2 mils, 
respectively, the strains measured at  the pedestal are lower, 
by 17% and 49% respectively, than  the lowest value mea- 
sured for a heater within the  optimum range. As shown by 
Fig. 6,  for heaters within the optimum  range of x the 
strain varies from maximum to minimum by only 2.9%. 

Heater  lengths 

/ Frequency: 2817.1 Hz - 0 5 10 I 15 I 2( 

'osition of hcater ~nside edge (pedestal  location: "co C_ X 4 0 )  

Figure 6 Maximum strain at the upper surface vs. distance 
from the  pedestal edge (x = 0). 

Figure 7 Maximum strain at x = 35 mils vs. driving fre- 
quency. (Experimental strain normalized to 3.62,  theoretical 
strain to 1.13;  both X lo-'. Experimental resonant frequency, 
3645.5 Hz; theoretical value,  3609.1 Hz.) 

Theoretical 
o Experimental 

Cantilever  geometry: 

W =27.6 mils 
L = 355 mils 

h = 8.4 mils 

I I I I 
1 2 3 4  

I Cycles per second from resonant  frequency 

As is true  for most mechanical vibrating devices, the 
cantilever is  very sensitive to driving frequency. This 
dependency is shown in Fig. 7, where relative peak  strain 
at a  point 35 mils from  the heat sink is plotted  against 
driving frequency. The calculated Q of 1900 is in excellent 
agreement with the experimental value of  1950. The empir- 
ical damping coefficient c is based on a Q of 1950, and  its 
consistency is confirmed by this agreement. 

The experimental values  of strain were measured with 
a piezoresistive bridge fabricated as  part of the cantilever. 
Again, the very good agreement between the analytical 
and experimental curves confirms the mathematical model. 

The strain  distribution is linearly dependent on V, and 
V ,  but, from  the discussion of temperature, we observe 
that maximizing VB minimizes the power channeled into 
the 2w mode. If w is the resonant frequency, this maximi- 
zation best utilizes the  input power. 71 5 
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Resonant frequency  is plotted against strain for several 
cantilever  lengths in Fig. 8. The curve  indicates that there 
is an optimal resonant frequency or length. (The experi- 
mental points were obtained by sand-trimming the canti- 
lever  length, a process  which  changes the value of Q. Each 
experimental point therefore  lies on a separate curve, cor- 
responding to  the different  values of Q. The theoretical 
curve,  however,  was  computed  only for Q = 1950.) 

Summary 
A simplified  model for a transverse  vibrating  beam has 
been  shown to characterize the cantilever  very  well. The 
forcing function is  dependent on temperature field,  which 
is found by the method of images.  Time-dependent  con- 
tributions to  the temperature distribution are conveniently 
included in the well-tabulated  modified Bessel function KO. 

If Green’s  functions are used to solve the equation of 
motion, the solution can  be given in integral form. This is 
advantageous if the temperature forcing function is  in 
discrete form, especially  since its derivatives are needed. 

Variation of input parameters has led to optimum  design 
for  the cantilever, as can  be  inferred from the graphs and 
the discussion of results. Computer runs that simulate 
additional experimental devices  give strains which are of 
the correct order of magnitude.  Both the experiments and 
the simulation foster confidence in the model as to its 
characterization of device  behavior for design  purposes. 
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