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A Nonlinear Digital Filter for Industrial Measurements

Abstract: A simple algorithm is presented for nonlinear filtering of a time series composed of a gaussian component, pulses and steps.
The method used is a combination of simple statistical techniques. The main advantage is claimed to be a scheme for adaptation of the

filter parameters.

Introduction

Time series arising from observations made on industrial
processes sometimes contain components that make it
necessary to use a nonlinear filter to extract the signal.

Such problems appeared during development work on
a process control project jointly carried out by the Billerud
Company and by IBM.

The nonlinearities that will be dealt with are large
changes in the signal level during a time interval that is
short compared to the time constant of the process. These
changes may be a step, which is a lengthy change, and a
pulse, which is a short irregularity.

Such components might be the effect of set-point changes
or spike noise that is caused by instrumental errors or
generated by the physical process. In this case we need a
filter that gives us information about the step change as
soon as possible but cuts the pulses so that no action is
taken unnecessarily.

The a priori knowledge about a set-point change has
not been considered here since it would have unnecessarily
complicated the structure of the algorithm.

It is possible, of course, to take advantage of such
knowledge for example by decreasing the decision lag,
taking the time constant for each filtered variable into
account. This paper presents such a filter algorithm that
is designed heuristically and uses a combination of simple
statistical techniques.

The process

The industrial process for which the filter is designed is
best described in mathematical terms as the sum of a gaus-
sian time series, steps and spike noise.
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The gaussian component () could be described as
the combination of a random walk and white noise, and
is defined by the model

er) — e(r — 1) = e(t) — ce(r — 1), 1)

where e(r) is a sequence of normally distributed uncor-
related random variables with zero mean and variance \’.

If the parameter ¢ = 1, the model (1) reduces to (f) =
e(r) while if ¢ = 0, (1) describes a pure random walk e(¢) =
et — 1) 4 e(@). If we define the step variable £(¢) and
the pulse variable {(f) which equal zero when no steps
or pulses are present, we can write a model for the entire
process as follows:

y@) = ) + £+ {O). @

Problem formulation
The task of the filter is to detect the steps as soon as pos-
sible, to sort out the spike noise, and to smooth the gaus-
sian component.

Our concern about the gaussian component, however,
will be to predict it rather than smooth it. There are two
reasons for this:

To state a smoothing problem requires assump-
tions about the signal behind the raw data, about
which we may know very little.

We can often state a prediction problem for which
the result will be the same as for the smoothing
problem.

Thus there will be a filtering problem—to follow the steps
and cut the spikes—and a prediction problem.

Because of the nature of the model it is natural to divide
the filtering problem into the following two parts:
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1) Find a test for the hypothesis that there is no pulse or
step present at time ¢ under the assumption that there
has been none earlier.

2) Find a method to distinguish between a step and a
pulse when the hypothesis is rejected.

The first part assumes a gaussian process, and some
other technique must be used for another type of stochas-
tic process. The prediction problem concerns the time
series that is left when steps and pulses are sorted out.
This time series will not be normal since the probabilities of
making a wrong decision in the first problem (a-and 8-
errors2) are nonzero. Thus a linear prediction will not be a
conclusion but it will be postulated in order to get a simple
algorithm.

3) Find a prediction &t | ¢ — r) of €(¥) which is a linear
combination of earlier observations e(t — r), e(t —
r — 1) ---, and which minimizes the mean square
prediction error.

The prediction problem, as stated here, has been thor-
oughly investigated'"**® and only a summary of prediction
one step ahead will be given since, for our model, the result
will be the same for several steps ahead.

Prediction one step ahead
Introducing the translation operator z so that ze(r) =
e(r — 1), the model (1) can be written as

) = T =% o) = o) + Lo
= e(n) + (i—f—‘i—z e(f) 3)

Since e(?) are uncorrelated, the optimal linear predictor
becomes’

- = S=LEq (@

from which expression we get the algorithm:

1| D=ct|t— D4+ 1A — ¢) e@).

The prediction error can according to (3) and (4) be written:
) — et t— 1) = e (5)

The filtering problem

The first part of the filtering problem will be treated by
hypothesis testing, as is indicated already in the formula-
tion of the problem. As a test variable the gaussian function
e(f) will be chosen. Equation (5) indicates that e(r) equals
the prediction error in the optimal linear predictor. Since it
is approximately normally distributed with zero mean
and variance \?, the critical region will be chosen |e(?)| >
3\ to give a level of significance about .25 percent.
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Figure 1 Sampling intervals L. for detecting pulses and
steps. (a) No loss occurs when the pulse length is shorter
than the decision lag since the pulse is too short for the
filter to react. (b) The pulse length exceeds the decision
lag and the loss will now equal the pulse length. (¢) When
a step occurs, the loss will be equal to the time it takes to
decide to follow the step.

If the test is used sequentially, this is correct in the
limiting case where the probability of pulse or step tends
to zero, since only then the estimated variable e(f) will
be normally distributed.

The second problem is a bit more complicated.'™®
Because steps and pulses look very similar except that
pulses are of finite duration, the only way of detecting a
step is to wait, say L, sampling intervals, until one can
be reasonably sure that y(t + L; + 1) does not return
to the same level as y(tr — 1). L, will be called the decision
lag and it will be optimized by minimizing the loss suf-
fered from, on the one hand waiting too long to follow a
step, and on the other hand following a pulse. Assume
an a priori conditional probability P; for pulses and
P, for steps, where P, + P; = 1. Assume further an a
priori distribution for pulse length L, : P(L, = k) = ps, k =
1, 2 --- (sample interval as unit). Let L, be the decision
lag. Define a stochastic variable F representing the loss
from following a pulse and from not following a step as
follows:

0ift < L, < L, (Fig. la)
F(Ly) =L, if L, < L, (Fig. 1b)
1Ld when step (Fig. 1¢)

If the decision lag is larger than the pulse length (Fig. 1a)
there will be no loss since the pulse will be sorted out,
but if the pulse length is larger (Fig. 1b), the loss will be
equal to the pulse length, and when a step occurs (Fig. 1¢),
the loss equals the time it takes to make the decision.
The expectation of F becomes:

E(F) =P, kak+P2Ld-
La

The problem is now to find a value of L, that minimizes
E(F), which is readily solved, given the a priori distribution.

Example: Assume a geometric distribution of pulse
length p, = gp** (@=1— p). We get

E(F)

P, 2 kqpk_l + P.L,
La

pq

=P1 +P2Ld
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which expression is a minimum for the smallest value of
L,, giving

re PP

L;p .
¢ q P

The table gives L, for various values of p and P,/P;:

l P,/ P,
J/} 1 5 20 50 100
S ) S 8 9 10
.6 1 4 6 7 8
7 1 3 5 6 7
.8 1 3 4 5 5
.9 1 2 3 4 4

If the probability ratio between pulses and steps is 50 and
the distribution of the pulse length is geometric with 80
percent probability that a pulse is one time unit long,
to minimize the loss function five non-normal points
should occur in a row before the filter decides that a step
has occurred.

The basic algorithm
We now summarize previous discussions and results to get
the algorithm.

The first thing we do when reading a new point in the
sequence of observations is to determine whether or not a
pulse or step is present. To do this, the prediction error is
computed by taking the difference between the new point
() and the latest estimate $(¢ | # — 1). If the magnitude of
the result is less than three standard deviations of the
normal time series the point is considered as normal.
The pulse and step variables f‘(t), é(t) and the pulse length
variable L are then set to zero and the new estimate is
given by (4). If the result is larger than three standard
deviations, the point is considered as a pulse of the same
magnitude as the prediction error and if L; pulses with
the same sign occur in a row it will be considered as a
step with the size equal to that of the last puise. In symbols:

I. Randomization and test of normality
et = y(&) — 9|t — 1)

a) (1) < 9*

) =0
§n =0
L=290
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b) &(1) > 9N’
() = (o)
1if {(o) > 0} and LE() < 0
~1iff@r <0
L+ 1iff(5 >0

}and LE@D > 0
L—1iff <o

D L] < Ly

€0 =0
)Ll 2 Ly

HOEE0)
L=0.

I1. Filtering and prediction
e+ NMH = st |t — D+ A — o) — D1+ &9
State variables: $(r+ 110, L

Parameters: A, ¢, Ly

On-line adaptation of the parameters

The two parameters ¢ and A in the basic algorithm both
relate to the normal time series and they give a complete
description of it. Conversely, the parameters can be
estimated using a realization of the time series. If ¢ is
known, one way to adapt A is to compute the mean square
prediction error since, according to (5),

Ele() — &t |t — DF = E’(n = \.

To compute this average we could use the arithmetic
mean in recursive form:

A = (1 — %)5\2(1 -1+ %e2(t). (6)

This estimate, however, will follow changes in A very
slowly as ¢ becomes large since it weighs all past ¢” equally.
An alternative is to weigh recent values more than the
earlier ones. If the terms of a geometric series with unit
sum are chosen as the weights the result is:

N = A — NG — D)+ k€. 0)

The two formulas (6) and (7) give an algorithm for
estimating \* using (6) when 1 < ¢ < 1/k and (7) when
t > 1/k.

If we want to adapt both parameters we have to study
the statistical properties of the time series more carefully.
Considering the model of the gaussian time series (1)
we place

Vi) = e(® — et — 1) = e(®) — ce(t — 1)
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and we study the autocorrelation function R(%) of V(¢):
R(0) = EV*() = N + &) = 28

R() = EIViO Ve + )] = —e\’ = —R (8)
R(h) = E[V(&)V(t + h)] = Owhen h > 1.

Table 1 Full algorithm including adaptation of both
parameters.

C

ADAPTATION OF BOTH PARAMETERS
SUBROUTINE FILIP3 (Y,YBAR,S,R,L,LD,LA)
DIMENSION Y(3)

C CURRENT VALUE OF Y IS IN Y(3)
If we estimate the expectations S and R in a similar c
. C RANDOMIZATION AND TEST OF NORMALITY
manner as shown in (7); N = 3
. - \ EBAR = Y(N) — YBAR
8 = (1 — k)SE — 1) + 3k[e(r) — ez — D] IF(EBAR*EBAR — 9.*VAR) 200,200,300
. R C
Rt = (1 — R — 1) — kle(t) — e(z — 1)] C  ACCEPT NULLHYPOTHESIS
200 L =20
= 1) — e(t — D1, LA = LA — 1
X I ) et = 2)] ©) IF(LA-1) 210,212,214
; 2 2 210 R =R — O01*((Y(N)-Y(N-D)*(Y(N-1)-Y(N-2)) + R)
The equations (8) can be solved for ¢ and A 22 S = S + 01 SN -Y(N-D)(Y(N)Y(N-1)) — S)
3§ 214 1F(95*S-R) 218,220,220
c=201 = 572 218 R = .95*S
¢ é(l V- ®/ S)) 220 CBAR = S/R *(1. — SQRT(L-R*R/S/S))
VAR = S *(1. 4+ SQRTJI.-R*R/S/S)
2 & -~ —_ & *
p. = §(1 _ 2y, 10 YBAR = CBAR*YBAR -+ (1..CBAR)*Y(N)
¥ (1 4+ V1 — (R/S)?) (10) A 200
C
Since a pulse or a step at time ¢ — 1 or # — 2 would ruin the C  REJECT NULLHYPOTHESIS
: o . 300 LA =3
estlmates. ) of S and. Rit }s necessary toAmtrodu‘ce a new IF (FLOAT(L)*EBAR) 310,310,320
state variable L, which will tell when S and R can be 310 L = EBAR/ABS(EBAR)
updated. L, will be set equal to three when a pulse occurs GO TO 330 AR A )
: 320 L = L 4 IFIX(EBAR /(ABS(EBARY})))
a.nd equal to two whe‘:n a step f)ccurs, since thc.ese are the 330 TF(L*L-LD*LD) 400,340,340
times it takes for the irregularities to come to time ¢ — 3. 340 L =0
Every time a normal point comes in, L, will be decreased LA =2
YBAR = Y(N)
by one. c
. . . . . C
The introduction of this new state variable is not a 400 Y(N-2) = Y(N-1)

serious disadvantage since it does not need much core
space in a computer. On a fixed-word-length computer

Y(N-1) = Y(N)
RETURN

it can be stored in the same word as L and L,. The equa- State variables: g((’t )+ 1jn = ;{BAR
tions (10) may sometimes be too complex for computation R(H - R

in an on-line application. Then the following approxima- L. =LA
tign ca_n be ma.tde: ¢ is replaced by a linear funciion and Parameter: Iid z IﬂD

A\? by its maximum value. Thus we get ¢ = R/S and

A% = 25. The effect of these approximations will be a

smoother curve as is illustrated by the examples in Figures

2(a) and 3. The full algorithm, including adaptation

of both parameters, is shown in Table 1 as a FORTRAN IV Conclusions

subroutine,

The performance of the filter algorithm is best illustrated
by the samples taken from a paper-making process (Figures
3 and 4). The author’s opinion is that the practical diffi-
culties in stating a reasonable criterion for the performance
of a filter in the cases illustrated will make any evaluation
of such a criterion meaningless. Instead, any filter should
be considered “good” if, when applied to data collected
from a physical process, it gives acceptable results, i.e.,
mimics a human being, who has to draw a smooth curve
given the sequence of data, one point at a time, and not
knowing the future course of the curve. The advantage
claimed is thus automatization rather than a particular
kind of “optimality.”

Restrictions

A troublesome case in which this algorithm fails is when
there is a large sudden change in the variance, larger than
the 9\’ limit that is used to detect pulses and steps.
This will cause most observations to be sorted out as
pulses or to be taken as steps and the estimated variance
will recover very slowly.

The relative number of pulses or steps may not be too
large. How large it can be depends on how much the
parameters ¢ and M\ vary with time. In the generated

706 example this number is 4 percent.
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Figure 2(a) Generated process: extra smoothing; (b) adaptation of both parameters, 707
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A second, practical, advantage is claimed to be the
scheme for adaptation of the filter constants. In effect,
the filter algorithm carries out operations similar to the
standard delta-check and exponential averaging opera-
tions. The latter, however, require constants that are
individual for each filtered signal and that the user must
assign for each filter input from his process. In practice
he may not know the correct values for some or all of
(some hundred) inputs, and then his job becomes that
much guesswork. If the constants are adapted continu-
ously, the user does not need to specify the constants,
and their values remain near optimal as the signal char-
acteristics change.
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