F. Jelinek

Fast Sequential Decoding Algorithm Using a Stack*

Abstract: In this paper a new sequential decoding algorithm is introduced that uses stack storage at the receiver. It is much simpler
to describe and analyze than the Fano algorithm, and is about six times faster than the latter at transmission rates equal t0 Reomp, the
rate below which the average number of decoding steps is bounded by a constant. Practical problems connected with implementing
the stack algorithm are discussed and a scheme is described that facilitates satisfactory performance even with limited stack storage
capacity. Preliminary simulation results estimating the decoding effort and the needed stack size are presented.

1. Introduction

Sequential decoding is a method of communication through
noisy channels that uses tree codes (see Fig. 2). Several
decoding algorithms have been suggested,”® the one due
to Fano being universally acknowledged as the best (see
also Sec. 10.4 of Jelinek*). The first two algorithms have
the common characteristic that, when used with ap-
propriate tree codes signaling over memoryless channels,
their probability of error decreases exponentially to
zero at all transmission rates less than capacity C, while
for all rates less than a value called R, the average
amount of decoding effort per decoded information bit
is bounded above by a constant. R..n, is a function of the
channel transmission probabilities only, and exceeds C/2
for all binary symmetric channels. Figure 1 contains the
plot of R..m,/C as a function of the crossover probability p.
In contrast, all widely used methods of algebraic coding
achieve arbitrarily reliable performance only when the
transmission rate is sufficiently reduced toward zero. (It
ought to be added, however, that algebraic schemes are
much simpler than sequential ones.) Furthermore, these
methods work only for symmetrical channels with the
same number of outputs as inputs.

In this paper we will introduce a new sequential algor-
ithm that is faster than all competing ones, and that is
very simple to describe and analyze. To realize its speed
advantage without an increase in error probability, it
is necessary to increase by a considerable amount the
memory of the decoder. However, in a suitable environ-
ment (e.g., when a general purpose computer is used

The author’s current address is School of Electrical Engineering, Cornell
University, Ithaca, New York 14850.

® A skeletal version of this paper was presented at the Third Princeton
Conference on System Science, March 1969.

NOVEMBER 1969

1.0
0.9
0.8~
0.7~
0.61—

0.5L

0.4 | 1 |
0.0001 0.001 0.01 0.1 0.5

Rcomp/ C

p

Figure 1 The graph of R.omp/C as a function of the cross-
over probability p of a binary symmetric channel.

for decoding as is done in the Pioneer space program)
the increase in speed will be well worth the added cost.
The price of memories will continue to drop rapidly
in the foreseeable future, thereby widening the appli-
cability of our method. It is hoped that this paper will
stimulate further research into tree decoding algorithms.
In particular, it would be interesting to know what com-
promises between the present and Fano’s algorithm are
possible, and what the trade-off is between finite memory
size and speed.

Since no previous knowledge of sequential decoding
is assumed (the exception being Section 7), we start by
describing tree encoding. Then in Section 3 we give our
stack decoding algorithm and provide an example. Section
4 contains an outline of the analysis of the present scheme
that leads to previously known results about the average
number of decoding steps and the probability of error.

675

FAST SEQUENTIAL DECODING

676

F. JELINEK

O 0 0
1 1 0
1 1 1
1 0 1
1 0 1
0 1 1
0o 1 0
0 0 0
0 0 1
1 1 1
1 1 0
1 1 0
1 0 1
0 0O 1 0
T_J 0 1 1
0O 0 0
1
1 1 1 1
0 1 0
1 0 1
0 0 O
0O 1 0
1 1 1
0 0 1
I 0 0
1 1 0
0 0 1
1 0 1
0 0 1
0 1 1

Figure 2 Example of a binary tree code of rate R = V3.

We next describe the outcome of simulations that enable
us to compare the stack and Fano’s algorithm (Fig. 6).
In Section 6 we modify the algorithm to limit the growth
of the stack, and show how effectively this can be done
(Fig. 7). Section 7 contains a procedure that handles
stack overflows and thereby prevents catastrophic termi-
nations. Finally, Section 8 describes how a stack is actu-
ally implemented and in what manner it specifies the
required information.

2. Tree encoding

Let us assume that we desire to communicate over a
discrete memoryless channel characterized by a transmission
probability matrix [wo(n/£)), where £ & {0,1, -+ ,a— 1}
are the channel inputs and n & {0, 1, --- , 3 — 1} are the
corresponding channel outputs. Thus, for any integer n,
the probability that an arbitrary output sequence 1,
M2, *** , 7, i received, given that an arbitrary input
sequence £, &, + -+ , & was transmitted, is equal to

n

H Wo('f)a'/fi)-

i=1

Let us further assume that the information source gen-

erates outputs s & {0, 1, --- , d — 1} that are to be
communicated to the user located at the other end of the
channel. An appropriate tree code of rate R = 1/(n, log, d)
bits per channel used will have d branches leaving every
node, each branch being associated with a sequence of
no channel input digits. An example of a tree code ap-
propriate for a binary source (d = 2) and a channel
with binary inputs (¢ = 2)is given in Fig. 2. Since n, = 3,
the code has rate R = 1/3. The correspondence between
source outputs and channel inputs (i.e., the encoding
rule) is as follows.

At the start of the encoding process the encoder is
“located” at the root of the tree. If the first digit s, gen-
erated by the source is a 0, the encoder follows the upper
branch out of the root node to the next node and puts
out (trapsmits through the channel) the sequence asso-
ciated with that branch (in this case 000). If s, = 1, the
encoder follows the lower branch to the next node and
puts out the corresponding sequence (in this case 111).
In general, just before the source generates the ith digit
s;, the encoder is located at some node i — 1 branches
deep in the tree. If 5, = 0 the encoder leaves this node
along the top branch and, if 5, = 1, it leaves the node
along the bottom branch; in both cases it transmits
the sequence corresponding to the branch along which
it traveled. In this way a message sequence si, S, - *°
traces a path through the tree and the tree sequence
corresponding to that path is then transmitted. (The
generalization to a d-nary tree is obvious: At time i the
encoder leaves the current node along the (s; + 1)th
branch of the fan-out and transmits the corresponding
sequence, where s, & {0, 1, --- ,d — 1}.) Thus in Fig. 2
the message sequence 0011 determines the path indicated
by the thick line and causes the sequence 000101011010
to be sent through the channel.

In principle, the encoding tree can be continued in-
definitely and thus the total number I' of levels it can
have (the tree displayed in Fig. 2 has four levels) is
arbitrary. Since a d-nary tree with I' levels has d" paths,
there is a problem of how the encoder can store its tree
code. We will not concern ourselves here with that issue.
Let the reader be assured that no difficulty arises. The
tree is never actually stored; all that is stored is a very sim-
ple algorithm that can generate the digits associated with
the tree branches whenever the former are required. The
usual tree codes are called convolutional and their descrip-
tion can be found on pp. 377 to 383 of Ref. 4. It will be
easier for us to continue to act as if the encoder stored the
entire tree.

3. The decoding algorithm

From the preceding description of tree encoding it
follows that the natural transmission units we are dealing
with are not channel digits themselves, but sequences

IBM J. RES. DEVELOP.

of n, of these that correspond to the tree branches. Ac-
cordingly, it will simplify further discussion if we hence-
forth restrict our attention to the ng-product channel
[w(y/x)] whose input symbols x and output symbols y
are strings of », inputs and outputs of the underlying
channel [wy(n/£)]. From this point of view, the product
channel input alphabet corresponding to the tree code
of Fig. 2 is octal, and the message sequence 0011 causes
0532 to be transmitted. Let x* represent some sequence

E"{’ E;;, Y E;l: and let y* represent "l"f, 77*;’ Y 771.*.,-
Then

o
w*/x*) = T won®/e9). (1)

i=1

Thus the product channel has inputs x & {0,1,---,a — 1}
and outputs y & {0, 1, --- , b — 1}, where a = o,
b= B", and « and § are the sizes of the input and output
alphabets of the underlying channel, respectively. A
tree path of length i is specified by the vector s° = (s,
S35 -+, &) (we will use boldface for vectors and super-
scripts will indicate their length) formed from the cor-
responding message digits. We will denote by x;(s"), j < i,
the transmitted symbol associated with the jth branch
of the path s’. Thus in Fig. 2 x4(010s,) = 7 for all s,
and x,(10s35,) = 2 for all s3s5.. Let us now assume that
a sequence y' was received through the channel (T" is
the number of levels in the tree) and that we wish to
decode this sequence, i.e., to determine the identity of
the message sequence s put out by the source. We will
denote by 8" the receiver’s estimate of s” and, of course,
we aim at having §° equal to s”. We recall that, when
s' was inserted into the encoder, the latter produced
the channel input sequence x"(sT) = x,(s7), xx(s7), - -+ ,
xp(s¥) in the way described in the preceding section.
Our problem is to specify the operation of the decoder.

Let r(x), x < {0,1, - - - , a — 1} be a suitable probability
distribution (its choice will be clarified below) over the
input symbols of the product channel, and define the
output distribution
wey) = 2 w(y |)r(x). (2)
If the sequence y" was received, we will be interested
in the likelihoods

LE) = 2 MG) 3)
of the various paths s’ = (s, 5,41, - » §;), where the
branch likelihood function \(s’) of the branch leading
from node s to node s* (note that a path uniquely
defines the tree node on which it terminates, and vice versa)
is defined by

wly, | x:6D]

we(y.) "ok @

Ai(sY) = log,

NOVEMBER 1969

From the decoder’s point of view, L(s’) and)\.'(s")
are functions of the paths only, since the received se-
quence y© is fixed throughout the decoding process
and the branch symbols x,(s*) are determined by the
tree code that is known in advance.

We are now ready to describe the decoding algorithm
for a binary tree (d = 2). This restriction will make the
explanation easier to follow, but will be subsequently
removed.

(1) Compute L(0) = N\(0) and L(1) = A(1), the likeli-
hoods of the two branches’ leaving the root node (see
Fig. 2), and place them into the decoder’s memory.
) If L(0) > L(1), eliminate L(0) from the decoder’s
memory and compute L(00) = L(0) 4 N»(00) and L(01) =
L(0) + Xy(01). Otherwise, eliminate L(1) and compute
L(10) = L(1) 4+ N(10) and L(11) = L) + N(A1).
Therefore we end with the likelihoods of three paths
in the decoder’s memory, two paths of length 2 and one
of length 1.

(3) Arrange the likelihoods of the three paths in de-
creasing order. Take the path corresponding to the top-
most likelihood, compute the likelihoods of its two
possible one-branch extensions, and eliminate from
memory the likelihood of the just extended path [e.g.,
if Z(0), L(10), L(11) are in the memory and, say, L(10) >
L) > L(11), then L(10) is replaced in the memory by
the newly computed values of L(100) = L(10)} + 2;(100)
and L(101) = L(10) 4+ Xy(101). In case, say, L(0) >
L(11) > L(10), then L(0) is replaced by L(00) and L(01)].
At the end of this step the decoder’s memory will contain
the likelihoods of four paths, and either two of these
will be of length 3 and one each of lengths 1 and 2, or
all four paths will be of length 2.

(4) The search pattern is now clear. After the kth step,
the decoder’s memory will contain exactly k 4 1 likeli-
hoods corresponding to paths of various lengths and
different end nodes. The (k + 1)th step will consist of
finding the largest likelihood in the memory, determining
the path to which it corresponds, and replacing that
likelihood with the likelihoods corresponding to the
two one-branch extensions of that path.

(5) The decoding process terminates when the path to
be extended next is of length T, i.e., leads from the root
node to the last level of the tree.

Because of the ordered nature of the decoder’s memory,
we refer to it as a stack. We next illustrate the stack
decoding algorithm by an example. Consider the binary
tree of Fig. 3 with nodes as numbered. Let paths be
associated with their terminal nodes. Let the numbers
written on top of the branches represent the values of
the corresponding branch likelihood function for some
received sequence y°. Thus, the likelihood of path 8
is equal to —6 + 1 4- 1 = —4. The state of the stack

677

FAST SEQUENTIAL DECODING

678

F. JELINEK

Figure 3 An example of likelihood-value assignment to tree
branches induced by a code and a received sequence.

Figure 4 The D; classification of nodes of a binary tree rela-
tive to the transmitted message (s, 52, §3, 54, *°).

during decoding would then be as follows (topmost
path on the left).

1st state: 0

2nd state: 2, 1

3rd state: 5 6, 1

4th state: 6, 1, 11, 12

Sth state: 1, 11, 12, 13, 14

6th state: 3, 11, 12, 13, 14, 4
7th state: 8, 11, 12, 13, 14, 7, 4.

When trying to perform the eighth step, the decoder
would find path 8 on top of the stack and, since the latter
has length 3 (=T, decoding would terminate.

It remains to generalize our algorithm to d-nary trees.
The notion of a stack will facilitate a concise statement
of the procedure.

(1) At the beginning of the decoding process, the stack
contains only the root node of the tree (i.e., the empty
path) with its likelihood set arbitrarily to zero.

(2) A decoding operation consists of ascertaining the
path s’ that corresponds to the likelihood L; at the top
of the stack (i.e., the largest of the likelihoods in the
stack), eliminating L; from the stack, computing the
likelihoods Ai.;, -+ , X\},, of the branches that leave
the end node of the path s’, and inserting the new
path likelihoods Li,, = L; 4+ N\, i = 1,2, --- , d,
into their proper positions according to size (clearly the
stack contains path identifications and their likelihood
values).

(3) The search ends when the decoder finds at the top
of the stack a path whose length is I'. That path is then
considered to have been taken by the encoder.

In our algorithm, the likelihoods are used as a distance
measure between the received sequence and the code
word sequences on the various paths of the tree. The
heuristic reasons for this choice of the measure were
made clear in an IBM research report by the author® in
which the stack algorithm was developed as an intuitively
natural way of taking advantage of the tree structure
of the code. This aspect makes the algorithm very at-
tractive from a pedagogical point of view. The Fano
method® can then be considered to be a particular imple-
mentation of the stack search in which the decoder’s
memory is eliminated for the price of an increase in the
number of steps necessary for decoding (see Fig. 6). We
will see in the next section that the stack algorithm lends
itself to a relatively simple analysis.

4. Probabilty of error and average number
of decoding steps

We now wish to compute upper bounds to the probability
of decoding error and to the average number of decoding
steps. Much of the argument is identical to that which
applies to the Fano algorithm*® and we will therefore
limit ourselves to the differences between the two analyses
and to a statement of results, A complete treatment
can be found in our earlier IBM research report.’

It will be convenient to partition the nodes of the
tree into sets D;, i = 0, 1, -- -, T, defined relative to the
path s' actually taken by the encoder.

Definition 1: The incorrect subset D; consists of the
end node of the initial segment s° of the true path s* =
(s, sis1, *++ , 5p), of the d-1 terminal nodes of the in-
correct branches s¥ ;, # s, stemming from the end
node of s°, and of all nodes lying on paths leaving these
d—1 nodes.

IBM J. RES. DEVELOP.

A binary tree illustration of the sets D, is given in
Fig. 4. Let N; be the number of nodes belonging to D;
that the decoder “visits.” (These are end nodes of paths
that have at one time appeared on top of the stack and
were thus extended during the decoding process.) Then
since \UT_, D; is the set of all nodes in the tree, > o N;
is equal to the total number of decoding steps and we
will want to estimate it.

Obviously, a path s;; € DG < j< I will not be
extended in the decoding process unless its likelihood
L(s") is such that the path s ; appears on top of the stack.
But then L(s,) must exceed the minimum of the likeli-
hoods {L(s**"), --- , L(s")} along the true path (this
condition is necessary but not sufficient). Let ¢(A4) denote
the indicator function of the event 4, i.e.,

1 if event A takes place;
A) = ’
() {0 if event 4 does not take place. ©)
Then
F .
N <1+ 20 > ¢lLsy) > min LE™)]
F=i+1 s+7ED; (6)

r T
<14+ X > X elL6)) > LEM],
i=1+1 sx1ED; m=i+1
where the numeral 1 accounts for the visit to the true
node of D;.

Bounds on the yth [y & (0, «)] decoding effort moments
E[N"] based on the inequality (6) can be found in Ref. 5.
It turns out that E[N’] can have a constant that is inde-
pendent of T' as an upper bound provided the coding rate
R satisfies the inequality

1
R < 5 max Ey(v, 1), Q)

where
Ey,1) = ~log, 2 [25 wi/x)” " rl (8)

and the maximization is over all probability distributions
r(x) of the product channel input alphabet. The maxi-
mizing distribution r*(x) must then be the one used in
the definition (4) of the likelihood measure ki(si). It
should be stressed that the above result will hold for
“good” codes whose probability of error has the be-
havior predicted below.

A decoding error will occur if there appears on top
of the stack a path si corresponding to any of the I'-
level (incorrect) nodes of any of the sets Do, -+ , Dr
before the true path s" appears. If s & D;, we say that
an error took place on level i 4+ 1, since by Definition 1
the initial segment s’ of s” is also the initial segment
of s, while the (i + I)th digit s%,, of s differs from
the corresponding digit of the true path. A necessary
(but not a sufficient!) condition for an error on level

NOVEMBER 1969

0 0
1 1 1 0o 1 o 1 1
0 0
0 t 0 0 0 1 0 O
1 1
1 0o 1t 0o 1 1 1 1
0 0
0O 0 0 1 0 0 o0 1
0 1
1 1 1 1 1 0 1 0
1 1
0 1 0 1 0 1 0o 1
1 0
1 0 1 1 1 1 1 0

Figure 5 Portion of the last levels of a tree whose last
branches have length (¢ 4+ 1) = 4 times that of reguiar
branches.

i+ 1 is that the likelihood L(si) [defined in (3)] be greater
than or equal to the minimum value of the likelihoods
{L(s*™), --- , L(s")} corresponding to the initial seg-
ments of the true path.

Thus the probability P.(i) of an (i + 1)-level error
has a bound given by the inequality
P < Pr{ U [L6) = min LEM)

s+l €Dy i<m<T

Pr{ V) [CJ (Lesy) > L(s"’)}]}

ssT €Dy Lm=1+1

il

T

< > pr{ U 1Leh > LMy ©)

m=i+1 s« eD;

and the probability of error P. has the bound given by

-1
P, < 3 P.G). (10)

It is obvious that if the tree remains regular up to.the
last level (i.e., always has d branches leaving each node
with one symbol x corresponding to each branch), then
the probability P,({) will be a monotonically increasing
function of i and, in fact, P,(I' — 1) will be prohibitively
large since it is equal to the probability that the
branch likelihood of the last correct branch is less than
the maximal likelihood of the (d — 1) incorrect branches’
stemming from s*~', A simple expedient to assure that
P.(i) remains acceptably small even for large i (close to
T — 1) is to associate with the last level branches not
one but rather ¢ + 1 channel input symbols x, where ¢
is chosen suijtably large (this is illustrated in Fig. 5 with
t = 3). The net transmission rate will thus be reduced
from R to RU/(T' + 1), which is negligibly different
if 2> ¢

Upper bounds on P, based on inequalities (9) and
(10) can be found in Chapter 10 of Ref. 4. Let

679

FAST SEQUENTIAL DECODING

680

F. JELINEK

) T
]
[
I'
2= O Fano algorithm Il
A Stack algorithm /
]
ll
10}~ |
!
/
)
Il
T /
/
/
I
/
6 /
!
<
E /
g 4 ;
f / Crossover
5 2
: 4 probability
: / 0.045
-
2T s
& B e et
§ ﬁ‘ 0.0225 0.0294 0.0347
< 0 | |
0.7 0.8 0.9 1.0
R/RCDmp

Figure 6 Average number of decoding steps necessary to
decode a tree branch using the stack algorithm (solid line)
and the Fano algorithm (interrupted line) as a function of
the R/Rcomp ratio. Coding rate is held constant at R =
15 but the crossover probabilities of the binary symmetric
channel vary as indicated. Stack algorithm results are based
on 1000 runs of binary information blocks of length 1000.

(11)

Rcomp = _l— max EO(I: I')
Ro r

be the rate below which the average number of decoding

steps E[N;] is bounded by a constant. Then it can be

shown that, for rates R < R,om,, there exist codes such

that

P, < K(R)2™'Feome, (12)

where K(R) is an increasing finite function of R. Since
it can be shown that, for R > R.omp, E[N;] is an expo-
nentially increasing function of I' (if we assume a good
code), then for large I' [which is needed to keep the
rate loss factor ¢/(I' + ¢) small] one would ordinarily
not attempt to use sequential decoding at rates that
exceed Ruomp. (The ratio of R,,m, to channel capacity C
is plotted in Fig. 1 for binary symmetric channels.)

We close this section by remarking that the argument
that leads to bounds (6) and (9) for the Fano algorithm
is a very elaborate one. It is not an exaggeration to state
that the vast majority of students of graduate level in-
formation theory courses always remain uncomfortable
with it.

5. Experimental evaluation and comparison

We have not yet fully evaluated the performance of
the stack algorithm, but we can present some results
of computer simulation and compare these with the
published performance of the Fano sequential decoding
algorithm.

We have run simulations of the performance of a rate
R = 1/2 code when used over a binary symmetric channel
whose crossover probability p is allowed to vary. In
our experiment the block length T' = 1000 and the
length of the last-level branches was ¢+ = 26 symbols.
The results of Fig. 6 are based on 1000 such blocks run
for each of the different values of p. We have run the
decoding as described in Section 3 with two branches
leaving each node. The solid line in Fig. 6 indicates the
average number of stack algorithm decoding steps nec-
essary to decode one tree branch. The interrupted line
plots the same quantity for the Fano decoding algorithm
(the data is taken from Fig. 6.50 of the text by Wozen-
craft and Jacobs®). It is seen that at R.,.,, the stack algo-
rithm has a better than sixfold advantage.

It must be stressed that Fig. 6 does not present
the entire comparison and is actually unfavorable to the
stack decoding algorithm: When decoding in real time
with a fixed maximum delay imposed on the release
of decoded information to the user (relative to the time
of reception), it is the peak demands on computation
that should be compared. Since the advantage of the
stack algorithm grows substantially as the rate approaches
Reomps it is expected that this advantage will be even more
pronounced during periods of high channel noise and
consequent high computational demand.

Because of the above considerations the decoder speed
factor (maximum number of decoding steps performable
in the time it takes to receive one branch) must exceed
substantially the averages plotted in Fig. 6. This is es-
pecially true for the Fano decoder that will be idle during
the low noise time intervals when it is “caught up” with
the received signal. (In such situations it can perform
only one step per received branch interval, regardless
of what its speed factor is!) The stack decoder need
never be idle. If the length of the path on the top of the
stack is equal to the length of the received sequence,
the decoder may profitably extend the highest situated path
of those paths in the stack that are shorter than the top
one. This apparently premature work costs nothing
and will not have to be done later should the channel
noise increase.

The complete mutual independence of the stack order-
ing and path extending portions of the algorithm is also
worthy of note. These two functions can be performed
in parallel by different (but communicating) machines.
The stack need not even be in order—only the top path
must be available for extension. To achieve further speed-

IBM J. RES. DEVELOP.

up at the cost of greater decoder complexity, one might
conceivably use several path extending machines simul-
taneously, the first one working on the top path in the
stack, the second one on the second path, etc.

As seen from Fig. 6, the speed advantage of the stack
algorithm grows as the coding rate is increased. This
makes the former especially suitable for hybrid decoding® ™"
where the rate exceeds R,om,. A single stack may be
time-shared among the m different but algebraically
constrained information streams so that its cost is only
a fraction of that of the total system. The problem of
stack overflow (see Section 7 below) is also not crucial.
Simulation for the scheme of Ref. 11 based on a stack
of size 1000 was carried out with excellent results.

6. Limiting the growth of the stack

As described at the end of Section 3, every decoding
step of the tree search algorithm would involve the re-
placement of the top likelihood in the stack by d new
likelihoods. This means a net growth of the stack size
by (d — 1) entries per decoding step. This unwanted
dependence on d is entirely unnecessary, as follows from
the observation (due to J. Cocke) that the path corre-
sponding to the (j + 1)th branch’s (in order of branch
likelihood value) leaving a particular node can reach
the top of the stack only after the path corresponding
to the jth branch does. Hence we can modify the algo-
rithm to limit the stack growth to at most one entry per
decoding step regardless of the size of d:

(1) With each path likelihood L(s") also store the order j
(by size) of the likelihood A = \,(s") [see Eq. (4)] of
the last branch s, of the path [where L) = L(s™)+
Mg = (" s)and N> N> - >\

() If L(s®) is found at the top of the stack, replace it by
the likelihood L(s’*"), where s,., has the largest likeli-
hood of all branches leaving s°. If the order j of the
likelihood of the branch s; is less than d, also insert into
the stack the likelihood L(s;) = L(s™") + \'*' cor-
responding to the path through the (j -+ 1)-order branch
leaving the terminal node of s**. If j = d, do not insert
any additional path.

With the above modification it becomes advantageous
(in terms of decoding speed and stack size economy)
to make the number of branches leaving a node as large
as possible, provided their ordering in terms of likelihood
value can be accomplished by a table look-up rather
than by a direct computation followed by a comparison.
If the tree code used has a convolutional structure (see
Section 10.12 of Ref. 4), it is possible to construct such
tables and the size of d is determined by the available
storage capacity.

As an example, we give the state of the stack during

NOVEMBER 1969

9000
8000
7000 —
% 2 branches
S 60001 per node
g
2 5000
3 A
=}
E 4000 —
Jé' A
= 3000 16 branches P
S per node’ o7
£ 20001 o
S [oad
% 1000~ _o_’,«/
R e s et !
0.7 0.8 0.9 1.0
R/Rcomp

Figure 7 Plot of the maximum position of the true node in
the stack obtained from 1000 runs of binary information
blocks of length 1000. Solid line applies when the tree has
two branches leaving each node and the stack insertion
procedure is that described in Section 3. Interrupted line
applies when the tree has sixteen branches leaving each
node and the insertion procedure is that of Section 5.

the decoding of the tree of Figure 3. Paths are associated
with their terminal nodes; the topmost path is stated
first:

1st state: 0

2nd state: 2

3rd state: 5, 1

4th state: 6, 1, 11
5th state: 1, 11, 13
6th state: 3, 11, 13

7th state: 8, 11, 13, 4.

Comparing this with the stack development at the end
of Section 3, we see that indeed the necessary stack size
has been shortened.

We have tried to find out experimentally the savings
in stack size obtainable from the present modification
of the stack algorithm. Again, the block length T’ = 1000,
t = 26, R = 1/2, and the channel is binary symmetric
with varying p. Figure 7 plots the maximum position
of the true path in the stack over the 1000 blocks decoded
(i.e., if the stack used were longer than the number given,
the true path would never have been eliminated from
it). The solid line refers to the original stack algorithm
of Section 3 used with a tree in which two branches leave
every node. The interrupted line corresponds to the
modification of this section applied to a tree with sixteen
branches leaving a node. The convolutional codes used
were identical. It is clear that, as expected, the second
set up does allow for substantial economies in needed
stack depth.

While running this experiment we found unexpectedly
that the average number of decoding steps per transmitted

681

FAST SEQUENTIAL DECODING

682

F. JELINEK

branch (not bit!) had virtually the same value for both
versions of the stack algorithm at all values of the cross-
over probability p.

7. Handling of stack overflows

Obviously, any decoder, no matter how expensive, will
have only a limited stack available for storing the likeli-
hoods. When all of its locations are filled, the one con-
taining the smallest likelihood must be purged to make
room for a newly inserted path. The worry is that the
purged entry may correspond to the true path, in which
case a decoding error will necessarily result unless other
precautions are taken. One possibility, described in some
detail below, is to switch temporarily into a Fano decoding®
mode. In this way catastrophy can be avoided when stack
overflow takes place and even relatively short stacks
capable of storing only several hundred paths can be
used to speed up the decoding process. To keep the
following discussion brief, it will be assumed that the
reader is thoroughly familiar with some version of the
Fano decoding algorithm (e.g., the one presented in
Section 10.4 of Ref. 4).

Let T be the integral part of the largest path likelihood
that was ever purged from the stack. Obviously, T is a
monotonically nondecreasing function of time which
might as well be defined as being equal to — « until the first
path is purged from the stack. Let us never insert a path
into the stack whose likelihood is less than the current
value of T. Stack overflow will be said to take place when
the decoder finds the stack empty and is therefore unable
to continue to carry out the algorithm. Let s* be the last
path extended before stack overflow took place. Then
obviously L(s*) > T and L(s%, s;+1) < T for all branches
$;+1 leaving the node s’ First, the decoder backs up to
the nearest preceding node s'[j<i, s*=(s', 5,11, -+ , 5]
whose immediate predecessor node s’~' has likelihood
L(s"™") < T. Next, the decoder is switched into the Fano
forward mode and its cumulative threshold T is set equal
to T — 7, where 7 is the Fano decoder threshold quantum.
Decoding continues in the Fano mode with T, varying
as needed until such time as the decoder arrives for the
first time at some node s* at which the current value of
T, is to be raised (until this time the variation in T, was
downward only). At this moment s* is inserted into the
stack, T is set equal to T, + r [note that L(s*) > T, + 7]
and decoder operation resumes in the stack mode. Ob-
viously, if s* is not the true path, with high probability
all of the paths leaving it will have likelihood less than
the new value of 7. In such a case the stack will again
be found empty and the decoder will switch back to
the :Fano mode as described above. It is important
to note that this switchback will occur after fewer decoding
steps have been completed than would have been neces-
sary .for the Fano decoder to lower its threshold

from T, 4 7. Thus our strategy wastes no steps by a
possibly premature switch into the stack decoding mode.

The flow chart of the complete stack-Fano algorithm
is shown in Fig. 8. The notation of Section 10.4 of Ref. 4
is used.

8. Some remarks on implementation

In this section we will discuss the problem of maintaining
the stack in proper likelihood order and the problem
of specifying the tree paths entered into the stack. We
shall describe the way our implementation has been
carried out.

Although we found the concept of a stack useful for
describing the algorithm, it turned out to be preferable to
arrange the decoder’s memory as a random access storage.
In fact, a physical stack would necessitate a sequential
comparison of its entries with the likelihood value of
the path to be inserted, followed by a large relocation
of data to make space for the new entry at the appropriate
stack position. The amount of work connected with an
insertion would vary as a function of stack content.

Instead, we found it advantageous to establish equiv-
alence classes for likelihoods (e.g., all likelihoods with
the same integral part belong to the same class) and to
provide corresponding class buckets for insertion of
new entries. The buckets are then ordered and a decoding
step consists of selecting an arbitrary path of the top
bucket, computing the likelihoods of its d extensions,
computing the class membership of these likelihoods,
and inserting the corresponding paths into the appropriate
buckets. To be more specific, we will describe the system
used by the author during simulation.

There are two sets of reserved storage locations, the
auxiliary stack and the stack itself, referred to by indices
IE{—K,—k+1,---,0,1,--- ,Jtandg€E {1,2, -+,
M}, where K and J are chosen so that the likelihood
values of paths visited during the decoding process lie
between —K and J with sufficiently high probability.
M is the size of the stack, each entry of which consists
of three parameters: S(g)—the path specification, L(g)—
the likelihood value, and P(g)—a pointer to be described.
The stack is filled sequentially as follows: The first path
is put into location 1 (this path is then on top of the
stack). Whenever a path is extended, its parameters are
replaced by the corresponding parameters of the extended
path. If an additional entry into the stack is made it is
placed into the first unfilled location, if there is one.
(When the stack is full, the bottom-of-the-stack path is
replaced, as discussed below.) Let G(/) be the entry at
location / of the auxiliary stack. Its value is equal to the
stack address of the last entered path whose likelihood
has an integral part equal to / (if no such path exists in
the stack, G(/) = 0). The pointer P(g) is equal to the

IBM J. RES. DEVELOP.

e e e e

Extend top
of stack node
st

Discard or insert
extensions into

stack and adjust
T if necessary

Place s/
on top of
the stack

M

—

i=i—1

g S e e
L (si-1)<T —j
LKO-<:)Y65

e]

sitl=(s/, 4 (C*+1,50))

‘ :
| |
! f
| |
i
| s
|
I 1
’ |
j |
| T |
|
! I
| =1 |
| |
| |
: 9=0 l sitl= (s, 8 (C*+1,57)) }
|
: To=Ty~T |
! E
I =4 l
| C*=C(si=1,8) {
! i=i—1 sitl=(si0) i=i+1 Cr=—1 |
: |
b —

Figure 8 Flow chart of the combined stack-Fano decoding algorithm; notation as in Ref. 4.

stack address of the previously entered path whose likeli-
hood has an integral part equal to the integral part of
L(g) [if no such path exists, P(g) = 0].

The appropriate parameter values are maintained in
the two storages as follows: Suppose the path at location
g of the stack is to be extended (and therefore eliminated
from the stack) and suppose / equals the integral part
of the likelihood L(g). Then the entry G() of the auxiliary
stack will be set equal to the pointer P(g). Next, suppose
the path S’ of likelihood L’ is to be inserted into location
g’ of the stack. If I’ is the integral part of L’, then P(g’)
is set equal to the current entry G(/") of the auxiliary
stack, whereupon G(I') is reset equal to g’. Finally, L(g’)

NOVEMBER 1969

is set equal to L’ and S(g’) to S’. Table 1 illustrates the
stack maintenance procedure for the unmodified algo-
rithm of Section 3 in the case of the likelihood situation
of Fig. 3.

The auxiliary stack entries G(/) are used to find the
top-of-the-stack path to be extended and the bottom-
of-the-stack path to be eliminated when a new entry
is to be made into a full stack. The address of the top
of the stack is G(I*), where /* is such that G(/) = 0 for
I=01*41, -+, Jand GU*) ¥ 0. When the stack is
full, the new entry is put into location g* = G(/*), where
G()y=0for!/= —K, - - ,1" — Iand G(*) 5 0. Before
this is done, G(I*) is set equal to P(g™).

683

FAST SEQUENTIAL DECODING

684

F. JELINEK

Table 1 The contents of the stack and the auxiliary stack
during the search of the tree of Fig. 3.

Step 1 Step 2
b L P 1 P b s L P 1 g
1 0 -6 0 1 0 -6 0
2 1 1 0 2 10 -3 0
1 2 3 011 -3 2 -3 3
0 0
-6 1 -6 1
Step 4 Step 6
b s L P 1 g » s L P 1 g
1 0 -6 0 1 000 -11 ©
2 100 -7 4 2 100 -7 4
3 110 -7 0 3 110 -7 0
4 11 -1 3 4 111 -7 3 -4 7
s 1001 -1 2 -5 0 5 100 -7 2
-6 1 6 01 -12 0
-7 5 7 001 -4 .0 -7 5
-8 0 '
. -1 1
-12 6

Next, let us consider how a path is to be specified in
the stack. If the tree code is convolutional (see Section
10.12 of Ref. 4), then at least the stack parameters S(b)
must characterize the tree depth i of the path and the
sequence of » last message digits s;,_,+1, - -* , §;, Where
v is greater than or equal to the constraint length of the
code. If » is less than T' 4 ¢, the block length of the code,
then a way must be found to determine the decoded
path. It would be natural to release to the user the digit
Si—y+1 Whenever the tree depth i of the path at the top
of the stack exceeds the depth of all the previously ex-
tended paths. In order to keep the probability of a wrongly
released digit small, » might have to be three times as large
as the constraint length. This would make the stack
storage unacceptably large and so a more subtle method
of path specification must be devised.

A possible solution is to maintain in the storage a
map of the paths contained in the stack. The construction
of the map is based on the tree structure of the code

and on the observation that the decoder extends a node
at most once. (This is not strictly true of the modified
algorithm of Section 6, but a simple adjustment of our
method will take care of that problem.) The idea is simply
to store, for each node of an investigated path, the digit
s€E {0,1, - - ,d— 1} corresponding to the last branch
and a backward pointer p to the preceding digit-pointer
combination. When a path is extended from a node,
the d newly created pointers will point to the digit-pointer
combination of the former (again, we refer to the un-
modified algorithm of Section 3).

The following more specific description will generalize
somewhat the preceding notion.

An integer k is chosen and map storage space is al-
located in which entries V*(j) and Q*(j) at location j rep-
resent a sequence of k message digits and a pointer,
respectively. The stack parameter S(g) itself consists
of three parts: ¥{g), capable of representing k — 1 message
digits; I(g), representing the path depth; and Q(g), a pointer.
At the beginning V*(j) = Q*(j) = V(g) = Q@ =
Kg) = 0 for all jand g. As long as the path depth I(g) < k,
then Q(g) = 0 and V(g) = s1, -+ , Si(g), the message
sequence. As soon as a path s*™' is to be extended to
("7, 5, for the first time, we set V*(1) = ("7, 5), V(g) =
0, I(g) = k, and the pointer Q(g) is set equal to 1, thus
pointing to the first map location. In general, whenever
path extension occurs from a path s* to s*, where i is
not a multiple of &, neither the pointer Q(g) nor Q*(j)
is changed, no new entry in the map is made, I(g) is set
to i, and s; is added to the content of V(g). Suppose that
i is a multiple of k£ and that j is the first free location in
the map. Then the pointer Q*(j) is set equal to the old
pointer value Q(g), V*(j) is set equal to $;_3+1, """ 5 Sis
Q(g) is made to point to the map location j, and we make
Ig) = iand V(g) = 0. It is obvious that in this way the
entire path corresponding to any stack entry g is kept
available in the storage. In fact, the path digits s;, $,-1," -+
s; are represented in the registers V(g), V*(j1), - - - , V*(.),
where ji = Q(g), = = @*(j), -+, Jo = Q*(ji-1), and
Q*(j)= 0.

If it is desired to purge the map of entries made un-
necessary by path purges of the stack, this may be ac-
complished best by adding another register C*(j) at the
various map locations. C*(j) will at all times be equal
to the number v (< d*) of pointers pointing to the map
location j. Suppose the entry g is to be purged from the
stack and j; = Q(g). Then the value of C*(j;) is lowered
by 1. If the new value is not equal to 0 nothing further
is done, if it is equal to 0 and j. = @*(j,) then C*(j;)
is lowered by 1 and the j, map location is made available
to a pool for new refilling. The new value of C*(j,) is
similarly compared with 0 and, if it is 0, then C*(j;) [js =
0*(j»)] is in turn lowered by 1 and the j, map location
becomes available, etc.

IBM J. RES. DEVELOP.

Table 2 The path identification map for stack size greater
than 6 and k = 1.

Table 3 The path identification map for stack size equal to
3 and k = 1. Steps 1 and 2 are the same as in Table 2.

Step 1 Step 2
Node I Q@ V* Q* C* Node 1 @ w* Q% C*
1 1 1 0 o0 1 1 10 0 1
2 1 2 1 0 1 52 3 1o 2
6 2 4 0 2 1
o2

Step 4 Step 6
Node 1 Q V* Q* C* Node 1 @ V¢ 0+ c*
1 1 1 0 o 1 7 3 1 0 0 3
3 5 1 0 4 n 3 5 1 0 4
B3 7 0 2 2 B3 7 0 2 2
2 3 6 1 2 2 2 3 6 1 2 2
4 3 8 0 3 1 43 8 0 3 1
131 4 2 0 13
o 4 1 § 3 12 0 4 1
1 4 1 14
0o 1 2
Lo
0 9 1
19 1

Table 2 illustrates the map structure for the case of the
likelihood situation of Fig. 3 if the stack size is greater
than or equal to 7 and & > 1 (thus the ¥ entries are absent).
Table 3 does the same for the case in which the stack size
is limited to 3 entries.

Acknowledgment
The author thanks John Cocke for his inspiration and
many valuable discussions and suggestions.

References

1. J. Ziv, “Successive Decoding Scheme for Memoryless
Channels,” IEEE Trans. Information Theory IT-9, 97
(1963).

2. J. M. Wozencraft, Sequential Decoding for Reliable
Communication, MIT-RLE Tech. Rep. TR325, 1957.

3. R. M. Fano, “A Heuristic Introduction to Probabilistic
Decoding,” IEEE Trans. Information Theory IT-9, 64
(1963).

4. F. Jelinek, Probabilistic Information Theory, McGraw-
Hill Book Co., Inc., New York 1968.

NOVEMBER 1969

Step 3 _Step4
Node 1 Q@ v* g% C* Node 1 Q@ v* Q% C*
1 1 1 o 0 1 11 1 0 0 1
n 3 s 10 2 n 3 5 1 0 2
6 2 4 0 2 1 3 3 6 0 2 1
0 3 1 TR
0 3 1
0 4 1

Step 5 Step6
Node 1 @ W+ O* C* Node 1 Q@ W+ Q* C*
3 02 1 0 0 2 8 3 8 0 0 1
3 s 1o 1nm 3 s P02
13 3 6 0 2 1 3 3 6 0 2 |1
o2 o2
0 3 0 3 1
0o 4 1 0 4 1
o 1 1 o 11
171

5. F. Jelinek, “An Upper Bound on Moments of Sequen-
tial Decoding Efforts,” IEEE Trans. Information Theory
IT-15, 140 (1969).

6. F. Jelinek, “A Stack Algorithm for Faster Sequential
Decoding of Transmitted Information,” IBM Research
Report RC 2441, April 15, 1969.

7. 1. M. Jacobs and E. Berlekamp, “A Lower Bound to
the Distribution of Computation for Sequential De-
coding,” IEEE Trans. Information Theory IT-13, 167
(1967).

8. J. M. Wozencraft and I. M. Jacobs, Principles of Com-
munication Engineering, John Wiley & Sons, Inc., New
York 1965.

9. D. Falconer, “A Hybrid Sequential and Algebraic De-
coding Scheme,” Sc.D. thesis, Dept. of Elec. Eng.,
M.IL.T., 1966.

10. F. L. Huband and F. Jelinek, “Practical Sequential De-
coding and a Simple Hybrid Scheme,” Intl. Conf. on
System Sciences, Hawaii, January 1968.

11. F. Jelinek and J. Cocke, “Adaptive Hybrid Sequential
Decoding,” submitted to Information and Control.

Received April 10, 1969

FAST SEQUENTIAL DECODING

