
F. Jelinek 

Fast  Sequential  Decoding  Algorithm  Using  a  Stack* 

Abstract: In this  paper a new  sequential  decoding algorithm is introduced that uses stack  storage at the receiver. It is much  simpler 
to describe and analyze than the Fano algorithm,  and is about six times  faster than the latter at transmission  rates  equal to R,,,, the 
rate below  which the average  number  of  decoding steps is bounded by a constant.  Practical  problems  connected  with  implementing 
the  stack  algorithm  are  discussed  and a scheme  is  described that facilitates  satisfactory  performance  even  with  limited  stack  storage 
capacity.  Preliminary  simulation  results  estimating  the  decoding  effort  and  the  needed  stack  size are presented. 

1. Introduction 
Sequential decoding is a method of communication through 
noisy channels that uses tree codes (see Fig. 2). Several 
decoding algorithms have been ~uggested,"~  the  one  due 
to  Fano being universally acknowledged as  the best (see 
also Sec. 10.4 of Jelinek4). The first two  algorithms have 
the common  characteristic that, when used with ap- 
propriate tree codes signaling over memoryless channels, 
their probability of error decreases exponentially to 
zero at all  transmission  rates less than capacity C,  while 
for all rates less than a value called R,,,,, the average 
amount of decoding effort per decoded information  bit 
is bounded  above by a constant. R,,,, is a  function of the 
channel transmission probabilities  only, and exceeds C/2 
for all  binary symmetric channels. Figure 1 contains the 
plot of R,,,,/C as a function of the crossover probability p .  
In  contrast, all widely used methods of algebraic coding 
achieve arbitrarily reliable performance only when the 
transmission rate  is sufficiently reduced toward zero. (It 
ought to  be  added, however, that algebraic schemes are 
much simpler than sequential ones.) Furthermore, these 
methods work only for symmetrical channels with the 
same  number of outputs  as inputs. 

In this  paper we will introduce a new sequential  algor- 
ithm  that is faster than all competing  ones, and  that is 
very simple to describe and analyze. To realize its speed 
advantage without an increase in  error probability, it 
is necessary to increase by a considerable amount  the 
memory of the decoder. However, in a  suitable  environ- 
ment (e.g., when a general purpose  computer is used 

University, Ithaca, New York 14850. 

Conference on System Science, March 1969. 

The author's current address is  School of Electrical Engineering, Cornell 

A skeletal version of this paper was presented at the Third Princeton 

0.F 

0.7 

0.6 

0.5 

Cr" 0.4 
"b 
I 
.0001 0.001 0.01 0.1 0.5 

Figure 1 The  graph of R,,,,/C as a function of the cross- 
over probability p of a binary  symmetric channel. 

for decoding as is done  in  the Pioneer space program) 
the increase in speed will be well worth the  added cost. 
The price of memories will continue to drop rapidly 
in  the foreseeable future, thereby widening the appli- 
cability of our method. It is hoped that this paper will 
stimulate further research into tree decoding algorithms. 
In particular, it would be  interesting to  know what com- 
promises between the present and Fano's  algorithm are 
possible, and what the trade-off is between finite memory 
size and speed. 

Since no previous knowledge of sequential  decoding 
is assumed (the exception being Section 7), we start by 
describing tree encoding. Then  in Section 3 we give our 
stack decoding algorithm and provide an example. Section 
4 contains an  outline of the analysis of the present scheme 
that leads to previously known results about  the average 
number of decoding steps and  the probability of error. 

NOVEMBER 1969 



0 0 0  

( O I L ?  0 1  

0 1 0  

l ” o l c  
!) 

Figure 2 Example of a binary tree code of rate R = Y3. 

We  next describe the outcome of simulations that enable 
us to compare the stack and Fano’s algorithm (Fig. 6). 
In Section 6 we modify the algorithm to limit the growth 
of the stack, and show how effectively this can be done 
(Fig. 7). Section 7 contains a procedure that handles 
stack overflows and thereby prevents catastrophic termi- 
nations. Finally, Section 8 describes how a stack is actu- 
ally implemented and  in what manner it specifies the 
required information. 

2. Tree  encoding 
Let us assume that we desire to communicate over a 
discrete memoryless  channel characterized by a transmission 
probability matrix [ w 0 ( ~ / { ) ] ,  where { E { 0, 1, . . . , a - 1 ] 
are  the channel inputs and q E { 0, 1 ,  . . . , /? - 1 ] are  the 
corresponding channel outputs.  Thus, for any integer n,  
the probability that  an arbitrary output sequence ql, 
qZ, . . . , 7, is received,  given that  an arbitrary  input 
sequence El, {*, . . . , ln was transmitted, is equal to 

i = l  

Let us further assume that  the information source gen- 

erates outputs s E 10, 1,  . . . , d - 1 } that  are  to be 
communicated to  the user located at the  other end of the 
channel. An appropriate tree code of rate R = l/(no log, d) 
bits per channel used  will have d branches leaving every 
node, each branch being associated with a sequence of 
no channel input digits. An example of a  tree code ap- 
propriate for a binary source (d = 2) and a channel 
with binary inputs (a = 2 )  is given in Fig. 2 .  Since no = 3, 
the code has  rate R = 1/3. The correspondence between 
source outputs  and channel inputs (i.e., the encoding 
rule) is as follows. 

At the start of the encoding process the encoder is 
“located” at  the  root of the tree. If the first digit s1 gen- 
erated by the source is a 0, the encoder follows the upper 
branch out of the  root node to  the next node and puts 
out (transmits through the channel) the sequence asso- 
ciated with that branch (in this case 000). If s1 = 1,  the 
encoder follows the lower branch to  the next node and 
puts out  the corresponding sequence (in this case 111). 
In general, just before the source generates the ith digit 
si, the encoder is located at some node i - 1 branches 
deep in the tree. If s, = 0 the encoder leaves this  node 
along the top branch and, if si = 1, it leaves the node 
along the bottom branch; in both cases it transmits 
the sequence corresponding to  the branch along which 
it traveled. In this way a message sequence sl, s2, . 
traces a  path  through the tree and  the tree sequence 
corresponding to  that path  is  then transmitted. (The 
generalization to a d-nary tree is obvious: At time i the 
encoder leaves the current node along the (si + 1)th 
branch of the fan-out  and transmits the corresponding 
sequence, where si E 1 0, 1, . . . , d - 1 .) Thus  in Fig. 2 
the message sequence 0011 determines the path indicated 
by the thick line and causes the sequence 000101011010 
to be sent through the channel. 

In principle, the encoding tree  can be continued in- 
definitely and  thus the total number r of levels it can 
have (the tree displayed in Fig. 2 has four levels) is 
arbitrary. Since a d-nary tree with r levels has dr paths, 
there  is  a problem of how the encoder can  store  its tree 
code. We  will not concern ourselves here with that issue. 
Let the reader be assured that no difficulty arises. The 
tree is never actually stored; all that is stored is  a very  sim- 
ple algorithm that  can generate the digits associated with 
the tree branches whenever the former are required. The 
usual tree codes are called  convolutional and their descrip- 
tion can be found on pp. 377 to 383 of Ref. 4. It will  be 
easier for us to continue to act as if the encoder stored the 
entire tree. 

3. The  decoding  algorithm 
From  the preceding description of tree encoding it 
follows that  the natural transmission units we are dealing 
with are not channel digits themselves, but sequences 

IBM J. RES. DEVELOP. 



of no of these that correspond to the tree branches. Ac- 
cordingly, it will simplify further discussion if  we hence- 
forth restrict our attention to  the no-product channel 
[w(y/x)] whose input symbols x and output symbols y 
are strings of no inputs and outputs of the underlying 
channel [wo(9/f)]. From this point of  view, the product 
channel input alphabet corresponding to the tree code 
of Fig. 2 is octal, and the message  sequence  0011  causes 
0532 to be transmitted. Let x* represent  some  sequence 
[T, E:, . , [z and let y* represent vT, q%, 0 . .  , qz. 
Then 

W ( Y * / X * )  = IT wo(V:/f*) .  
no 

( 1 )  
i - 1  

Thus the product channel has inputs x E { 0,l; - * ,  a - 1 } 
and outputs y E { 0, 1, * . . , b - 1 } , where a = an, 

b = @", and a and p are the sizes  of the input and output 
alphabets of the underlying  channel,  respectively. A 
tree path of  length i is specified  by the vector sa = (SI, 
s,, . . . , si) (we  will  use  boldface for vectors and super- 
scripts will indicate their length)  formed from the cor- 
responding message digits. We  will denote by xi(si) ,  j < i, 
the transmitted symbol  associated with the jth branch 
of the path si. Thus in Fig. 2 x3(010s4) = 7 for all s4, 
and x2(10s3s4) = 2 for all s3s4. Let us now assume that 
a sequence yr was  received through the channel (I' is 
the number of levels in the tree) and that we  wish to 
decode this  sequence,  i.e., to determine the identity of 
the message  sequence sr put out by the source. We will 
denote by Zr the receiver's estimate of sr and, of course, 
we aim at having gr equal to sr. We recall that, when 
sr was inserted into  the encoder, the latter produced 
the channel input sequence xr(sr) = xl(sr), x,(sr), * , 
xr(sr )  in the way described in the preceding  section. 
Our problem is to specify the operation of the decoder. 

Let r(x), x E { 0, 1, . * , a - 1 } be a suitable  probability 
distribution (its  choice will  be  clarified  below)  over the 
input symbols  of the product  channel, and define the 
output distribution 

W A Y )  = c w(u I x)r(x). (2) 

If the sequence yr was  received, we  will  be interested 
in the likelihoods 

of the various paths si = (si, si+l, . . . , si), where the 
branch  likelihood function Xi(si) of the branch leading 
from node si-' to node si (note that a path uniquely 
defines the tree node on which it terminates, and vice  versa) 
is  defined  by 

From the decoder's point of  view, L(s') and Xi(si) 
are functions of the paths only,  since the received se- 
quence yr is fixed throughout the decoding  process 
and the branch  symbols xi(si) are determined by the 
tree code that is known in advance. 

We are now  ready to describe the decoding algorithm 
for a binary tree (d = 2). This restriction will  make the 
explanation  easier to follow, but will be  subsequently 
removed. 

(1) Compute L(0) = X1(0) and L(1) = X1(l), the likeli- 
hoods of the two  branches'  leaving the  root node (see 
Fig. 2), and place them into the decoder's  memory. 
(2) If L(0) 2 L(1), eliminate L(0) from the decoder's 
memory and compute L(O0) = L(0) + X,(OO) and L(O1) = 
L(0) f X,(Ol). Otherwise,  eliminate  L(1) and compute 
L(10) = L(1) -I- X,(lO) and L(11) = L(1) + Xz(ll). 
Therefore we end  with the likelihoods of three paths 
in the decoder's  memory,  two paths of length 2 and one 
of length  1. 
(3) Arrange the likelihoods of the three paths in de- 
creasing order. Take the path corresponding to the top- 
most  likelihood,  compute the likelihoods  of its two 
possible  one-branch  extensions, and eliminate from 
memory the likelihood of the just extended path [e.g., 
if L(O), L(lO),  L(11) are in the memory and, say, L(10) 2 
L(0) 2 L(11), then L(10) is replaced in the memory by 
the newly computed  values of  L(100) = L(10) f X3(100) 
and L(101) = L(10) + A3(101). In case,  say, L(0) 2 
L(11) 2 L(lO), then L(0) is replaced  by L(O0) and L(01)l. 
At the end  of this step the decoder's  memory will contain 
the likelihoods of four paths, and either two of these 
will  be  of length 3 and one each  of  lengths 1 and 2, or 
all four paths will be of length 2. 
(4) The search pattern is now clear. After the kth step, 
the decoder's  memory  will  contain  exactly k + 1 likeli- 
hoods corresponding to paths of various  lengths and 
different end  nodes. The (k + 1)th step will  consist  of 
finding the largest  likelihood in the memory,  determining 
the path to which it corresponds, and replacing that 
likelihood with the likelihoods  corresponding to the 
two  one-branch  extensions of that path. 
(5) The decoding  process terminates when the path to 
be  extended  next is of length I', i.e., leads from the  root 
node to the last level  of the tree. 

Because of the ordered nature of the decoder's  memory, 
we refer to it as a stack. We  next illustrate the stack 
decoding algorithm by an example.  Consider the binary 
tree of Fig. 3 with nodes as numbered.  Let paths be 
associated  with their terminal nodes.  Let the numbers 
written on  top of the branches  represent the values of 
the corresponding  branch  likelihood function for some 
received sequence y3. Thus, the likelihood of path 8 
is equal to - 6 + 1 + 1 = -4. The state of the stack 

NOVEMBER 1969 



- 4  

-4  

Figure 3 An example of likelihood-value  assignment to tree 
branches induced by a code  and a received  sequence. 

Figure 4 The Di classification of nodes of a binary  tree  rela- 
tive to the  transmitted message (sl, s2, sa, s4, . . .). 

during decoding would then be as follows (topmost 
path on  the left). 

1st state: 0 
2nd state: 2, 1 
3rd state: 5 ,  6, 1 
4th  state: 6, 1, 11, 12 
5th state: 1, 11, 12, 13, 14 
6th state: 3, 11, 12, 13, 14, 4 
7th  state: 8, 11, 12, 13, 14, 7, 4. 

When trying to perform the eighth  step, the decoder 
would find path 8 on  top of the stack and, since the  latter 
has length 3 (= I'), decoding would terminate. 

It remains to generalize our algorithm to d-nary trees. 
The  notion of a stack will facilitate a concise statement 
of the procedure. 

(1) At  the beginning of the decoding process, the stack 
contains  only the  root  node of the  tree (Le., the empty 
path) with its likelihood  set  arbitrarily to zero. 
(2) A decoding operation consists of ascertaining the 
path si that corresponds to  the likelihood Li at  the  top 
of the stack (i.e., the largest of the likelihoods in  the 
stack), eliminating Li from  the stack,  computing the 
likelihoods h: + . . , of the branches that leave 
the end node of the  path si, and inserting the new 
path likelihoods L;,, = Li + i = 1, 2, ... , d, 
into their proper positions according to size (clearly the 
stack  contains path identifications and  their likelihood 
values). 
(3) The search ends when the decoder finds at  the  top 
of the stack a path whose length is I'. That  path  is then 
considered to have been taken by the encoder. 

In our algorithm, the likelihoods are used as a distance 
measure between the received sequence and  the code 
word sequences on  the various paths of the tree. The 
heuristic  reasons for this choice of the measure were 
made clear in  an IBM research report by the  author6 in 
which the stack algorithm was developed as an intuitively 
natural way of taking  advantage of the  tree structure 
of the code. This aspect makes the algorithm very at- 
tractive from a pedagogical point of  view. The  Fano 
method3 can  then be considered to  be a particular imple- 
mentation of the stack search in which the decoder's 
memory is eliminated for  the price of an increase in  the 
number of steps necessary for decoding (see Fig. 6). We 
will see in  the next section that  the stack algorithm  lends 
itself to a relatively simple analysis. 

4. Probabilty of error and average  number 

We now wish to compute upper  bounds  to  the probability 
of decoding error  and  to  the average number of decoding 
steps. Much of the argument is identical to  that which 
applies to the  Fano  and we  will therefore 
limit ourselves to the differences between the two analyses 
and to a statement of results. A complete treatment 
can  be found  in  our earlier IBM research report.' 

It will  be convenient to  partition  the nodes of the 
tree into sets ai, i = 0, 1, . , r, defined relative to the 
path sr actually taken by the encoder. 

Definition I: The incorrect  subset Dd consists of the 
end  node  .of the initial segment si of the  true  path se = 

correct  branches s ? + ~  Z sifl stemming from  the end 
node of si, and of all  nodes lying on  paths leaving these 
d-1 nodes. 

of decoding steps 

(si, .%+I, .-. , s,), of the d-1 terminal  nodes of the in- 

IBM J. RES. DEVELOP. 



A binary tree  illustration of the sets Di is given in 
Fig. 4. Let Ni be the number of nodes belonging to ai 
that  the decoder "visits." (These are end nodes of paths 
that have at one time  appeared on  top of the stack and 
were thus extended during  the decoding process.) Then 
since UF-o ai is the set of all nodes in  the tree, Ni 
is equal to  the  total number of decoding steps and we 
will want to estimate it. 

Obviously, a path SI E Di(i < j 5 I?) will not be 
extended in  the decoding process unless its likelihood 
L(s') is such that  the  path s: appears on  top of the stack. 
But then L(s:) must exceed the minimum of the likeli- 
hoods { L(s'+'), . . , L(sr)} along the  true  path (this 
condition  is necessary but  not sufficient). Let q ( A )  denote 
the indicator function of the event A ,  i.e., 

1 if event A takes place; 
0 if event A does not  take place. (5 )  

Then 

where the numeral 1 accounts for  the visit to  the  true 
node of Q. 

Bounds on  the  yth [y E (0, a ) ]  decoding effort moments 
E[N;] based on  the inequality (6) can be found in Ref. 5. 
It  turns  out  that E[N:]  can have a  constant that is inde- 
pendent of I? as  an upper  bound provided the coding rate 
R satisfies the inequality 

noR < - max Eo(y, r), (7) 

where 

1 
Y r  

~ ~ ( 7 ,  r) = -log, [E W(Y/X> l/('+r)y(X)]l+y (8) 
I I =  

and  the maximization is over all probability distributions 
r(x) of the product channel input alphabet. The maxi- 
mizing distribution r*(x) must then be the one used in 
the definition (4) of the likelihood measure Xi(si). It 
should be stressed that  the above result will hold  for 
"good" codes whose probability of error has  the be- 
havior predicted below. 

A decoding error will occur if there  appears on  top 
of the stack a path s i  corresponding to  any of the I?- 
level (incorrect) nodes of any of the sets Bo, . * * , ar-1 
before the  true path sr appears. If s i  E X)<, we say that 
an error took place on level i f 1, since by Definition 1 
the initial segment si of sr is also  the initial segment 
of s i ,  while the (i f 1)th digit s:+~ of E.: differs from 
the corresponding digit of the  true path. A necessary 
(but not a sufficient!) condition for  an error on level 

0 (I I 
0 0 0 0 0 0 0 0  

, o  
O i l  

O 1 ; ,  0 1 0 0 0 1 0 0  

0 1 0 1  

nei 0 0 0 1 0 0 0 1  

1 , L L ~ l l l l l  0 1 0  v 0 1 0 1 0 1 0 1  
L q  

1 0 1 1 1 1 1 0  

Figure 5 Portion of ihe last levels of a tree whose last 
branches  have  length ( t  + 1) = 4 times that of regular 
branches. 

i + 1 is that  the likelihood L(s i )  [defined in (311 be greater 
than or equal to the minimum value of the likelihoods 
{ L(si+*), . . , L(sr ) ]  corresponding to  the initial seg- 
ments of the  true  path. 

Thus the probability P,(i) of an (i f 1)-level error 
has a  bound given by the inequality 

r 

and  the probability of error P, has the bound given  by 
r-1 

P ,  5 Pd9. (10) 
i = O  

It is obvious that if the tree remains regular up to  the 
last level  (i.e., always has d branches leaving each node 
with one symbol x corresponding to each branch), then 
the probability P,(i)l will be a monotonically increasing 
function of i and,  in fact, P,(r - 1) will be prohibitively 
large since it is equal to  the probability that  the 
branch likelihood of the last correct branch is less than 
the maximal likelihood of the (d - 1) incorrect branches' 
stemming from sr-', A simple expedient to assure that 
P,(i) remains acceptably small even for large i (close to 
r - 1) is to associate with the last level branches not 
one but  rather t + 1 channel input symbols x ,  where t 
is chosen suitably large (this is illustrated in Fig. 5 with 
t = 3). The net transmission rate will thus be reduced 
from R to Rr/(I? f t) ,  which is negligibly different 
if I?>> t .  

Upper bounds on P. based on inequalities (9) and 
(10) can be found in Chapter 10 of Ref. 4. Let 

NOVEMBER 1969 



680 

P. JELINEK 

I 

I 
0 Fano algorithm I 

I 

A Stack algorithm I 
I 

I 
I 

I 10 I 
I 

8 L I 

I 
I 
i 

4 1  
1‘ probability 

\ J 

,/ 0.045 

1 

1 

P 01 I I 
0.7 0.8 0.9 I .0 

IR/R,,,, 

Figure 6 Average  number of decoding  steps necessary to 
decode a tree  branch  using  the stack algorithm  (solid line) 
and the Fano algorithm  (interrupted line) as a function  of 
the R/R.,,, ratio. Coding rate is held  constant at R = 
V2 but the crossover  probabilities of the  binary  symmetric 
channel  vary  as  indicated.  Stack  algorithm  results are based 
on 1000 runs of binary  information  blocks of length 1000. 

1 
no r 

R,,,, - max E,,(l, r) (11) 

be the rate below  which the average  number of decoding 
steps E[N,] is bounded by a constant. Then it can be 
shown that,  for rates R 5 R,,,, there exist  codes  such 
that 

P. K(R)2-tR’0mD, (12) 

where  K(R) is an increasing  finite function of  R.  Since 
it can be  shown that,  for R > R,,,, E[NJ is an expo- 
nentially  increasing function of r (if  we assume a good 
code), then for large I’ [which  is  needed to keep the 
rate loss factor t/(r + t )  small]  one  would  ordinarily 
not attempt to use sequential  decoding at rates that 
exceed Rcomp. (The ratio of RcomD to channel  capacity C 
is plotted in Fig. 1 for binary  symmetric  channels.) 

We close this section by remarking that the argument 
that leads to bounds (6) and (9) for the  Fano algorithm 
is a very elaborate one. It is not an exaggeration to state 
that the vast  majority of students of graduate level  in- 
formation theory  courses  always  remain  uncomfortable 
with it. 

5. Experimental  evaluation  and  comparison 
We have not yet  fully  evaluated the performance of 
the stack  algorithm, but we can present  some  results 
of computer  simulation and compare  these  with the 
published  performance of the Fano sequential  decoding 
algorithm. 

We have run simulations of the performance of a rate 
R = 1/2 code when  used  over a binary  symmetric  channel 
whose  crossover probability p is allowed to vary. In 
our experiment the block  length I? = 1000 and the 
length of the last-level  branches  was t = 26 symbols. 
The results of Fig. 6 are based on lo00 such  blocks run 
for each  of the different  values of p.  We have run  the 
decoding as described in Section 3 with  two  branches 
leaving  each  node. The solid  line in Fig. 6 indicates the 
average  number of stack algorithm decoding  steps nec- 
essary to decode one tree branch. The interrupted line 
plots the same quantity for the Fano decoding algorithm 
(the data is taken from Fig. 6.50 of the text by  Wozen- 
craft and Jacobs’). It is seen that  at R,,,, the stack  algo- 
rithm has a better than sixfold  advantage. 

It must  be  stressed that Fig. 6 does not present 
the entire comparison and is actually  unfavorable to the 
stack  decoding  algorithm:  When  decoding in real time 
with a fixed  maximum  delay  imposed on the release 
of decoded information to the user  (relative to the time 
of  reception), it is the peak  demands on computation 
that should be compared.  Since the advantage of the 
stack algorithm grows  substantially as  the  rate approaches 
R,,,,, it is expected that this advantage will  be  even more 
pronounced during periods of  high  channel  noise and 
consequent  high computational demand. 

Because  of the above considerations the decoder speed 
factor (maximum  number  of  decoding steps performable 
in the time it takes to receive one branch) must exceed 
substantially the averages plotted in Fig. 6. This is es- 
pecially true for  the Fano decoder that will be idle during 
the low  noise  time  intervals  when it is “caught up” with 
the received signal. (In such situations it can perform 
only one step per received  branch  interval,  regardless 
of what its speed factor is!) The stack  decoder need 
never be  idle. If the length of the path on the top of the 
stack is equal to  the length of the received  sequence, 
the decoder may profitably  extend the highest situated path 
of those paths in  the stack that  are shorter than  the top 
one. This apparently premature work  costs nothing 
and will not  have to be done later should the channel 
noise  increase. 

The complete  mutual  independence  of the stack order- 
ing and path extending portions of the algorithm is also 
worthy of note.  These  two functions can be performed 
in parallel by  different (but communicating)  machines. 
The stack need not even  be in order-only the  top path 
must  be  available for extension. To achieve further speed- 

IBM J. RES. DEVELOP. 



up at the cost  of greater decoder  complexity,  one  might 
conceivably  use  several path extending  machines  simul- 
taneously, the first  one  working on the top path in the 
stack, the second one on the second path, etc. 

As  seen from Fig.  6, the speed advantage of the stack 
algorithm grows as the coding rate is increased.  This 
makes the former especially  suitable for hybrid decoding'-'' 
where the rate exceeds R,,,. A single  stack  may  be 
time-shared  among the rn different but algebraically 
constrained information streams so that  its cost is only 
a fraction of that of the total system. The problem of 
stack overflow  (see Section 7 below)  is  also not crucial. 
Simulation for the scheme  of Ref. 11  based on a stack 
of  size  1000  was  carried out with  excellent  results. 

6. Limiting the  growth of the  stack 
As described at  the end  of  Section 3,  every  decoding 
step of the tree search algorithm would  involve the re- 
placement of the top likelihood in  the stack by d new 
likelihoods.  This  means a net  growth of the stack size 
by (d - 1) entries per decoding  step. This unwanted 
dependence on d is entirely  unnecessary, as follows from 
the observation  (due to J. Cocke) that  the path corre- 
sponding to the ( j  -I- 1)th  branch's  (in order of branch 
likelihood  value)  leaving a particular node can reach 
the  top of the stack  only after the path corresponding 
to the jth branch  does.  Hence we can modify the algo- 
rithm to limit the stack  growth to  at most  one  entry  per 
decoding  step  regardless of the size  of d: 

(1)  With  each path likelihood L(si) also store the order j 
(by  size) of the likelihood X' = Xi(s i )  [see Eq. (4)]  of 
the last branch si of the path [where L(si) = L(s"') + 
X', si = (si-', si) and X' 2 X' 2 - 2 X"]. 
(2) If L(s*) is found at the  top of the stack, replace it by 
the likelihood L(si+'), where si+' has the largest  likeli- 
hood of all branches  leaving si. If the order j of the 
likelihood of the branch si is  less than d, also  insert into 
the stack the likelihood L(sf) = L(s"') + X"' cor- 
responding to  the path through the ( j  + 1)-order branch 
leaving the terminal node of si-'. If j = d, do not insert 
any additional path. 

With the above  modification it becomes advantageous 
(in terms of decoding  speed and stack size  economy) 
to make the number of branches  leaving a node as large 
as possible,  provided their ordering in terms of likelihood 
value can be  accomplished by a table look-up rather 
than by a direct computation followed by a comparison. 
If the tree code  used has a convolutional structure (see 
Section 10.12  of Ref.  4), it is possible to construct such 
tables and the size of d is  determined by the available 
storage capacity. 

As an example, we  give the state of the stack during 

NOVEMBER 1969 

2 branches 
per J node 

2 4000 
- 

* 
u 

3000- 16 branches 
per  node ,-,.' 

,P/@' 

0.7 0.8 0.9 1 

I R/Rcomp 

Figure 7 Plot of the  maximum  position of the true node  in 
the  stack  obtained  from 1000 runs of binary  information 
blocks of length 1000. Solid  line  applies  when  the  tree  has 
two  branches  leaving  each  node  and  the  stack  insertion 
procedure  is that described  in  Section 3. Interrupted  line 
applies  when  the  tree  has  sixteen  branches  leaving  each 
node and  the  insertion  procedure  is  that of Section 5 .  

the decoding of the tree of Figure 3. Paths are associated 
with their terminal  nodes; the topmost path is stated 
fist: 

1st  state: 0 
2nd  state: 2 
3rd state: 5, 1 
4th state: 6, 1 , 11 
5th  state:  1, 11 , 13 
6th  state: 3, 11,  13 
7th  state: 8, 11,  13, 4. 

Comparing this with the stack  development at the end 
of Section 3,  we  see that indeed the necessary  stack  size 
has been shortened. 

We have tried to find out experimentally the savings 
in stack size obtainable from the present  modification 
of the stack  algorithm.  Again, the block  length r = 1000, 
I = 26, R = 1/2, and the channel  is  binary  symmetric 
with  varying p .  Figure 7 plots the maximum  position 
of the true path in the stack  over the 1000  blocks  decoded 
(i.e.,  if the stack  used were longer than the number given, 
the true path would  never  have  been  eliminated from 
it). The solid  line  refers to the original  stack algorithm 
of Section 3 used  with a tree in which two  branches  leave 
every node. The interrupted line  corresponds to the 
modification of this section  applied to a tree with  sixteen 
branches  leaving a node. The convolutional  codes used 
were identical. It is  clear that, as expected, the second 
set  up  does  allow for substantial economies in needed 
stack depth. 

While running this experiment we found unexpectedly 
that  the average  number of decoding  steps  per transmitted 681 

FAST SEQUENTIAL. DECODINQ 



682 

branch (not bit!) had virtually the same value for both 
versions of the stack algorithm at all values of the cross- 
over probability p .  

7. Handling of stack overflows 
Obviously, any decoder, no matter  how expensive,  will 
have only a limited stack available for storing the likeli- 
hoods. When all of its  locations are filled, the  one con- 
taining the smallest likelihood must be purged to make 
room  for a newly inserted path. The worry is that  the 
purged entry may correspond to the  true  path,  in which 
case a decoding error will  necessarily result unless other 
precautions are taken.  One possibility, described in some 
detail below, is to switch temporarily into a Fano decoding2 
mode. In this way catastrophy  can be avoided when stack 
overflow takes place and even relatively short stacks 
capable of storing only several hundred paths can be 
used to speed up the decoding process. To keep the 
following discussion brief, it will be assumed that  the 
reader is thoroughly familiar with some version of the 
Fano decoding algorithm (e.g., the  one presented in 
Section 10.4  of Ref. 4). 

Let T be the integral part of the largest path likelihood 
that was ever purged from  the stack. Obviously, T is a 
monotonically nondecreasing function of time which 
might as well be defined as being equal to - until the first 
path is purged from  the stack. Let us never insert a path 
into  the stack whose likelihood is less than  the current 
value of  T. Stack overflow will be said to  take place when 
the decoder finds the stack empty and is  therefore unable 
to continue to carry out  the algorithm.  Let si be  the last 
path extended before stack overflow took place. Then 
obviously L(si)  2 T and L(s', s i + J  < T for all branches 
si+' leaving the node si. First, the decoder backs up  to 
the nearest preceding node s'[ j< i, si = (si, si+,, . . . , si)] 
whose immediate predecessor node si-' has likelihood 
L(s"') < T. Next, the decoder is switched into  the  Fano 
forward  mode and its cumulative threshold Tu is set equal 
to T - T, where T is the  Fano decoder threshold  quantum. 
Decoding continues in  the  Fano mode with To varying 
as needed until such time as  the decoder arrives for  the 
first time at some node sk at which the current value of 
To is to be raised (until this  time the variation in To was 
downward only). At this moment sk is inserted into  the 
stack, T i s  set equal to To + T [note that L(sk) 2 To + T] 
and decoder operation resumes in  the stack mode. Ob- 
viously, if sk is not  the  true  path, with high probability 
all of the  paths leaving it will have likelihood less than 
the new value of  T. In such a case the stack will again 
be found empty and  the decoder will switch back to 
the  Fano mode as described above. It is important 
to note that  this switchback will occur after fewer decoding 
steps .have been completed than would have been neces- 
sary .)for  the  Fano decoder to lower its  threshold 

from To + 7. Thus  our strategy wastes no steps by a 
possibly premature switch into  the stack decoding mode. 

The flow chart of the complete stack-Fano  algorithm 
is  shown in Fig. 8. The notation of Section 10.4 of Ref. 4 
is used. 

8. Some remarks on implementation 
In  this section we  will discuss the problem of maintaining 
the stack in proper likelihood order  and  the problem 
of specifying the tree paths entered into  the stack. We 
shall describe the way our implementation has been 
carried out. 

Although we found  the concept of a stack useful for 
describing the algorithm, it turned out  to be preferable to 
arrange the decoder's memory as a random access storage. 
In fact, a physical stack would necessitate a sequential 
comparison of its entries with the likelihood value of 
the  path to be inserted, followed by a large relocation 
of data to make space for  the new entry at  the  appropriate 
stack position. The amount of work connected with an 
insertion would vary as a function of stack content. 

Instead, we found  it  advantageous to establish equiu- 
alence classes for likelihoods (e.g., all likelihoods with 
the same integral part belong to the same class) and to 
provide corresponding class buckets for insertion of 
new entries. The buckets are then  ordered and a decoding 
step consists of selecting an arbitrary path of the  top 
bucket, computing the likelihoods of its d extensions, 
computing the class membership of these likelihoods, 
and inserting the corresponding paths  into  the  appropriate 
buckets. To be more specific, we  will describe the system 
used by the  author during simulation. 

There are two sets of reserved storage locations, the 
auxiliary stack and  the stack itself, referred to by indices 
1E { - K , - k +  1, . . .  ,0 ,1 ,  ... , J )  a n d g E  {1,2, , 
M ) ,  where K and J are chosen so that  the likelihood 
values of paths visited during the decoding process lie 
between "K and J with  sufficiently  high probability. 
M is the size of the stack, each entry of  which consists 
of three parameters: S ( g e t h e  path specification, L ( g e  
the likelihood value, and P(g)-a pointer to be described. 
The stack is filled sequentially as follows: The first path 
is put  into location 1 (this path is then  on  top of the 
stack). Whenever a path is extended, its  parameters are 
replaced by the corresponding parameters of the extended 
path. If an additional entry into  the stack is made  it is 
placed into the first unfilled location, if there is one. 
(When the stack is full, the bottom-of-the-stack path is 
replaced, as discussed below.) Let G(I) be the entry at 
location I of the auxiliary stack. Its value is equal to  the 
stack address of the last entered path whose likelihood 
has an integral part equal to 1 (if no such path exists in 
the stack, G(Z) = 0). The pointer P(g) is equal to  the 

F. JELINEK IBM J. RES. DEVELOP. 



r""" ----- """""~""""""""""- 
I 
I 
I 
I 
I I 

tl1c .\tacl; 
011 top of 

I 
I 
I 
I 
I 
I 
I 
I 
I 
! 
I 
I 

I 
I 
I 
I 
I 
I 
I 

I 
I 

I 
I 
I 
I 
I 

""""""""""""""""""I """""""- ~ 1 """_ 

s i + l = ( s i , a ( C * + l  

! 
I 

I 
i 
! 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

I 
I 

I 
I 

I 
I 
I L """"""""""""""""""""""" """" "" """"-"----~ 

Figure 8 Flow chart of the  combined stack-Fano decoding  algorithm;  notation as in Kef. 4. 

stack address of the previously entered path whose likeli- 
hood  has  an integral part equal to  the integral part of 
L(g) [if no such path exists, P(g) = 01. 

The  appropriate parameter values are maintained in 
the two storages as follows: Suppose the path at location 
g of the stack is to be extended (and therefore eliminated 
from  the stack) and suppose 1 equals the integral part 
of the likelihood L(g). Then the entry G(I) of the auxiliary 
stack will be set equal to the  pointer P(g). Next, suppose 
the  path S' of likelihood L' is to be inserted into location 
g' of the stack. If I' is the integral part of L', then P(g') 
is set equal to  the current  entry G(I') of the auxiliary 
stack, whereupon C(1') is reset equal to g'. Finally, L(g') 

is set equal to L' and S(g') to S'. Table 1 illustrates the 
stack maintenance procedure for  the unmodified algo- 
rithm of Section 3 in the case of the likelihood situation 
of Fig. 3. 

The auxiliary stack entries G(I) are used to find the 
top-of-the-stack path to be extended and  the bottom- 
of-the-stack path to be eliminated when a new entry 
is to be made into a full stack. The  address of the  top 
of the stack is G(l*), where I* is such that G(I) = 0 for 
1 = I* + 1, . . .  , J a n d  G(l*) # 0. When the stack is 
full, the new entry is put into location g+ = G(l*), where 
G(1) = 0 for 1 = -K ,  * . . , 1' - 1 and G(1') # 0. Before 
this is done, G(I+) is set equal to P(g'). 

NOVEMBER 1969 



Table 1 The  contents of the stack  and the auxiIiary stack 
during  the  search of the tree of Fig. 3. 

Step 1 Step 2 

0 2 10 - 3  

1 2  3 11 - 3  . 2  - 3  3 

O . O  I 
-6 1 .6 1 

~ ~~ 

Step 4 

b S L P  1 g b S L P  I g 

Step 6 - - 

1 0 - 6  0 

2 100 - 7  4 2  100 -7 4 

1 000 -11 0 

5 101 - 7 2 5 101 -7 2 -5  0 

4 111 - 7 3 - 4  7 4 111 - 7  3 

3 110 - 7  0 3 110 - 7  0 

-6  1 6 01 -12 0 

-7 5 7 001 - 4 . o  -7 5 

-8  0 I 

-11 1 

-12 6 

Next,  let us consider  how a path is to be specified in 
the stack. If the tree code is convolutional (see Section 
10.12 of Ref. 4), then at least the stack parameters S(b) 
must  characterize the tree depth i of the path and the 
sequence  of v last message digits si--v+l, ' , si, where 
v is greater than or equal to the constraint length of the 
code. If v is less than r + t ,  the block  length of the code, 
then a way must be found to determine the decoded 
path. It would  be natural to release to the user the digit 

whenever the tree depth i of the path at the top 
of the stack  exceeds the depth of all the previously  ex- 
tended paths. In order to keep the probability of a wrongly 
released  digit  small, Y might  have to be three times as large 
as  the constraint length. This would  make the stack 
storage unacceptably large and so a more subtle method 
of path specification  must  be  devised. 

A possible solution is to maintain in the storage a 
map of the paths contained in the stack. The construction 

684 of the map is based on the tree structure of the code 

F. JELINEK 

and on the observation that  the decoder  extends a node 
at most  once.  (This is not strictly true of the modified 
algorithm of Section 6,  but a simple adjustment of our 
method will take care of that problem.) The idea is simply 
to store, for each  node of an investigated path, the digit 
s E { 0, 1, , d - 1 1 corresponding to the last branch 
and a backward pointer p to the preceding  digit-pointer 
combination. When a path is extended from a node, 
the d newly created pointers will point to the digit-pointer 
combination of the former (again, we refer to the un- 
modified algorithm of Section 3). 

The following  more  specific  description will generalize 
somewhat the preceding  notion. 

An integer k is chosen and map storage space is al- 
located in which entries V*(j )  and Q*(j )  at location j rep- 
resent a sequence  of k message digits and a pointer, 
respectively. The stack parameter S(g)  itself  consists 
of three parts: V(g), capable of representing k - 1 message 
digits; Z(g), representing the path depth; and Q(g), a pointer. 
At the beginning V*(j) = Q * ( j )  = V(g) = Q(g) = 
Z(g) = 0 for all j and g .  As long as the path depth Z(g) < k ,  
then Q(g) = 0 and V(g) = sl, . , s ~ ( ~ ) ,  the message 
sequence. As soon as a path sk-l is to be  extended to 

sk) for the first  time, we set V*(l) = (sk"l, sk), V(g)  = 
0, Z(g) = k ,  and the pointer Q(g)  is set  equal to 1, thus 
pointing to the first  map location. In general,  whenever 
path extension  occurs from a path si-' to si, where i is 
not a multiple  of k ,  neither the pointer Q(g) nor Q*( j )  
is  changed, no new entry in the map is made, Z(g) is  set 
to i, and si is added to the content of V(g). Suppose that 
i is a multiple of k and that j is the first  free location in 
the map. Then the pointer Q * ( j )  is  set  equal to the old 
pointer vaIue Q(g), V*(j)  is set equal to s ~ - ~ + ~ ,  - . . , si, 
Q(g) is made to point to the map location j ,  and we make 
Z(g) = i and V(g)  = 0. It is  obvious that in this way the 
entire path corresponding to any stack entry g is kept 
available in the storage. In fact, the path digits si, si-l,- . e ,  

s1 are represented in the registers V(g), V*(jJ, * * . , V*(jt), 
where jl = Q W ,  j z  = Q*(h) ,  * * , j ,  = Q * ( j t - d ,  and 

If it is desired to purge the map of entries  made un- 
necessary by path purges of the stack, this may  be  ac- 
complished  best  by adding another register C*(j) at the 
various  map  locations. C*(j) will at all times  be equal 
to the number v (5 dk) of pointers pointing to the map 
location j .  Suppose the entry g is to be  purged from the 
stack and jl = Q(g). Then the value of C*(jl) is  lowered 
by 1. If the new  value is not equal to 0 nothing further 
is done, if it is equal to 0 and j ,  = Q*(jl)  then C*(j2) 
is lowered by 1 and the j l  map location is made  available 
to a pool for new  refilling. The new value  of C*(jz) is 
similarly  compared  with 0 and, if it is 0, then C*(j3) b3 = 
Q*(j,)] is in turn lowered by 1 and the jz  map location 
becomes  available,  etc. 

Q*(i t )  = 0. 

IBM J. RES. DEVELOP. 



Table 2 The  path identification map  for stack size greater 
than 6 and k = 1. 

Step I Step 2 

3 

6 2 4   0 2 1  

1 2 1  

Step 4 __ 
Node I Q V* Q* C* 

1 1 1  0 0 1  

1 1 3 5  1 0 4  

13 3 7  0 2 2  

12 3 6  1 2 2  

1 4 3 8  0 3 1  

1 3 1  

0 4 1  

1 4 1  

Step 6 
~ 

N o d e  I Q V* Q* C* 
7 3 1 1  0 0 3  

11 3 5  1 0 4  

13 3 7  0 2 2  

12 3 6  1 2 2  

14 3 8  0 3 1  

4 2 1 0  I 3  I 

8 3 1 2  0 4 1  

1 4 1  

0 1 2  

1 1 1  

0 9 1  

1 9 1  

Table 3 The  path identification map  for stack size equal  to 
3 and k = 1. Steps I and 2 are  the  same as  in Table 2. 

Step 3 

Node  I Q V* Q* C* Node I Q V* Q* C* 

Step 4 - - 

1 1 1  0 0 1  

1 1 3 5   1 0 2  1 1 3 5   1 0 2  

1 1 1  0 0 1  

1 6 2 4   0 2 1  

0 3 1  

1 2 1  0 3 1  

1 3 3 6   0 2 1  

Step 5 - 
Node I Q V* Q* C* 

3 2 7  0 0 2  
” 

1 1 3 5  1 0 1  

1 3 3 6  0 2 1  

1 2 1  

0 3 1  

0 4 1  

Step 6 - 
Node I Q V* Qf C* 

8 3 8  0 0 1  

1 1 3 5  1 0 2  

1 3 3 6  0 2 1  

1 2 1  

0 3 1  

0 4 1  

1 7 1  

0 I 1 0 1 1  

0 4 1  

Table 2 illustrates the map structure for  the case of the 
likelihood situation of Fig. 3 if the stack size is greater 
than  or equal to 7 and k 2 1 (thus the V entries are absent). 
Table 3 does the same for  the case in which the stack size 
is limited to 3 entries. 

Acknowledgment 
The author thanks John Cocke for his inspiration and 
many valuable discussions and suggestions. 

5. F. Jelinek, “An LJpper Bound on Moments of Sequen- 
tial  Decoding Efforts,” IEEE Trans.  Information  Theory 

6. F. Jelinek, “A Stack  Algorithm for  Faster Sequential 
Decoding of Transmitted  Information,” IBM Research 
Report RC 2441, ,4pril 15, 1969. 

7. I. M. Jacobs and E. Berlekamp, “A Lower Bound to 
the Distribution of Computation for Sequential De- 
coding,” IEEE  Trans. Znformation Theory IT-13, 167 
(1967). 

8. J. M. Wozencraft and I. M. Jacobs, Principles of Com- 

York 1965. 
munication Engineering, John Wiley & Sons, Inc., New 

IT-15, 140 (1969). 

References 9. D. Falconer, “A Hybrid  Sequential and Algebraic  De- 
coding Scheme,” Sc.D. thesis, Dept. of Elec. Eng., 
M.I.T., 1966. 

coding and a Simple Hybrid Scheme,” Intl.  Conf. on 
System Sciences, Hawaii, January 1968. 

11. F. Jelinek and J. Cocke, “Adaptive  Hybrid  Sequential 
Decoding,” submitted to Information and Control. 

l. J. Ziv, “Successive Decoding  Scheme for Memoryless 
lEEE Trans. Information Theory IT-9, 97 10. F. L. Huband anti F. Jelinek, ‘‘Practical Sequential  De- 

(1963). 
2. J. M. Wozencraft, Sequential Decoding for Reliable 

Communication, MZT-RLE Tech.  Rep. TR325, 1957. 
3. R. M. Fano, “A Heuristic  Introduction to Probabilistic 

Decoding,” IEEE  Trans.  Information Theory IT-9, 64 
(1963). 

4. F. Jelinek, Probabilistic  Information Theory, McGraw- 
Hill Book Co., Inc., New York 1968. Received  April 10, 1969 

685 

NOVEMBER 1969 FAST SEQUENTIAL. DECODINQ 


