646

P. M. Marcus
F. P. Jona
D. W. Jepsen

Energy Diagram Method for Bragg Reflections in
Low Energy Electron Diffraction (LEED) Spectra

Abstract: A point of view and a method of calculation derived from energy band theory are applied to the problem of finding energies
of Bragg reflections from a given crystal. Energy curves are defined and calculated which describe the behavior of individual diffracted
electron beams for a given set of beams incident on a particular face of the crystal. Intersections of these curves correspond to and
identify the Bragg reflections associated with each beam. Energy diagrams and Bragg peak positions are shown for simple cubic and
face-centered cubic lattices for various angles of incidence. We discuss the method in some simple cases and then solve the problem
of finding Bragg reflections from the general crystal lattice with an arbitrary surface plane and arbitrary incident beams. The effect of
the surface in producing well-defined diffracted beams for any incident beam and in grouping the Bragg reflections into these beams
is described. Tables and formulas, which apply to any direction of incidence, are given for the Bragg reflections from the (001), (110)

and (111) faces of the face-centered cubic lattice.

Introduction
Low energy electron diffraction (LEED) spectra are a
record of the intensity distribution of electrons diffracted
by a crystal surface in terms of three parameters, the
energy and two angles, which define the incident electron
beam. The diffracted electrons emerge from the crystal
in a finite number of discrete beams that can be recorded
individually. Figure 1 shows a typical curve of the
variation with energy for constant angle of incidence of
one diffracted beam, the 00 or specularly reflected beam
from a (001) surface of aluminum. The observed spectra
yield information about the electronic state of the crystal,
provided that the difficult problem of calculating the
scattering can be solved. One limiting case can, in fact,
be completely solved and that is the case of a vanishingly
weak crystal potential. In this case the problem reduces
to the calculation of Bragg reflections. Long ago the
problem was expressed as an explicit set of algebraic
relations embodied in the Laue or Bragg interference
conditions and was solved by the Ewald construction.
The solution in this limiting case is a useful guide to the
solution of the problem in which there is a finite potential.
The object of this paper is to present an alternative
method of solution of the Bragg reflection problem, which
we call the energy diagram method and which is closely
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Figure 1 Experimental energy dependence of the intensity
of the specularly reflected (or 00) beam from a {001} sur-
face of Al at nearly normal incidence. (The spectrum has
not been corrected to constant incident-electron current.)

related to the formulation of energy band problems. In
addition to providing a practical solution with certain
advantages over the Ewald method, the energy diagram
method is directly related to a particular crystal surface
and provides an immediate way of assigning each Bragg
reflection to a diffracted beam. Thus it gives useful insight
into the meaning of a diffracted beam and permits cal-
culation of the direction of such beams for any beam
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incident on a given crystal surface. These directions are
also part of Bragg reflection theory and do not depend
on the strength of the potential.

For initial information and later reference, it is useful
to state the interference conditions now and to compare
in general terms the Ewald and energy diagram methods
of satisfying them. The Laue or Bragg interference con-
ditions, which determine the scattered plane waves of
wave vector k°, produced by the effect of the crystal
potential on the incident plane wave of wave vector k',
can be written as a vector and a scalar equation:

k* = ki + mb, 4 nyb, + n3b, (1)
and
€ =)= ¢ = &)’ ®

The b,, b,, bs vectors are reciprocal-lattice basis vectors
and n,, n,, n; are integers. Equation (2) expresses the
condition of elastic scattering, so that the energies ¢ and
¢* of the waves are equal, as are the magnitudes of k' and
k°t.

In the Ewald construction the energy condition is the
first condition satisfied. One forms a spherical surface in
three-dimensional reciprocal space with radius &' and
an appropriate center and then one satisfies the three
conditions of the vector relation (1) by finding points of
the reciprocal lattice that lie on the surface of the sphere.
In the energy diagram method a set of curves in two
dimensions is constructed first. These curves automatically
satisfy two of the three vector relations in (1); the other two
conditions (on the third components of k* and k' and
on ¢ and ¢') are then satisfied by finding intersections
of these curves with each other. Because all the required
curves can be drawn on a two-dimensional graph, this
method is constructionally simpler than the Ewald method.
In addition, the energy diagram method immediately
leads to the idea of diffracted beams and to the Bragg
reflections associated with each beam] because there is a
particular curve for each beam and the associated Bragg
reflections correspond to the intersections of that curve
with other curves.

The energy diagram method is developed in three stages
of increasing complexity. First, the basic idea is applied to
the simple case of normal incidence on the (001) face of a
cubic crystal. This case permits natural introduction of the
energy curve for each beam and also the replotting of these
curves vs. reduced wave vector. The various Bragg reflections
associated with each beam are then indicated. Second, the
problem is generalized in two ways: We consider a more

1 Itisconvenient to use the units of band theory in which energy is expressed
in rydbergs and distance in Bohr radii; thus the energy of a plane wave
exp (ik-1) is e = k2,

1 The Bragg reflections are also described as being “assigned to” or “in™
a beam.
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general class of lattices and surfaces (although these
satisfy a special orthogonality condition) and we remove
the restrictions imposed on the set of incident beams.
(This latter generalization, however, complicates the defini-
tion of the individual beam curves.) Third, we describe the
application of this method to cases in which beams with
fixed orientation but with continuously increasing energy
are incident on the (001) surfaces of simple cubic (sc) and
face-centered cubic (fcc) lattices. The dependence of the
Bragg reflections on the polar and azimuthal angles of the
incident beam is shown directly.

Finally, the general problem of Bragg scattering by a
crystal lattice with an arbitrary surface plane is solved.
Now, for the first time, the surface is not built into the
coordinate system used and the complete set of Bragg
reflections is discussed without reference to a surface.
The general theory of the transformation of the indices
of a Bragg reflection between sets of basis vectors is given,
the effect of the surface in producing well-defined scat-
tered beams for all incident beams is analyzed and a
procedure is given for assigning all Bragg reflections to
the appropriate beam (which requires a suitable set of
basis vectors). This assignment procedure is demonstrated
for various surfaces of the fcc lattice and we include a
table which describes by their cubic components, i.e.,
by their components along the usual cubic axes of the
fce lattice, the Bragg reflections in ten beams from the
(001), (110) and (111) surfaces. The energies at which the
Bragg reflection peaks appear in the LEED spectra for
any incident beam direction can be calculated readily from
these components. The generalization of the energy dia-
gram method to the case of a general lattice and surface
and an arbitrary incident beam is described in detail.

The complete set of Bragg reflections in each beam,
corresponding to the complete set of intersections of that
energy curve with other energy curves, implicitly indicates
all possible peaks in the LEED spectra of the various
beams (with one interesting exception). This paper does
not include a discussion of the detailed correspondence
of the Bragg reflections to the possible peaks, but we note
that the peaks can be classified as primary, secondary and
tertiary. The primary peaks are understood readily as
the result of a single Bragg reflection; explanation of the
other classes of peaks can be made with a simple multiple
scattering rule for plane waves in a crystal with a specified
surface. In the rule the concept of “incomplete Bragg
reflection” is introduced and used in a chain of reflections.
Thus knowledge of the positions of Bragg reflections makes
evident the maximum possible number of LEED peaks
and allows one to estimate the peak energies; however,
the solution of the general (dynamic) scattering problem
with a finite crystal potential'*> must be available before
one can estimate the LEED intensities and actual positions
of any of these peaks.
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Figure 2 Energy ¢ of a beam incident normal to the (001)
surface of a simple cubic lattice as a function of the normal
component k. of the wave vector.

Bragg reflections of a normally incident beam

The energy diagram method of locating Bragg reflections
is conveniently illustrated by the simple case in which a
beam is incident normally on the (001) face of a cubic
lattice. For this case k' = (0, 0, £'), where the z axis
is normal to the surface. The first graphic curve used
represents the energy of the incident beam as a function
of k,, ie., e(k,) = kZ; this is shown in Fig. 2. The basic
curve of the energy diagram method is then obtained by
plotting e vs. [k.], the reduced value of k,.T Here we use
the symbol [k,] to denote the residual value of k. in the
range —w/a to +/a after integral multiples of 27 /a, the
magnitude of the shortest reciprocal-lattice vector in the
z direction, have been subtracted from £,; i.e.,

[k,] = k, mod (2r/a)
=k, — 2anz/a.

(3)

Similar definitions apply to [£.] and {k,). The plot of e
vs. [k.] converts the continuous curve e(k,) into a char-
acteristic ladder-like structure over the range —w/a <
lk.] £ w/a. Each branch of the curve has an index ny;
i.e., the function e(k,) for — © = k, £ o« is equivalent to
the set of functions e,,([k,]) for n;, = 0, =&=1, &2, --- and
—w/a < [k.] £ w/a, as shown in Fig. 2. If we make use
of the symmetry in k, of the energy curve, e(k,) = e(—k,),
which exists in our applications (although more general
cases can occur), the entire energy curve is completely
described in the standard range 0 =< [k,] £ #/a used in
succeeding diagrams.

T The concepts of reduced wave vector, reduced Brillouin zone and free-
electron energy diagram are well known and fundamental in solid-state theory.
For further definitions, discussion and illustrations see, for example, Ziman3
(p. 20 et seq.) and Slater* (p. 250 ef seq.).
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At the intersections of the successive branches of the
reduced curve, which occur at the edges [k,] = 0 and «/a
of the standard range, the wave vectors on the two branches
have the same values of ¢ and [%.]; also [k.] = [k,] = O for
normal incidence. Thus the Laue conditions are all satis-
fied if one of these wave vectors is k' and the other is
k°. Because only &, changes (from positive for the incident
wave, assumed to be traveling toward increasing values
of z, to negative for the scattered wave), this particular
intersection represents a principal Bragg peak correspond-
ing to specular reflection of the normally incident electron
beam into the 00 reflected beam.

We now introduce a new set of energy curves e,,,,(k.),
n, n, = 0, =1, &2, ---, which are obtained by adding
reciprocal-lattice vectors in the surface plane to k'; i.e.,

€nn(k.) = Qmny/ay + (2mn,/a)* + k-,

When e,,,, is plotted vs. {k£,], a sct of branches in the
standard range is obtained which can be labeled
€ninan.1k.]). At each intersection of two branches the
Laue conditions are again satisfied for any n,, n,, 13 because
[k.] = [k,]1 = O for all curves in the diagram. The intersec-
tion of e,,(= €.,) With any other branch e,_,,,, (1, n; not
both zero) corresponds to a Bragg reflection in which
k, and k, change; hence the scattered wave is not the
00 beam. A primary Bragg peak is expected in the nn,
beam at this energy and the dynamical theory shows that
appreciable intensity can also occur in the 00 beam, thus
constituting a secondary peak.}

Generalized free-electron energy curves and the
location of Bragg reflections

Consider a semi-infinite crystal with periodicity in the
plane parallel to the surface specified by basic reciprocal-
lattice vectors

b, = byl + b,
and @
b, = b,,%, + bl

where 7, and 7, are unit vectors along rectangular axes in
the plane (Fig. 3); b, and b, need not be primitive vectors,
although the discussion is simpler when they are primitive.
We treat a special class of orthogonal lattices in which
the surface plane contains two of the reciprocal lattice
vectors, b, and b,, while the third, b;, is perpendicular
to the surface. Again b; need not be primitive, but use of
the primitive vector simplifies the problem.

The set of incident beams is now generalized to any con-
tinuous variation of the energy and orientation parameters
determining k. We can think of following a curve in k

I A more detailed discussion of the correspondence of intersections of
energy curves with the various kinds of Bragg peaks is given in the next section.
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space (which differs from reciprocal-lattice space by the
factor 2w) specified by parametric equations of the form
ki = k@), ki = k() and ki = k,(¢). Note that the energy
is also a function of the parameter ¢ (for simplicity this
function will be assumed to be monotonic),

) = k0" + kO + kO, &)

and can be plotted vs. k,(f) to obtain the curve e(k,)
indicated in Fig. 2. However, the basic plot used to locate
diffraction peaks is the curve of ¢ vs. [k,], the residual
value when integral multiples of b; are subtracted from
k, to obtain a reduced value in the range — 16, < [k.] =
1p,. If the symmetric energy curve at —k, is also re-
duced in this way, the complete e curve is given by a
series of branches in the smaller standard range 0 =<
[k.] £ 1b;. Each branch has an index #z such that

k. = [k,] 4+ nybs. ©®

Now we construct from e(k,) a discrete set of curves
€...(k,) corresponding to the integral indices n,, n, = 0,
41, 42, --- . These are obtained by plotting e(¢) against
a function &:(¢) defined by

[k (i, 4 ky(DF, + mb, + mb,]" + k(@)
= k() + k() + k() = 1), Q)

Thus k;(¢) is a new value of the z component of k(r) which
preserves the energy e(f) by compensating the addition
of a reciprocal lattice vector in the x-y plane to the com-
ponent of k parallel to the surface [in Eq. (7) this vector
is mb; + msby). The transformation from e(k,), which
is also denoted by ey (k.), to €,,,.(k.) is shown in Fig.
4. As n, and n, increase in magnitude, the minimum
value of ¢ for which (7) has a solution for real k] will
increase, so that at a given e only a finite number of curves
€n,n, CXIStS.

If all the curves e, ,, are now translated into the standard
range of [k.] as in Fig. 2, so that each curve becomes a
series of branches labeled by an n; value, all intersections
of the various branches correspond to Bragg reflections
and the true nonreduced k values on each pair of inter-
secting curves are related by the Laue conditions. This
latter result follows directly from the construction of the
€..n, curves which provides that, if two points on two
€.,n, Curves have the same energy, the surface-plane com-
ponents of their wave vectors differ by a reciprocal-lattice
vector.t Because the occurrence of an intersection means

t In the preceding section, which treats the case of a normally incident
electron beam, all points on the curves in the energy diagram have k. and ky
values that differ by reciprocal-lattice vectors (i.e., [k:] and [ky] are the same
and, in fact, are both zero for normal incidence). The more general case
treated in this and the following section cannot be based on such a simple
relation; one replaces it by making the k» and ky values for points with the
same energy on different curves differ by reciprocal-lattice vectors. These
transverse components vary in magnitude as we follow any one curve.
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Figure 3 Geometry of the semi-infinite c¢rystal showing the
orthogonal unit vectors i, #,, {. and the basic reciprocal-
lattice vectors b, be, bs; by and bs are in the surface plane
and b, is perpendicular to the surface.

Figure 4 Construction of the curve e, ., (k.) from the epolk.)
curve [see Eq. (7) in the text].
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that the energies corresponding to points on two curves
are equal and that the [k,] values of those points are
also equal (the k, values differ by a reciprocal-lattice
vector), all the conditions contained in Eqs. (1) and (2)
are satisfied.

We now indicate the relations between these intersections
and the peaks in the beam intensities, but do not give a
detailed discussion. The intersections of an energy curve
€n,n, N the reduced diagram are of two kinds: (1) inter-
sections with €, and (2) intersections with €,,,,, ¥ €.
Intersections of the first kind correspond to a primary
peak in the mn, beam and to secondary peaks in all
other beams at the same energy (this includes the case
nn, = 00). Intersections of the second kind with nn, 7 00
correspond to secondary peaks in the m;m, and n.n; beams
and to tertiary peaks in all other beams. As the crystal
potential increases in strength, the peak positions shift,
usually to lower energies because the average potential
is negative. In general, primary peaks are stronger than
secondaries, which are stronger than tertiaries; quantitative
evaluation of intensities, positions and widths requires
solution of the multiple scattering problem.

This exhaustive classification of peaks and their cor-
respondence to the intersections in the energy diagram
can be understood qualitatively from simple multiple
scattering considerations.t The existence of secondary and
tertiary peaks is explained by the following tentative rule
(suggested by detailed calculation) for the occurrence of
“incomplete Bragg reflections”: Given a plane wave of
energy e propagating in the lattice, scattering will occur
with strength dependent on the potential into plane waves
which (1) have the same ¢, (2) satisfy the Laue conditions
on k, and k, but not on k, and (3) have the same orienta-
tion in the lattice with respect to the surface (i.e., the
same sign of k,).I Thus scattering can occur into other
waves without intersection of the corresponding energy
curves; the curves need only have the same slope. The
abandonment of the Laue condition on k, corresponds
to the loss of complete translational symmetry in the
z direction due to the presence of the surface and is dis-
cussed in more detail later. Then, with this rule, it is
easy to show that intensity in the various peaks can be
built up by a chain of at most three reflections. One of these
must be a complete Bragg reflection (requiring an inter-
section of two curves) which reverses the direction of the
z component of the wave; the others are incomplete
Bragg reflections (of the type defined above) in the forward
or reverse directions, at most one in each direction. These

t Wattst describes LEED intensities from the point of view of multiple
scattering of plane waves and obtains the three kinds of peaks from his
formalism.

1 Some scattering occurs into waves with the opposite direction in the
lattice, but this scattering appears to be weaker than that into the same
direction; hence, for the qualitative purpose of locating peaks we ignore this
additional scattering.
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latter reflections require the presence of other, noninter-
secting, curves at the energy corresponding to the peak.§
A relation between the energies and the k, values at
which diffraction peaks appear can be obtained from Eq.
(7) by setting k* = k, + nib; (n} denotes the change in
k. in the diffraction process and is equal to the difference
n; — ny, where ki = [k7] + n3bs); this procedure gives

2k, (mbyy + nybm) + 2k,(mbra + nabas) + 2k.risb
= _[(”1b11 -+ ﬂzb21)2 + (n1b12 + n2b22)2 + (ngb3)2].(8)

For given values of n;, n, and S and for general functions
k.(), k, () and k,(?) defining the incident beam, Eq. (8)
is an implicit equation for the values ¢4 at which diffraction
takes place; from z4 the corresponding values of e(z;)
and k,(ty) can be determined.

For the special functional forms in the important case
of a beam incident at a fixed orientation with respect to
the surface, we have

k., = k sinf cos ¢,

»
<
I

k sinf sin ¢, (9)
k, = k cosf

and the parameter ¢ is the amplitude k¥ = €!. Then we
obtain from Eq. (8)

¢ =k
= —[(mby, + nybs)
+ (mbia + noben)® + (3hs)°]
+ {2[sin @ cos ¢ (m;b1y + nsb2y)]
+ 2[sin 6 sin ¢ (n,bry + n:by2)
+ cos 0 (n3b3)]}. (10)

This expression is simplified further in the cubic lattice
applications for which b, and b, are parallel to the x
and y axes.

Application to the simple and face-centered

cubic lattices

The application of the energy diagram method to the
(001) face of the simple cubic (sc¢) lattice is shown in Fig.
Sa. This diagram differs from Fig. 2 in that a normalized
energy scale ea® is used (applicable to sc lattices with
any value of the cubic cell edge ) and the wave number is

§ An exceptional case occurs when two intersecting reduced curves have
slopes with the same sign. Then, as pointed out by Jennings and McRae,$ no
LEED peak is produced. This case can also be understood from our rule
because this Bragg reflection does not reverse k. and any incomplete Bragg
reflection cannot reverse k.. Hence no reflected wave can be produced
because no step in the chain can reverse k.

9§ Equation (10) is equivalent to one given by Laue in the analysis of x-ray
diffraction.”
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Figure 5 Free-electron energy diagrams for a beam inci-
dent normally (¢ = ¢ = 0) on a (001) surface of (a) a
simple cubic lattice and (b) a face-centered cubic lattice.
The line spectrum on the right-hand side of each diagram
is the possible 00 spectrum for the case considered. The
ordinate unit is rydberg-(Bohr radius)?.

reduced to a dimensionless scale [£.a] that is independent
of a. In addition, the higher order bands e,,,.([k.a]) with
n; and n, different from zero have been introduced and the
ny, ny, ny values have been used to label the branches of
each band. For the case of normal incidence, the higher
order bands are all degenerate; thus the 100 branch also
refers to the 010, 100 and 010 branches, etc. All inter-
sections of the branches of the 00 band (drawn as solid
lines) with each other or with branches of higher order
bands (dashed lines) indicate the energies of the Bragg
peaks (primary and secondary, respectively). The 00 Bragg
reflection spectrum is shown at the right of the diagram
(Fig. 5a); the reflections are drawn as horizontal lines,
those corresponding to the primary peaks being longer and
continuous. Not all lines will appear with appreciable
strength in the actual spectrum (the detailed theory of
scattering by the crystal potential is needed to determine
the intensities), but the Bragg spectrum in Fig. 5 indicates
which lines are possible. In general, the primary peaks
corresponding to electrons scattered directly into the 00
beam are stronger than the secondaries.

The diagram in Fig. 5b is a similar plot for normal
incidence on the (001) face of a fcc lattice. The normalized
energy scale includes a factor 47% to relate it to a crystal
with the same atom density as the sc crystal (a is always
the unit cell edge, not a primitive cell edge in the fcc case).

t To obtain the complete Bragg spectrum, the positions of the tertiary
peaks should also appear on the right-hand side of Figs. 52 and 5b.
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The energy diagram for normal incidence (8 = 0) on
the (001) face of the sc lattice is shown in Fig. 6a. Cases
of oblique incidence are shown in Figs. 6b and 6c. In Fig.
6b 8 = 6° and ¢ = 0; some but not all of the degeneracy
of the bands is removed; e.g., the 01 and 01 bands and
the 11 and 11 bands are still degenerate (only the initial
branch of each band is labeled). All of the degeneracies
are removed in the example of Fig. 6¢ in which 8 = 6° and
¢ = 26°34’. The 00 Bragg spectrum on the right-hand side
of each diagram shows an increasing number of secondary
lines as the degeneracy is removed progressively.

Figure 7 is similar to Fig. 6, but applies to the (001) face
of a fcc lattice. As in Fig. 5, the ny, n, labels of the band
are different from the sc case (only n;, n,, n; all even or
all odd are allowed).

The angular dependence of the Bragg lines is shown for
the fec lattice in Figs. 8 and 9; here only the intersection
points of the 00 branches of Fig. 7 are plotted as functions
of angle. In Fig. 8 the § dependence of primary peaks
(solid lines) and secondary peaks (dashed lines) is shown
for two values of ¢; in Fig. 9 the ¢ dependence is shown for
two values of 8. These curves are based on Eq. (10)
specialized to the case by = by = b; = 27/a, by =
bz = 02

} —w(m + ny + n5’)

€a =

- (nicos ¢ -+ n, sin ¢) sind 4 nj cosd

A vertical section of Fig. 8 or 9 gives the discrete Bragg
spectrum as a function of energy at the particular angles
selected by the section; a horizontal section, however,
gives a Bragg spectrum as a function of one angle at
given values of the energy and the other angle. The princi-
pal Bragg peaks are independent of ¢ and change slowly
with 6 for small values of 8. The secondary peaks, how-
ever, show stronger 6 and ¢ dependence.

Bragg reflections for a general lattice

Bragg reflections in special simple situations, namely
when two reciprocal-lattice basis vectors are in the surface
plane and the third is perpendicular to the plane, were
discussed in the preceding sections. This class includes
many of the important practical cases and was used for
easy introduction of the energy diagram for the beams of
a particular surface and for identifying Bragg reflections
by intersections of two energy curves or beam lines on the
reduced plot. The reflections occurring in a particular
beam can be determined by the intersections of that beam
line with other beam lines. However, if more general cases
are to be studied it is necessary to solve the problem of
locating Bragg reflections for a general lattice and to
assign those reflections to the various beams character-
istic of an arbitrary surface plane. The solution includes
the previous special cases, but requires more-formal
development and notation. Tt is convenient to discuss
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Figure 6 Free-clectron energy diagrams for a beam incident with orientation (a) 6 = ¢ = 0 (normal incidence); (b) 8 =
6°, ¢ = 0; and (c) 0 = 6°, ¢ = 26°34’ on a (001) surface of a simple cubic crystal. The ordinate unit is rydberg-(Bohr

radius)?,

first alt the Bragg reflections of a crystal lattice for a given
set of incident beams without reference to a surface and
without assigning the reflections to beams. Then a surface
is introduced, the definition of a beam is established and
the Bragg reflections are classified according to the beam
in which they occur on each surface. Finally, explicit
application to various surfaces of the fcc lattice is de-
scribed. i

&

ja

o Integral indices and energies of all Bragg reflections

Let the general lattice be described by a basis set of
reciprocal lattice vectors b;, j = 1, 2, 3%; the discussion of
Bragg reflections does not require the use of coordinate-
space lattice vectors, which we introduce later. Consider
a set of incident beams k'(r), where ¢ is a continuously
varying parameter specifying a member of the set. The

t The basis vectors b; include a factor of 2« in their definition as shown
in Egs. (19) and (20). This inclusion is customary in band theory because
the b; form the basis for k space, which is related to reciprocal-lattice space
by a factor of 2=.
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special case of a beam with fixed orientation but with
nonconstant |k| or e is of particular interest. In this case
k (or € = k°) serves as a parameter and we set

k' = kk(8, ¢), an

where k(8, ¢) is a unit vector oriented at angles 4 and ¢
with respect to suitable axes fixed in the crystal lattice.
The effect of the lattice on the incident wave is to scatter
that wave into the set of scattered waves k* obtained by
adding a general reciprocal-lattice vector to k',

k® = ki + (nlbl + n2b2 + n3b3) = ki + n, (]2)

The plane wave exp (ik®-r) has the same translational
symmetry as the plane wave exp (ik’- r); the added terms
b; do not affect the phase factor of the wave when r
changes by a lattice vector R. However, the scattered
wave does not have a strong amplitude unless the addi-
tional condition that the scattered and incident waves have
the same energy (or |k*| = [k']) is satisfied, in which case
the wave is said to be Bragg-reflected. Thus the scattered

IBM J. RES. DEVELOP.
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Figure 8 Dependence of the energy of Bragg peaks in the 00 reflected beam on the polar angle of the incident beam for (a)
¢ = 0 and (b) ¢ = 20°; the surface is a (001) plane of a face-centered cubic lattice. Principal Bragg peaks are represented
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wave is Bragg-reflected only for discrete members of the
incident wave set that satisfy the relations (13) or (14):

reciprocal-lattice vectors n are obtained from all integral
sets of values of n;, n,, n;. However, if the b; are non-
primitive and, say, 8x°Q"" is a fraction N7 of the maxi-

ki f3 2 — i 2 — 1

'@ + nl K@) <« a3 mum cell volume, then n,, n,, n; take on only the fraction
which is equivalent to N~' of the possible integral sets. This difference is il-
() n = —n’. 14) lustrated later with cubic bases for the fcc lattice for which

For the case of a beam of fixed orientation as in Eq. (11),
an explicit solution of Eq. (14) for the energy €,,,., of the
Bragg reflection denoted by integral indices ny, ., n; is

€nimane = 30*/[K'(8, ¢)-1]°, as

which generalizes Eq. (10). The energies of the complete
set of Bragg reflections for the given lattice and the given
orientation 6, ¢ are obtained from (15) by using all allowed
values of n;, ny, n; and the known values of by, b,, bs, % and
their scalar products.

If the basis set b; is a primitive set,i.e., if the cell volume
87°Q ™" = b, b, X b; is the maximum value (correspond-
ing to the minimum volume Q of the lattice cell), all
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N = 4.

o Transformations of basis and of Bragg reflection indices
The integral indices #; depend on the basis set and are
not unique. Alternative indices n,’, ny’, ns for a Bragg
reflection can be found by introducing a new basis b,’ and
by expressing n in the new basis; i.e.,

n = mb, 4+ mb, + nby = n;b;
= m'b + m’by’ + ny'by’ = n;’b;’, 16)

where a repeated literal subscript implies summation over
the values 1, 2 and 3. If the b;’ are obtained from the
b; by the linear transformation

b;! = Tj;by, an
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the transformation on the n;’s is
n’ = niT-;llp’ (18)

where the T7; are the elements of the matrix inverse to
T;.. If the T, are integers and if the value of the deter-
minant |T| is 1, the T, are also integers and the #,’ are
integers which take on the same sets of values as the
m..t If |T| = N %, as in the transformation from a primitive
to a nonprimitive basis set, the unit cell of the b;’ is one-
Nth the size of the unit cell of the b;; the T, and
n,,’ are again integers, but the n,” do not take on as many
values as do the n;.

o Crystal surfaces and the occurrence of beams

In contrast with the analysis of the introductory sections,
all Bragg reflections have now been described and their
energies determined without reference to a surface. To
complete the discussion an arbitrary surface is introduced
and all Bragg reflections are assigned to the beams that
characterize that surface. This assignment is carried out
most easily by using the particular basis set that refers to
the plane of the chosen surface. To describe that plane
we need the basis vectors a;, £k = 1, 2, 3, for the lattice in
coordinate space, which allow any lattice translation
to be described as R = /.a,. The a, are related to the
b; by

ak‘b,‘ = 27|'61'k; (19)
b; = 27a, X a,/Q,
Q= a;-a, X a,. 21
Transformations to other basis sets a,’, corresponding

to the b;’ and cell volume &, are made with the same
T, used in Eq. (18), namely
a,’ = a;T;, and (22)
¥ =T Q. (23)
We consider a surface plane that contains the two basis
vectors a,’ and a,’. This is a sufficiently general specification
of a plane for all practical purposes because such planes
can be chosen arbitrarily close to any desired plane. Let
a,’, a,’ be primitive vectors in the two-dimensional lattice
of the surface plane (the surface net) and choose an
a;’ such that a,’, a,’, a;’ form a primitive set, which is
always possible (see the Appendix). We can now describe
the scattering of an incident plane wave beam exp (ik' - r)
by a crystal with this lattice and this surface plane. The
incident beam is scattered into a set of plane waves of the
form exp (ik®-r), where the scattered wave vector k° is
related to the incident wave vector k' by Eq. (24):

k= ki + nl'bl' + n21b2' + I’C:x’bsl; (24)

J, k, I in cyclic order; and (20)

t For example, if both sets of b; and b, vectors are primitive sets, the
indices nx and ni’ take on all integral values, i.e., all combinations of three
integers, positive or negative.
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here n,’ and »,’ are arbitrary integers, but ks’ need not be
an integer. Each such scattered wave has translational
symmetry for displacements parallel to the surface plane;
i.e., translation through a lattice vector R = /’a,’ 4
L'a,’ affects exp(ik'-r) and exp(ik®-r) the same way
and leaves the phase factor exp (ik*-R) unchanged. Note
that we do not require that translational symmetry be
preserved for translations out of the surface plane, i.e.,
for an R with a term ;’as’. This omission is appropriate
because the surface discontinuity breaks the translational
symmetry for displacements out of the plane.

The condition that the energy of the scattered wave be
the same as that of the incident wave (the assumption of
elastic scattering) determines ks’ for given k', n’ and n,’
and for any € by the relation

e = (k' 4+ m'b)’ + m'by + ky'by)y’ = (&')". 25

For e large enough, or n,’ and n,’ small enough, Eq. (25)
has two real solutions for ks’ corresponding to two scat-
tered plane waves, each with wave vector k*, which have
opposite components in the direction of the surface normal;
thus one wave will always come out of the crystal.

For a general scattering potential with the given sym-
metry, a crystal with the given surface, and any k', some
intensity can be expected in each of the scattered beams
coming out of the crystal. The beams are finite in number
at any e and exist and shift continuously in direction as
the incident beam changes continuously. These are, in fact,
the LEED “spots™ for the given crystal surface and they
are designated by the indices n,/, ' = 0, =1, &2, --- .1

At certain discrete values of e the corresponding k,’
satisfies the additional condition that ks’ = ny’; in this
case k® and k' satisfy all the conditions for Bragg reflec-
tion. Thus the Bragg reflections assigned to or associated
with the n,'n,’ beam are the n,'n,'ny’ reflections for all
integral values of ny’. By transforming the indices n)/,
n', ny’ back to indices n;, 1y, 13 in some common reference
basis set by, b,, by, we can identify all Bragg reflections
n; N, h assigned to particular beams for the surface defined
by the vectors a,’ and a,’. For the fcc lattice the natural
common basis set is the cubic basis.

o Energy diagrams for the general lattice

As a final stage in the solution of the general problem,
energy diagrams analogous to those used earlier can be
introduced to describe the different beams. If Eq. (25)
is solved for k' for each e, the total by’ component of the
scattered wave vector is

Ky = ki’ + k' = [k +n', —1=[k¥] <1, (26)

1 The weakened interference condition (25) for beams, as contrasted with
the full interference conditions (1) and (2), corresponds to introducing “rods™
in k space through the reciprocal-lattice points parallel to bs’ (hence perpen-
dicular to the surface). The Ewald sphere always intersects these rods and
thus indicates LEED spots at all energies in definite directions.
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where ny’ is an integert and [£}’] is the reduced value of
k3’. For each pair n,’, n,’ a separate curve ¢ vs. [k;’] can
be plotted over the range —1 to 1, so that each beam is
represented by a ladder-like succession of curved branches
€, 'narne ([K3']) for my’ = 0, £1, £2, --- which are
continuous at the boundaries 1 and —1. Note that for
m' = ny' = 0, one solution of Eq. (25) is ks’ = 0; hence,
k* = k', the incident beam wave vector. The other solution
is ks’ = —2ki’; hence, ki’ = —k}’, which corresponds to
the specularly reflected wave, i.e., the incident wave with
its component normal to the surface reversed.

The intersections of the branches of the 00 beam curve
corresponding to the incident beam (i.e., eg,, (k3]
where [k3’] = [ki’]) with the branches of the #,’n,’ beam
curve corresponding to scattered waves leaving the crystal
determine Bragg reflections in the beams leaving the
crystal. This is a consequence of the fact that at each
such intersection k° and k' differ by a reciprocal-lattice
vector but correspond to the same value of e. For the
two branches involved

K = (k' + m)b 4 (k' + n')by

+ (k3] + n'(ny”, my) by’
on the n,’n,’ beam curve and
K =k'b' + k'b + {[k] + n5'(0, 0)}by’
on the 00 beam curve, where ny’'(n,’, n,’) denotes the value
of the n,’ .index on that branch of the n,’n,’ curve. Since
[k3'] = [k;'] at the intersection,
K — k' =n/b’ + n' b’ + ny by, (27)
ny' = ny'(n/, ny') — ns’(0, 0) (28)
and the intersection corresponds to the Bragg reflection

n'ny'n’. If by’ is directed into the crystal, the incident-
beam branches of the 00 beam curve have, successively,

n'(0,0) = 0(ky’ > 0),1,2,3, .-+, while the outgoing-
beam branches of the n,'n,’ beam have ny'(n’, n') =
0k < 0),—1,—2, —3, -+ . Therefore ni’ < 0 from
Eq. (28).

s Application to faces of the fcc lattice
First define the cubic basis vectors

a, = af,, b, = 2w/a)t,,
a, = ab,, b, = 27/a)i,, (29)
a; = ai"g, b3 = (27|'/a)i3,

1 The integer ns’ in Eq. (26) is not the same integer as in the discussion of
Eqg. (25), where n3’ corresponds to the special integral values of k3’, because
an additional integer comes from replacing ks’ by its reduced value in (26).
However, it is convenient to use s’ for the integer in both cases.

{ Note that b3’ is perpendicular to the surface plane because ai’ and a,’ are
in that plane.
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where 1), f; and f; are unit vectors along the three cubic
axes and a is the length of the edge of the cube. Any other
basis vector can be specified by its components in the
cubic basis system as a set of three numbers written in
parentheses. Thus a primitive set of basis vectors for the
fee lattice can be expressed as

=031, =011,
ai=@(0%, =111, (30)
aa=@(30, bB=(011,

D=

o=

where, for example, a = (0 4 3) means a} = $a, + fa;
and b> = (111) means b® = —b, + b, -+ b,, etc. From
Eq. (22) we see that the components of a] in Eq. (30) are
equivalent to the elements of the transpose of the matrix
T~ which transforms cubic basis vectors into the primitive
basis vectors. Since |T™'| = 1 it follows that the deter-
minant of the cubic-axis components of any primitive
vector set is equal to 1, a condition that is useful in check-
ing the primitive sets introduced below. This value of
IT™| corresponds to Q@° = 1Q and to the presence of four
equivalent atoms in the cubic unit cell.

The assignment of Bragg reflections to beams for the
(001), (110) and (111) surfaces of the fcc lattice requires
that a primitive basis set be found for each plane with
a,” and a,’ in the plane and that the Bragg reflections in
the n,'n,’ beam for that surface (which are given by integral
values of #;") be transformed to the cubic indices »,, n, and
n; by the operation inverse to that of Eq. (18), namely
n, = n;'T;,. Suitable sets of basis vectors for these sur-
faces and the corresponding transformations of indices
are listed in Table 1.

The formulas given for n,, n, and n; in Table 1 were used
to determine explicitly five Bragg reflections associated
with each of ten beams for the three faces of the fcc lattice
(Table 2). With the convention that b;’ is directed into
the crystal, only values of n;’ < 0, corresponding to beams
outgoing from the surface, are listed in Table 2. The
n;’ and n,’ values form an arbitrary but systematic enumera-
tion of all beams. If values of n,’, n,’, n;’ with ny’ > 0 are
of interest, the corresponding n,, n,, n; values can be
obtained by reversing all the signs in the row containing
—n/,— n’', — n'.

The ny, n,, ny indices for the (001) surface show that
fixed values of n, and n, still characterize each beam, as
might be expected because the cubic basis vectors a, and
a, are in the (001) plane. However, because the set a;,
a,, a3 is not primitive, only certain index sets n,, n,, n; are
allowed, namely all even or all odd integers (one-fourth of
the possible sets), and the indices of the beams change;
e.g., the 10 beam becomes the 11 beam while the 11 beam
becomes the 20 beam.

The Bragg reflection n, n; n; appears in different beams
for different surfaces; e.g., the 111 reflection is assigned
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Table 1 Basis vectors and index transformations for three surfaces of the face-centered cubic lattice.

Surface plane Coefficient
tri
(001) { (110) (111) e
&/ G310 | G310 ©3 3
a,’ G 1o } ©01) Gob T
a) CREY © 33 G 3o
b,’ aitny (2 0 0) 111
b,’ a1 ain a1 T
by’ 0 0 2) } 220 a1n
n n' + ny' l =20/ — n' + 2ny —~nm’ + n' — ng
Ny ”1/ - ”z, ’ - nz, + 2’13' ny nzl — N3 (T)T
ny m' — n' — 2ny ns’ ~n — n' — n;
ny’ %nl + %nz -%”1 + %”2 %nz - ‘%"3 l
111/ %”11 — gk ny %’11 e %”3 (Tﬁl)T
ny’ tny, — 3ny tn, + 3ns —in, — in,

to the third beam for the (001) surface, to the seventh
beam for the (110) surface and to the fourth beam for
the (111) surface. Using the formulas for »,’, n,’, n;' in
Table 1, one could easily prepare a table enumerating
ny, ny, ny systematically (as was done for n)’, n,/, ny’ in
Table 2) and list for each surface the »,’, #,’, 1y’ values, thus
identifying the beam in which that reflection appears by
the n,’, n,’ values.

For each Bragg reflection specified by its cubic indices,
the corresponding energy of a beam incident at angles
0, ¢ with respect to the cubic axes is calculated using Eq.
(15), which can be put in a simple form for cubic basis
vectors; we find

€ningng

3

: (nf + 12+ )’

a® (n, sin 6 cos ¢ + n, sin §sin ¢ + n; cos 0)5'

(3D

“The beam labels n,’, n,’ vary with the choice of primitive
vector set, but the set of Bragg reflections or the set of
73, Ny, ny values associated with a particular beam is fixed
by the surface and does not change. Consequently the
energy values e,,,,,, of the Bragg reflections associated
with one beam for a given direction of the incident beam
do not depend on the choice of basis vectors.

Two characteristic properties of the Bragg reflections in
a given beam should be noted particularly: (1) The vectors
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n corresponding to these reflections all have the same
component parallel to the surface and differ only in the
value of the component perpendicular to the surface.
(Recall that in the b,’, b,’, b;’ basis system these vectors
differ only in the value of ny’.) The Bragg reflection
points are on the rods described in the discussion of Eq.
(25). (2) The Bragg reflection vectors associated with a
given beam differ by multiples of /;, &, /5, the Miller indices
of the surface plane. This property is obvious in the a,’ and
b;’ basis sets because in these sets the Miller indices are
0, 0, 1. The property is established in the a; and b; basis
sets from the transformation relation

by = Tyb, = hb, + hby, 4 Lb;

because by’ is the normal vector and n, = n,'T;,. There-
fore, differences between the indices of any pair of Bragg
reflections associated with the same beam can be expressed
as

An, = Ans'Tsy) = (Any),
because n;" and n,’ are constant for a given beam.}

t Alternatively, because Bragg reflections in the same beam differ only by
a reciprocal-lattice vector along the normal, the reflections differ only by
multiples of hb1 + Izbs + Isbs, where ly, I2, Is are the Miller indices of the
surface in the bj basis. That is, ni* — n; = gli, i = 1, 2, 3, where n:* and n:
are the indices of two Bragg reflections in the same beam and g is an integer.
For the 00 beam all Bragg indices have the form gh, gls, qls.
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Table 2 Beam assignments of Bragg reflections from three surfaces of the face-centered cubic lattice.

n, Hy A3 Hy Ho H3
Beam | n)’ n, ny'f Beam | n,’ ny’ ny't

(001) | (110) | (111) (001) | (110) | (11)

000 000 | 000000 110 200 | 311(002
001 002 | 220|111 111 202 | 531|111

1 002 004 | 4240222 6 112 204 | 7511220
003 006 | 660|333 113 206 | 971331
004 008 | 880|444 114 208 |1191|442

100 111 1] 200111 110 022 | t11}220

101 113 420|020 111 020 | 131311

2 102 115 | 640|131 7 112 022 | 3511402
103 117 ] 860|242 113 024 | 571|513

104 119 (1080|353 114 026 | 791)624

010 111 | 111|111 110 200 | 311002
011 111 331/200 111 202 111113

3 012 113 | 551(311 8 112 204 | 031224
013 115 | 771422 113 206 | 251(335
014 117 991{533 114 208 | 571446
100 111 200|111 110 022 (| 111]220
101 1111] 0200202 111 024 | 311]131

4 102 113 ] 240(313 9 112 026 | 531042
103 115 460424 113 028 751153
104 117 680|535 114 0210 971264
010 111 | 111|111 200 222 | 400|222
011 113 111022 201 224 | 620131

5 012 115] 331)133 10 202 226 | 840[040
013 117 5511244 2073 228 |1060]151
014 119 771[355 204 22101280262

t Primed indices refer to the primitive basis vectors listed in Table 1; unprimed indices refer to the cubic basis vectors.

Appendix: Primitive basis sets in an arbitrary
lattice plane

For a lattice plane specified by integral Miller indices
b, L, I; (assumed to have no common factor) in a primitive
basis set a}, a3, a3, it is useful to have a procedure for
finding at least one primitive basis set a,’, a,’, a5’ in which
a,” and a,’ are in the plane. Such a basis set is a natural
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one for enumeration of the diffracted beams and assign-
ment of Bragg reflections to those beams. General con-
siderations indicate that such a primitive set always exists:
An arbitrarily chosen cell (with two basis vectors in the
plane) can always be examined for internal (not corner)
lattice points and shorter vectors from the origin at the
corner of the cell to the internal points can be chosen if
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the vectors currently being considered are found not to be
primitive; this process terminates in a finite number of
steps with a primitive set. However, a procedure for
constructing the a;’ can be based on a simple algebraic
analysis.

The general equation of the lattice plane can be written
as r-n = ¢, where r is the position vector of a point in the
plane, n is the normal to the plane and ¢ is a constant.
If ¢ = 0, the plane contains the lattice point at the origin.
In the basis a} with corresponding reciprocal-lattice
vectors b} we express r and n as

r = x;,a; + x.a3 + x;a; and (A1)
n = I,b} + Lb + L,b3; (A2)
the equation of the plane is

hx, + bxs + Lx; = 0. (A3)

A solution of Eq. (A3) with integral values of x;, x5, x3
yields a lattice vector in the given plane. A general solution
of (A3) can be obtained for arbitrary integers p;, ps, ps
in the form (psl; — pols, pifs — pshy, poly — pide); this will
be the basis vector a,’. For the basis vector a,’ we replace
p; by q;. Let the components of a;’ be (T, T,, T3); values
of p;, g; and T, are needed that satisfy the determinantal
equation

psl: — pols pils — psli polv — puly
asls — q:ls g1 ls — g3l qlh — qil| = 1. (A4)
Tl T2 T3

This is the condition that makes the set a,’, a,’, a;’ a
primitive set. Equation (A4) is equivalent to

Dy D2 Ds
(llTl + 12T2 + IsTa) a 4q: g3 = 1, (AS)
Lo,

so that (A4) can be satisfied by satisfying the separate
equations

LT+ LT, + LTy = =1 and (A6)
piaals —~ @b} + polgehy — als) + plail, — g:l) = £1.
(A7)

The existence of solutions of Eq. (A6) for integral
T,, Ts, T3 depends on a theorem which states that such an
equation always has a solution if /;, ,, /; have no common
factor (although any pair may have a common factor). This
theorem follows from the basic algebraic theorem that
the indeterminate equation myx, -+ m.x, = 1, where m;
and m, are integers with no common factor, always has an
integral solution for x, and x,.° Thus if /; and /, have a
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largest common factor f, the equation /,T; + LT, = fT,
has a solution for all integral T,. For the corresponding
T and T3, Eq. (A6) becomes (7, + L,T; = 1, which always
has a solution for T, and T; because f and /; have no
common factor; hence (A6) is solved. Note that additional
solutions of (A6) can be obtained by adding solutions of
(A3), e.g., a,’ or a,’.

Similarly, Eq. (A7) always has a solution if the coeffi-
cients gofs — gsh, g3ty — qibs and q.b, — @/ have no
common factor. This situation can always be produced by
a suitable choice of ¢y, ¢», gs. First note that ¢,, ¢, ¢; can
be found which satisfy gals — gsle = fas, @l — @1s = far
and ¢, — ¢l = fi4, where f;; is the largest common
factor of I; and [;. However, f3, fz; and fi, cannot have a
common factor because this factor would then be common
to I, L, I;. Thus, defining the ¢’s in this way, we obtain
coefficients in Eq. (A7) without common factors so that
(A7) can be solved for the p’s. Alternatively, if g;5r —
g2k, qils — qsl; and g.l; — g,l, have a common factor
£, this factor can be canceled to give a new vector a,’
shorter by a factor f and now (A7) and hence (A4) have
solutions for p,, p., p;. From one solution of (A7) other
solutions can be obtained by adding solutions of the
homogeneous form of (A7); such homogeneous solutions
can be found from the coefficients of (A7) just as the
solutions of (A3) were found. This procedure can be used
to obtain a more convenient set of a,’.

To illustrate the application of Eqs. (A6) and (A7),
primitive vector sets were constructed using ¢ = ¢, =
gs = 1 for all planes with /; < 4 and with a,” and a,’ in
the plane; these sets are listed in Table 3. This procedure
fails for ; = L, = I; = 1, for which case the choice g; =
gs = 0,9, = land p, = 1, p, = p; = 0 was made. Equiva-
lent vector sets that keep a,’ and a,’ in the plane (;, b, )
can be formed by taking linear combinations of a,’ and
a,’ (using integral coefficients) for which the 2 X 2 deter-
minant equals one, e.g., by adding any multiple of a,’
to a, or any multiple of a,’ to a,’; in some cases the
magnitudes of the coefficients listed in Table 3 can be
reduced. Any linear combination of a,’ and a,’ could also
be added to a,’. Table 3 applies to any primitive basis
a’, i = 1, 2, 3, of any lattice and can be used to find a
primitive vector set expressed in the a} basis with two
elements in the plane specified by the Miller indices /; (also
expressed in the a? basis). Miller indices /,” in any other
basis a,’’ can be obtained by a transformation

L' = 1T, (A8)

where T7;; is the transformation from a2 to a;” as in
Eq. (22). Thus, in the a;’ basis given in the table, the
Miller indices of the given plane are always 0, 0, 1.

To use Table 3 for the fec lattice, we let the primitive
basis a; be the vectors in Eq. (30), but we specify the
Miller indices of the plane in the cubic basis (29) as
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Table 3 P}'imitive vector sets in any primitive basis with i, I, I;. Then Eq. (A8) provides the Miller indices in the
a:’ and a4 in the (4, Is, I:) plane. primitive basis:

03 4
L1 a,’ a,’ a;’
e : c ’ BB B =05 B3 0 3 (A9)
100 001 011 100 119
110 001 110 100 If the /7 obtained from Eq. (A9) are not integers, we make
111 011 101 100 them integral by usmg.a common mulFlpher. From Table
i 3 we find a,’, a,’, a,” in terms of a7; i.e., the coefficients
210 001 121 010 in the table are elements of (T~")T, which enter the trans-
— — : r p—1 s
211 120 011 001 forr?xatxon a; = .a,-T,-.,c. To express a; in terms of t}'le
B _ cubic vectors a; given in Eq. (29), we substitute for a} in
221 102 110 001t terms of a; using the same matrix as in Eq. (A9). For
310 00 1 132 010 example, if I7, I3, I; = 0, 0,_ 1, respectively, Eq. (A9) .ylelds
B - n, i3, I; = 1,1, 0, respectively; hence, a,’, a,’, a;’ in the
311 103 011 001 a; basis have the values in the second line of Table 3 and
— — — ’ - TQ .
320 330 231 110 these a;’ can be transformed fo a cubic basis as follows:
_ - 0 1 1
321 012 121 001 _
392 303 011 110 (a, a,', as’) = (ay, a3,a3)|0 1 O
_ — t1 0 O
331 013 103 001
_ _ _ 0 1 2lfo 1 1
332 203 110 011 -
— = (al, as, a3) ‘% 0 ’% 0 1 0
410 001 143 010
_ _ 1 1 ojl1 00
411 104 011 001 -
_ _ 3 3 0
421 012 132 001
— — — = (al’ a29 a3) % % %—
430 340 341 110
_ _ 0 0 3
431 340 231 001 These vectors are listed for the (001), (011) and (111)
432 023 121 011 surfaces (cubic basis) in Table 4. The a;’ vectors in the
— - - cubic basis are simple variants of the vectors found pre-
433 304 011 1ro viously for these surfaces (Table 1) and their properties can
441 014 110 001 be verified. ¥
_ _ _ Primiti . . 1 f the face- d cubic, body-
443 034 110 011 contéred cubio and hexagonal closepacked tattces are given in dho it by
Nicholas.®

Table 4 Miller indices and primitive basis vectors for three planes (with a” and a.” in the given plane) expressed in cubic
and primitive bases for the face-centered cubic lattice.

Plane Primitive basis Cubic basis
L 5 n B L a,’ a,’ a,’ a,’ a,’ a;’
0 o0 1 1 1 0 0 0 1 1 1 0 1 00 110 11 9 0 1 %
0 1 1 2 1 1 12 0 0 1 1 0 0 1 1 12 I 1109
660 t 1 1|1t 1t 1,01 1] 101 1 00 0 1 1 10 1 0 L 1
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