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A Nonlinear  Digital  Filter  for  Industrial  Measurements 

Abstract: A simple algorithm is  presented  for  nonlinear  filtering of a time  series  composed of a gaussian  component,  pulses  and  steps. 
The  method  used is a combination of simple  statistical  techniques.  The  main  advantage is  claimed to be a scheme for adaptation of the 
filter  parameters. 

Introduction 
Time series arising from observations made  on industrial 
processes sometimes contain  components that make it 
necessary to use a nonlinear filter to extract the signal. 

Such problems  appeared during development work on 
a process control project jointly carried out by the Billerud 
Company and by IBM. 

The nonlinearities that will be dealt with are large 
changes in  the signal level during  a  time  interval that is 
short compared to  the time  constant of the process. These 
changes may be a step, which is a lengthy change, and a 
pulse, which is a short irregularity. 

Such components might be the effect  of set-point changes 
or spike noise that is caused by instrumental errors or 
generated by the physical process. In this case we need a 
filter that gives us information about  the step change as 
soon  as possible but cuts the pulses so that  no action is 
taken unnecessarily. 

The a priori knowledge about a set-point change has 
not been considered here since it would have unnecessarily 
complicated the  structure of the algorithm. 

It is possible, of course, to  take advantage of such 
knowledge for example by decreasing the decision lag, 
taking the time  constant for each filtered variable into 
account.  This paper presents such a filter algorithm that 
is designed heuristically and uses a combination of simple 
statistical techniques. 

The  process 
The industrial process for which the filter is designed is 
best described in mathematical  terms as  the  sum of a gaus- 
sian  time series, steps and spike noise. 
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The gaussian component ~ ( t )  could be described as 
the combination of a random walk and white noise, and 
is defined by the model 

t ( t )  - ~ ( t  - 1) = e(t)  - ce(t - l), (1) 

where e(t) is a sequence of normally distributed uncor- 
related random variables with zero mean and variance A'. 

If the parameter c = 1, the model (1) reduces to ~ ( t )  = 

e(t)  while if c = 0, (1) describes a pure  random walk E ( t )  = 

E(f - 1) + e(t). If we define the step variable E(t) and 
the pulse variable { ( t )  which equal zero when no steps 
or pulses are present, we can write a model for  the entire 
process as follows: 

Y ( 0  = 4 )  + E O )  +. !m. (2) 

Problem  formulation 
The task of the filter is to detect the steps as soon as pos- 
sible, to sort  out  the spike noise, and to smooth the gaus- 
sian  component. 

Our concern about  the gaussian component, however, 
will be to predict it  rather  than smooth it. There are two 
reasons for this: 

To state a  smoothing  problem requires assump- 
tions about  the signal behind the raw data,  about 
which we may know very little. 
We can often state a prediction problem for which 
the result will be the same as  for  the smoothing 
problem. 

Thus there will be  a filtering problem-to follow the steps 
and cut the spikes--and a  prediction  problem. 

Because of the  nature of the model it is natural  to divide 
the filtering problem into  the following two parts: 703 
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1) Find a test for the hypothesis that there is  no  pulse or 
step  present at time t under the assumption that there 
has  been  none  earlier. 

2) Find a method to distinguish between a step and a 
pulse  when the hypothesis  is  rejected. 

The first part assumes a gaussian  process, and some 
other technique  must  be used for another type of stochas- 
tic process. The prediction  problem  concerns the time 
series that is  left when steps and pulses are sorted out. 
This  time  series  will not be normal since the probabilities of 
making a wrong  decision in the first  problem (a-and p- 
errors2) are nonzero. Thus a linear  prediction  will not be a 
conclusion but it will  be postulated  in order to get a simple 
algorithm. 

3) Find a prediction g ( t  I t - r) of c( t )  which  is a linear 
combination of earlier  observations e( t  - r), ~ ( t  - 
r - 1) . , and which  minimizes the mean  square 
prediction error. 

The prediction  problem, as stated here,  has been thor- 
oughly  investigated' .4  ,5 and only a summary of prediction 
one step ahead will  be  given  since, for our model, the result 
will  be the same for several  steps ahead. 

Prediction  one  step  ahead 
Introducing the translation operator z so that ze(t) = 

e(r - l), the model  (1)  can  be  written as 

E ( t )  = ~ e ( t )  = e( t )  + ~ 

(1 - I - cz 
I - z  1 - z  

Since e(t) are uncorrelated, the optimal  linear  predictor 
becomes' 

c ( r  1 t - 

from which expression we  get the algorithm: 

qt + 1 I t )  = ci(b I f - 1) + (1 - c) E ( t ) .  

The  prediction error can  according to (3) and (4) be written: 

e ( r )  - 8(t I t - 1) = e(t). ( 5 )  

The  filtering  problem 
The first part of the filtering  problem  will  be  treated  by 
hypothesis  testing, as is indicated  already in the formula- 
tion of the problem. As a test variable the gaussian  function 
e(t) will be chosen. Equation (5) indicates that e(t) equals 
the prediction error in the optimal linear predictor. Since it 
is approximately  normally distributed with  zero  mean 
and variance X2, the critical  region will  be  chosen le(t)l > 
3X to give a level of significance about .25 percent. 

(a)  (b)  (c> 
Figure 1 Sampling  intervals La for detecting pulses and 
steps. (a)  No loss occurs  when  the pulse length  is  shorter 
than the decision lag since the  pulse is too  short for the 
filter to  react. (b) The  pulse  length  exceeds  the  decision 
lag  and the loss will now equal  the  pulse  length. (c) When 
a step  occurs,  the loss will  be  equal to the time it  takes  to 
decide to follow the  step. 

If the test is used  sequentially, this is correct in the 
limiting  case where the probability of pulse or step tends 
to zero,  since  only then the estimated  variable e(t)  will 
be normally distributed. 

The second  problem is a bit more ~ornplicated."~ 
Because steps and pulses  look  very  similar  except that 
pulses are of finite duration, the only way  of detecting a 
step  is to wait,  say L d  sampling  intervals,  until  one  can 
be reasonably  sure that y(t  + Ld + 1) does not return 
to the same level as y ( t  - 1). Ld will  be  called the decision 
lag and it will  be  optimized by minimizing the loss  suf- 
fered from, on the one hand waiting too long to follow a 
step, and on the other hand following a pulse.  Assume 
an a priori conditional probability P1 for pulses and 
Pz for steps, where PI + P2 = 1.  Assume further an a 
priori distribution for pulse  length L, : P(L, = k )  = Pk, k = 
1, 2 . - (sample interval as unit).  Let L d  be the decision 
lag.  Define a stochastic variable F representing the loss 
from  following a pulse and from not following a step as 
follows: 

i 
1 
0 if 1 5 L, < Ld (Fig. la) 

(Fig. lb) 

Ld when step  (Fig.  IC) 

F(Ld) = L, if Ld 5 Lp 

If the decision  lag  is  larger than  the pulse  length  (Fig. la) 
there will  be  no loss since the pulse  will  be sorted out, 
but if the pulse  length is larger  (Fig. lb),  the loss will  be 
equal to the pulse  length, and when a step  occurs  (Fig. IC), 
the loss equals the time it takes to make the decision. 
The  expectation of F becomes: 

m 

E@) = PI kPk + p2Ld. 
L d  

The problem is now to find a value of Ld that minimizes 
E(F), which is readily  solved,  given the a priori distribution. 

Example: Assume a geometric distribution of pulse 
length P k  = qpk" (q = 1 - p ) .  We  get 

m 
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The table gives Ld for various  values of p and P,/P2:  

PI l P *  
f if set> > and L t ( t )  > 0 

L - 1 if f(t) < o I 
P 1 5 20 50 100 - 

.5 1) ILI < L d  1 5 8 9 10 

$<t) = so> 

{ ( I )  = 0 
.6 

.7 

1 4  6 7 8 

1 2  3 4 4 .9 

1 3  4 5 5 .8 

1 3  5 6 7 
2, ILI 2 L d  

L = 0. 

11. Filtering and prediction 

If the probability ratio between  pulses and steps  is 50 and 
the distribution of the pulse  length is geometric  with 80 
percent probability that a pulse is one  time unit long, 
to minimize the loss function five non-normal points 
should  occur in a row  before the filter  decides that a step 
has occurred. 

The  basic  algorithm 
We now  summarize  previous  discussions and results to get 
the algorithm. 

The first  thing we do when reading a new point in the 
sequence of observations is to determine  whether or  not a 
pulse or step is present. To do this, the prediction error is 
computed by taking the difference  between the new point 
y ( t )  and the latest  estimate j ( t  I t - 1). If the magnitude of 
the result is less than three standard deviations of the 
normal time  series the point is considered as normal. 
The pulse and step variables so), { ( t )  and the pulse  length 
variable L are then set to zero and the new estimate  is 
given  by (4). If the result  is  larger than three standard 
deviations, the point is considered as a pulse  of the same 
magnitude as the prediction error and if Ld pulses  with 
the same  sign  occur in a row it will  be considered as a 
step with the size equal to that of the last pulse. In symbols: 

State variables: P(t + 1 I I ) ,  L 

Parameters: X, c, Ld. 

On-line  adaptation of the parameters 
The two  parameters c and X in the basic  algorithm  both 
relate to the normal time  series and they  give a complete 
description of it. Conversely, the parameters can be 
estimated  using a realization of the time  series. If c is 
known, one way to adapt X is to compute the mean square 
prediction error since,  according to ( 3 ,  

E [ E ( ~ )  - c(r I t - 1)12 = &(r) = ha. 

To compute this average we could  use the arithmetic 
mean  in  recursive  form: 

This  estimate,  however, will  follow  changes  in X very 
slowly as t becomes large  since it weighs all past e’ equally. 
An alternative is to weigh recent  values more than the 
earlier  ones.  If the terms of a geometric  series  with  unit 
sum are chosen as the weights the result  is: 

I. Randomization and test of normality K20) = (1 - k)XZ(t - 1) + kCZ(t). (7) 

The two formulas (6) and (7) give an algorithm for 
estimating X’ using (6) when 1 5 t < l/k and (7) when 
t 2 l /k.  

If we want to adapt both  parameters we have to study 
the statistical properties of the time  series  more  carefully. 
Considering the model  of the gaussian time  series (1) 
we place 

L = O  V(t)  = ~ ( t )  - € ( I  - :I) = e(t) - ce(t - 1) 705 

NOVEMBER 1969 NONLINEAR DIGITAL FIL.TEB 



706 

and we study the  autocorrelation  function R(h) of V(t):  

R(0) = EV’(t)  = X2(1 + c’) = 2 S  

R(1) = E [  V( t )  V( t  + l ) ]  = - A 2  “R (8) 

R(h)  = E [  V ( f )  V ( t  + h)] = 0 when h > 1. 

If  we estimate the expectations S and R in a similar 
manner as shown in (7); 

S( t )  = (1 - k ) S ( f  - 1) + ik[E(t)  - E ( t  - l)]’ 

i ( t )  = (1 - k ) i ( f  - 1) - k[E(f) - € ( f  - l ) ]  

x [ € ( f  - 1) - E ( t  - 2)]. (9) 

The equations (8) can be solved for 6 and h’ 

A S  
c = :(1 R - dl - ( i / S ) ’ )  

Since a pulse or a step at time t - 1 or - 2 would ruin the 
estimates (9) of S and R it is necessary to introduce a new 
state variable La which  will tell when S and R can be 
updated. La will be set equal to three when a pulse occurs 
and equal to two when a step occurs, since these are  the 
times it takes for  the irregularities to come to time t - 3. 
Every time a normal  point comes in, La will be decreased 
by one. 

The introduction of this new state variable is not a 
serious disadvantage since it does not need much core 
space in a computer. On a fixed-word-length computer 
it  can be stored in  the same word as L and Ld. The equa- 
tions (10) may sometimes be too complex for computation 
in an on-line application. Then  the following approxima- 
tion  can be made: 2 is replaced by a linear function and 
h’ by its maximum value. Thus we get 2 = $S and 
x’ = Z?. The effect  of these approximations will be a 
smoother curve as is illustrated by the examples in Figures 
2(a) and 3. The full algorithm, including adaptation 
of both parameters, is shown in Table 1 as a FORTRAN Iv 
subroutine. 

Restrictions 
A troublesome case in which this  algorithm fails is when 
there is a large sudden change in  the variance, larger than 
the 9X2- limit that is  used to detect pulses and steps. 
This will cause most observations to be sorted out  as 
pulses or  to be taken as steps and  the estimated variance 
will recover very  slowly. 

The relative number of pulses or steps may not be too 
large. How large it can be depends on  how much the 
parameters c and X vary with time. In  the generated 
example this  number is 4 percent. 

Table 1 Full algorithm  including adaptation of both 
parameters. 

C 

C 
C 
C 

C 
C 
200 

210 
212 
214 
218 
220 

C 
C 
300 

310 

320 
330 
340 

C 
C 
400 

ADAPTATION O F  BOTH PARAMETERS 
SUBROUTINE  FILIP3 (Y,YBAR,S,R,L,LD,LA) 
DIMENSION Y(3) 
CURRENT VALUE O F  Y IS IN Y(3) 

RANDOMIZATION  AND  TEST O F  NORMALITY 
N = 3  
EBAR = Y(N) - YBAR 
IF(EBAR*EBAR - 9.*VAR) 200,200,.10 

ACCEPT NULLHYPOTHESIS 
L = O  
LA LA - 1 
IF(LA-1)  210,212,214 
R R - .Ol*((Y(N)-Y(N-l))*(Y(N-l)-Y(N-2)) + R) 
1F(.95*S-R)  218,220,220 
S = S + .01*(.5*(Y(N)-Y(N-l))*(Y(N-I)) - S) 

R = .95*S 
CBAR = S/R  *(l. - SQRT(1.-R*R/S/S)) 
VAR = S *(l. + SQRT(1.-R*R/S/S)) 
YBAR CBAR*YBAR + (1.-CBAR)*Y(N) 
GO TO 400 

REJECT NULLHYPOTHESIS 
LA = 3 
IF (FLOAT(L)*EBAR) 310,310,320 
L = EBAR/ABS(EBAR) 
GO TO 330 
L = L + IFIX(EBAR/(ABS(EBAR))) 
IF(L*L-LD*LD) 400,340,340 
L = O  
LA = 2 
YBAR = Y(N) 

Y(N-2) = Y(N-1) 
Y(N-1) Y(N) 
RETURN 

State variables: Q(t+1 It) = YBAR 
S(t)  = s 
R(t)  = R 
LO = LA 
L 

Parameter : L d  

= L  
= LD 

Conclusions 
The performance of the filter algorithm is best illustrated 
by the samples taken from a paper-making process (Figures 
3 and 4). The author’s opinion is that  the practical diffi- 
culties in stating a reasonable criterion for  the performance 
of a filter in  the cases illustrated will make any evaluation 
of such a criterion meaningless. Instead,  any filter should 
be considered “good” if, when applied to  data collected 
from a physical process, it gives acceptable results, i.e., 
mimics a human being, who has to draw a smooth curve 
given the sequence of data, one point at a time, and  not 
knowing the  future course of the curve. The advantage 
claimed is thus  automatization rather  than a particular 
kind of “optimality.” 
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Figure 2(a) Generated  prccess: extra smoothing; (b) adaptation of both parameters. 
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708 Figure 3(a) Real  process,  sample 1 :  extra smoothing; (b) sample 2: extra smoothing 





A second, practical, advantage is claimed to be the 
scheme for adaptation of the filter constants. In effect, 
the filter algorithm carries out operations similar to  the 
standard delta-check and exponential averaging opera- 
tions. The  latter, however, require constants that  are 
individual for each filtered signal and  that  the user must 
assign for each filter input  from his process. In practice 
he may not know the correct values for some or all of 
(some hundred)  inputs, and then his job becomes that 
much guesswork. If the constants are  adapted continu- 
ously, the user does not need to specify the  constants, 
and their values remain near optimal as  the signal char- 
acteristics change. 
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