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Energy  Diagram  Method  for  Bragg  Reflections  in 
Low Energy  Electron  Diffraction  (LEED)  Spectra 

Abstract: A point of  view and a method of calculation derived from energy band theory are applied to the problem of finding energies 
of Bragg reflections from a given crystal. Energy curves are defined and calculated which describe the behavior of individual diffracted 
electron beams for a given set of beams incident on a particular face of the crystal. Intersections of these curves correspond to and 
identify the Bragg reflections associated with each beam. Energy diagrams and Bragg peak positions are shown  for simple cubic and 
face-centered cubic lattices for various angles of incidence. We discuss the  method  in  some simple cases and  then solve the problem 
of finding Bragg reflections from  the general crystal lattice with an arbitrary surface plane and arbitrary incident beams. The effect of 
the surface in producing well-defined diffracted beams for any incident beam and  in grouping the Bragg reflections into these beams 
is described. Tables and formulas, which apply to any direction of incidence, are given for  the Bragg reflections from  the (OOl), (110) 
and (1 11) faces of the face-centered cubic lattice. 

Introduction 
Low  energy  electron  diffraction  (LEED)  spectra are a 
record of the intensity distribution of electrons  diffracted 
by a crystal  surface in terms of three parameters, the 
energy and two  angles,  which  define the incident  electron 
beam. The diffracted  electrons  emerge from the crystal 
in a finite  number of discrete  beams that can  be  recorded 
individually.  Figure 1 shows a typical  curve of the 
variation with  energy for constant angle of incidence  of 
one diffracted  beam, the 00 or specularly  reflected  beam 
from a (001) surface of aluminum. The observed spectra 
yield information about the electronic state of the crystal, 
provided that the difficult  problem of calculating the 
scattering can be  solved.  One  limiting  case can, in fact, 
be  completely  solved and that is the case of a vanishingly 
weak crystal  potential. In this case the problem  reduces 
to the calculation of Bragg  reflections. Long ago the 
problem  was  expressed as an explicit set of algebraic 
relations  embodied in the Laue or Bragg interference 
conditions and was  solved  by the Ewald  construction. 
The solution in this limiting  case  is a useful  guide to the 
solution of the problem in which there is a finite potential. 

The object of this paper is to present an alternative 
method of solution of the Bragg  reflection  problem,  which 
we call the energy  diagram  method and which  is  closely 
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Figure 1 Experimental energy dependence of the intensity 
of the specularly reflected (or 00) beam from a (001) sur- 
face of A1 at nearly normal incidence. (The spectrum  has 
not been corrected to constant incident-electron current.) 

related to the formulation of energy  band  problems. In 
addition to providing a practical solution with  certain 
advantages  over the Ewald  method, the energy  diagram 
method is directly  related to a particular crystal surface 
and provides an immediate way  of  assigning  each  Bragg 
reflection to a diffracted  beam. Thus it gives useful  insight 
into the meaning  of a diffracted  beam and permits  cal- 
culation  of the direction of such  beams for any beam 
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incident on a given crystal surface.  These  directions are 
also part of  Bragg  reflection  theory and do not depend 
on the strength of the potential. 

For initial information and later reference, it is  useful 
to state the interference  conditions now and to compare 

of satisfying  them. The Laue or Bragg  interference  con- 
ditions, which determine the scattered plane waves  of 
wave vector k”, produced by the effect  of the crystal 
potential on the incident  plane wave  of  wave vector k’, 
can  be  written as a vector  and a scalar equation: 

ka = k’ + nlbl 4- nzbz f n3b3 (1) 

and 

~ in general  terms the Ewald and energy  diagram  methods 

The bl, bzr b3 vectors are reciprocal-lattice  basis  vectors 
and n,, n2, n3 are integers. Equation (2) expresses the 
condition of elastic  scattering, so that  the energies ei and 
e‘ of the waves are equal,  as are the magnitudes of k and 
k“t. 

In the Ewald construction the energy  condition  is the 
first  condition  satisfied.  One forms a spherical  surface in 
three-dimensional  reciprocal  space  with radius k‘ and 
an appropriate center and then one satisfies the three 
conditions of the vector  relation (1) by finding points of 
the reciprocal lattice that lie on the surface of the sphere. 
In the energy  diagram  method a set of curves in two 
dimensions is constructed  first.  These  curves  automatically 
satisfy  two of the three vector  relations in (1); the other two 
conditions (on the third components of k” and k and 
on E’ and ei)  are then  satisfied by finding  intersections 
of these  curves  with  each other. Because all the required 
curves can be  drawn on a two-dimensional graph, this 
method  is  constructionally  simpler than the Ewald  method. 
In addition, the energy  diagram  method  immediately 
leads to the idea of diffracted  beams and to the Bragg 
reflections  associated  with  each beam1 because there is a 
particular curve for each  beam and the associated Bragg 
reflections  correspond to  the intersections  of that curve 
with other curves. 

The energy  diagram  method  is  developed in three stages 
of increasing  complexity. First, the basic  idea  is  applied to 
the simple  case  of normal incidence on the (001) face  of a 
cubic  crystal. This case  permits natural introduction of the 
energy  curve for each  beam and also the replotting of these 
curves  vs.  reduced  wave  vector. The various  Bragg  reflections 
associated with  each  beam are then indicated.  Second, the 
problem  is  generalized in two ways:  We consider a more 

in rydbergs and distance in Bohr radii; thus the energy of a plane wave 
t It is convenient to use t i e  units of band theory in which energy is expressed 

exp ( t * d  is E = k*. 
: The Bragg reflections are also described as being “assigned to” or “in” 

a beam. 
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general  class of  1attic:es and surfaces  (although  these 
satisfy a special orthogonality condition) and we remove 
the restrictions  imposed on the set of incident  beams. 
(This latter generalization,  however,  complicates the defini- 
tion of the individual beam  curves.) Third, we describe the 
application of this method to cases in which  beams  with 
fixed orientation but with continuously  increasing energy 
are incident on the (001) surfaces  of  simple  cubic  (sc)  and 
face-centered  cubic  (fc,c)  lattices. The dependence of the 
Bragg  reflections on the polar and azimuthal angles of the 
incident  beam  is  shown  directly. 

Finally, the general  problem of  Bragg scattering by a 
crystal lattice with an arbitrary surface plane is solved. 
Now, for the first  time, the surface is not built into the 
coordinate system  used and the complete  set of  Bragg 
reflections  is  discussed without reference to a surface. 
The general  theory of the transformation of the indices 
of a Bragg  reflection  between  sets  of  basis  vectors  is  given, 
the effect  of the surface in producing well-defined scat- 
tered  beams for all incident beams  is  analyzed and a 
procedure is given for assigning all Bragg  reflections to 
the appropriate bean]  (which  requires a suitable  set of 
basis  vectors). This assignment  procedure  is demonstrated 
for various  surfaces of the fcc lattice and we include a 
table which  describes  by their cubic  components, i.e., 
by their components  along the usual  cubic  axes  of the 
fcc  lattice, the Bragg  reflections in ten beams  from  the 
(Ool), (110) and (111) surfaces. The energies at which the 
Bragg  reflection  peaks appear in the LEED spectra for 
any  incident  beam  direction can be  calculated  readily  from 
these  components. The generalization of the energy  dia- 
gram  method to  the case of a general lattice and surface 
and an arbitrary incident  beam is described in detail. 

The complete  set of  Bragg  reflections in each  beam, 
corresponding to  the complete  set of intersections of that 
energy  curve  with other energy  curves,  implicitly  indicates 
all possible  peaks  in the LEED spectra of the various 
beams  (with  one  interesting  exception). This paper  does 
not include a discussion of the detailed  correspondence 
of the Bragg  reflections to the possible  peaks, but we note 
that the peaks  can  be classified as primary,  secondary  and 
tertiary. The primary  peaks are understood readily  as 
the result of a single  Bragg  reflection;  explanation  of the 
other classes  of  peaks  can  be  made  with a simple  multiple 
scattering  rule for plane waves in a crystal  with a specified 
surface. In  the rule the concept of “incomplete Bragg 
reflection” is introduced and used  in a chain  of  reflections. 
Thus knowledge of the positions of  Bragg  reflections  makes 
evident the maximum  possible  number of LEED peaks 
and allows one to estimate the peak  energies;  however, 
the solution of the general  (dynamic)  scattering  problem 
with a finite  crystal  potential’ s 2  must  be  available  tjefore 
one can estimate the LEED intensities and actual positions 
of any of these  peaks. 647 
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Figure 2 Energy E of a  beam incident normal to the (001 ) 
surface of a simple cubic lattice as a function of the normal 
component k,  of the wave vector. 

Bragg  reflections of a  normally incident beam 
The energy diagram  method of locating Bragg reflections 
is conveniently illustrated by the simple case in which a 
beam is incident normally on  the (001) face of a cubic 
lattice. For this case k' = (0, 0, kj), where the z axis 
is normal to  the surface. The first graphic curve used 
represents the energy of the incident  beam as a function 
of k,,  i.e., E(kJ = kt;  this is shown in Fig. 2.  The basic 
curve of the energy diagram  method is then  obtained by 
plotting e vs. [k,], the reduced value of k,.? Here we use 
the symbol [k,] to denote the residual value of k ,  in the 
range - R / U  to +T/U after integral multiples of 2r /a ,  the 
magnitude of the shortest reciprocal-lattice vector in  the 
z direction, have been subtracted from k,; i.e., 

[k,]  = k ,  mod (2r/a) 

= k ,  - 2 r n 3 / a .  
( 3) 

Similar definitions apply to [k,] and [k,]. The  plot of e 

vs. [k,] converts the continuous curve e(k,) into a char- 
acteristic ladder-like structure over the range - R / U  5 
[k,] 5 R / U .  Each  branch of the curve has  an index n3; 
i.e., the function e(k,) for - w 5 k,  6 00 is equivalent to 
the set of functions e,,([k.]) for n3 = 0, 5 1 ,  f 2 ,  . . . and 
- R / U  [k.] T/U ,  as shown in Fig. 2. If we make use 
of the symmetry in k ,  of the energy curve, e(k,) = E ( -  kz) ,  
which exists in  our applications  (although more general 
cases can occur), the entire energy curve is completely 
described in the  standard range 0 6 [k,] 5 ?r/a used in 
succeeding diagrams. 

electron energy diagram are well known  and fundamental in solid-state theory. 
t The concepts of reduced wave vector, reduced Brillouin zone and free- 

For further definitions, discussion and illustrations see, for example, ZimanJ 
( p .  20 et seq.) and Slater4 ( p .  250 el seq.). 
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At  the intersections of the successive branches of the 
reduced curve, which occur at  the edges [k,] = 0 and T / U  

of the  standard range, the wave vectors on the two  branches 
have the same values of E and [k,]; also [k,] = [k,] = 0 for 
normal incidence. Thus  the  Laue conditions are  all satis- 
fied  if one of these wave vectors is k' and  the  other is 
k". Because only k ,  changes (from positive for  the incident 
wave, assumed to be traveling toward increasing values 
of z, to negative for  the scattered wave), this  particular 
intersection represents a principal Bragg peak  correspond- 
ing to specular reflection of the normally  incident electron 
beam into  the 00 reflected beam. 

We now introduce a new set of energy curves enxnS(ks), 
n,, n2 = 0, =tl, f 2 ,  . e ,  which are obtained by adding 
reciprocal-lattice vectors in the surface plane to k' ; i.e., 

enlnz(kz) = ( 2 ~ n 1 / a ) ~  + (2rnz/aI2 f k t .  

When is plotted vs. [k,], a set of branches in  the 
standard range is obtained which can be labeled 
e,,,,,,([k,]). At each intersection of two branches the 
Laue conditions are again satisfied for any n,, n2, n3 because 
[k,] = [k,, = 0 for  all curves in  the diagram. The intersec- 
tion of en3(= coono) with any  other branch E,,,,,, (nl, n2 not 
both zero) corresponds to a Bragg reflection in which 
k,  and k ,  change; hence the scattered wave is not  the 
00 beam. A primary Bragg peak is expected in  the n1n2 
beam at  this energy and  the dynamical  theory shows that 
appreciable intensity can  also  occur  in the 00 beam, thus 
constituting a secondary peak.$ 

Generalized free-electron energy  curves  and  the 
location of Bragg reflections 
Consider a semi-infinite crystal with periodicity in the 
plane parallel to  the surface specified by basic reciprocal- 
lattice vectors 

b1 = b,,?, + b12f, 

and (4) 

b2 = b,,f, f b22fur 

where fz and f, are unit vectors along rectangular axes in 
the  plane (Fig. 3); b, and bz need not be primitive vectors, 
although the discussion is simpler when they are primitive. 
We treat a special class of orthogonal lattices in which 
the surface  plane  contains two of the reciprocal lattice 
vectors, b, and b2, while the third, b3, is perpendicular 
to  the surface. Again b, need not be primitive, but use of 
the primitive vector simplifies the problem. 

The set of incident beams is now generalized to any  con- 
tinuous  variation of the energy and orientation  parameters 
determining k'. We can think of following a curve in k 

energy curves with the various kinds of Bragg peaks is given  in the next section. 
1 A more detailed discussion of the correspondence of intersections of 
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space (which differs from reciprocal-lattice space by the 
factor 2a) specified  by parametric  equations of the  form 
kf = k,(t), ki = k,(t) and kf = k,(t). Note  that  the energy 
is also a function of the parameter t (for simplicity this 
function will be assumed to be monotonic), 

e ( t )  = kJ02 + k,(02 + k,($, ( 5 )  

and can be plotted vs. k,(r) to  obtain  the curve t(k,) 
indicated in Fig. 2 .  However, the basic plot used to locate 
diffraction  peaks is the curve of E vs. [k,], the residual 
value when integral multiples of b3 are subtracted from 
k ,  to  obtain a reduced value in the range - i b 3  5 [k,] 5 
ab3. If the symmetric energy curve at  "k,  is also re- 
duced in  this way, the complete E curve is given  by a 
series of branches in  the smaller standard range 0 5 
[k,] 5 $ba. Each branch has  an index n3 such that 

k ,  = [kzl + 4 ~ 3 .  (6) 

Now we construct from E(k,) a discrete set of curves 
~ ~ ~ ~ ~ ( k ~ )  corresponding to  the integral indices nl ,  nz = 0, 
f 1, f 2 ,  . . . . These are obtained by plotting E ( t )  against 
a  function k:(t)  defined  by 

[kz(r)C + k,(t)i, + nib, + n2b2l2 4- kXt)2 

= k&)' + k,(r)' + k,(# = E O ) .  (7) 

Thus kz(t) is a new value of the z component of k(t) which 
preserves the energy e ( t )  by compensating the addition 
of a reciprocal lattice vector in the x-y plane to  the com- 
ponent of k parallel to  the surface [in Eq. (7) this vector 
is n,b, f nzbz]. The transformation from e(k,), which 
is also  denoted by Eoo(k,), to enlns(ks) is shown in Fig. 
4. As n, and n2 increase in magnitude,  the minimum 
value of e for which (7) has a  solution for real k: will 
increase, so that  at a given e only a finite number of curves 
en,,,. exists. 

If all the curves en,,,. are now translated into  the  standard 
range of [k,] as in Fig. 2 ,  so that each curve becomes a 
series of branches labeled by an n3 value, all intersections 
of the various branches  correspond to Bragg reflections 
and  the  true nonreduced k values on each pair of inter- 
secting curves are related by the  Laue conditions. This 
latter result follows directly from  the construction of the 
E,,,, curves which provides that, if two points on two 
enxn, curves have the same energy, the surface-plane com- 
ponents of their wave vectors differ by a reciprocal-lattice 
vector.? Because the occurrence of an intersection means 

electron beam, all points on the curves in  the energy diagram have k,  and ku 
t In the preceding section, which treats the case of a normally incident 

values that differ by reciprocal-lattice vectors (Le., Ik.] and [kvl are  the same 
and,  in  fact,  are  both zero for  normal incidence). The  more general case 
treated  in this and  the following section cannot  be based on such a simple 
relation; one replaces it by making the k, and kl values for points with the 
same energy on different curves differ by reciprocal-lattice vectors. These 
transverse components vary in magnitude as we follow any one curve. 

Figure 3 Geometry of the semi-infinite crystal showing the 
orthogonal unit vectors i,, i,, i, and the basic reciprocal- 
lattice  vectors lh, bs, b3; bl and ba are in the surface  plane 
and b, is perpendicular to the surface. 

Figure 4 Construction of the curve ~ , , , ~ , ( k , )  from the m ( ( k e )  

curve [see Eq. (7) in the text]. 
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that the energies  corresponding to points on two  curves 
are equal and that the [k,] values of those points are 
also equal (the k.  values  differ by a reciprocal-lattice 
vector), all the conditions contained in Eqs. (1) and (2) 
are satisfied. 

We  now indicate the relations  between  these  intersections 
and the peaks in the beam  intensities, but do not give a 
detailed  discussion. The intersections of an energy  curve 
e,,,,,, in the reduced  diagram are of  two  kinds: (1) inter- 
sections  with eO0 and (2) intersections with emlm9 # eOO. 
Intersections of the first kind  correspond to a primary 
peak  in the nlnz beam and to secondary  peaks in all 
other beams at the same  energy  (this  includes the case 
nlnz = 00). Intersections of the second  kind  with nlnz # 00 
correspond to secondary  peaks in the mlm2 and nlnz beams 
and to tertiary peaks in  all other beams. As the crystal 
potential  increases in strength, the peak  positions shift, 
usually to lower  energies  because the average potential 
is negative. In general,  primary  peaks are stronger than 
secondaries,  which are stronger than tertiaries; quantitative 
evaluation of intensities,  positions and widths  requires 
solution of the multiple  scattering  problem. 

This  exhaustive  classification of peaks and their cor- 
respondence to the intersections in the energy  diagram 
can  be  understood  qualitatively from simple  multiple 
scattering considerati0ns.t The existence  of  secondary and 
tertiary  peaks  is  explained by the following tentative rule 
(suggested by detailed  calculation) for the occurrence of 
“incomplete  Bragg  reflections”:  Given a plane wave  of 
energy e propagating in the lattice,  scattering will occur 
with strength  dependent on the potential into plane waves 
which (1) have the same e, (2) satisfy the Laue conditions 
on k, and k, but not on k, and (3) have the same orienta- 
tion  in the lattice with  respect to the surface  (i.e., the 
same  sign of k,).$ Thus scattering  can  occur into other 
waves without  intersection of the corresponding  energy 
curves; the curves  need only have the same  slope. The 
abandonment of the Laue condition on k ,  corresponds 
to the loss of complete translational symmetry  in the 
z direction due to the presence of the surface and is  dis- 
cussed in more detail later. Then, with  this  rule, it is 
easy to show that intensity in the various  peaks  can be 
built  up by a chain of at most three reflections.  One of these 
must  be a complete  Bragg  reflection  (requiring an inter- 
section of two  curves)  which  reverses the direction of the 
z component of the wave; the others are incomplete 
Bragg  reflections  (of the type defined  above) in the forward 
or  reverse  directions, at most one in each direction.  These 

t Watts6 describes LEED intensities  from  the  point of view of multiple 

formalism. 
scattering of plane  waves  and  obtains  the  three  kinds of peaks  from  his 

t Some scattering occurs into waves  with  the opposite direction  in  the 
lattice,  but  this  scattering  appears to be  weaker  than  that into the  same 
direction; hence, for the  qualitative  purpose of locating peaks we  ignore this 
additional  scattering. 650 
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latter reflections  require the presence of other, noninter- 
secting,  curves at the energy  corresponding to the peak.$ 

A relation between the energies and the k.  values at 
which diffraction  peaks appear can be obtained from Eq. 
(7) by setting k: = k.  + n:b3 (nt denotes the change in 
k,  in the diffraction  process and is equal to the difference 
nX - n3, where k,” = [k,”] + n3,); this  procedure gives 

2kz(n1b11 + nzbzl) + 2kV(n1b12 nzbzz) 2kZdbs  

= ”Knlbll + n2bzJ2 + (nlblz + nzb2z)2  + ( n W I 0 )  

For given  values  of nl, nz and n: and for general  functions 
k,(t),  k,(t) and k,(t) defining the incident  beam,  Eq. (8) 
is an implicit equation for the values td at which diffraction 
takes  place; from td the corresponding  values of &) 
and k&) can be  determined. 

For the special functional forms in the important case 
of a beam  incident at a fixed orientation with  respect to 
the  surface, we have 

k, = k sin0 cos 4, 

k,  = k sin0  sin 4, (9) 

k, = k cos0 

and the parameter t is the amplitude k = E*. Then we 
obtain from Eq. (8) 

et = k 

= “(nlbll + nzbzl)z 

+ (nlblz + nzbzz)’ + (db,)’] 

+ { 2 [ ~ i n  e cos 4 (nlbll + n,b,l)l 

+ 2[sin 0 sin #J (nlblz + n,bzz) 

+ COS e (n:bdi] . (1 0 )  

This  expression  is  simplified further in the cubic  lattice 
applications for which bl and b, are parallel to the x 
and y axes.v 

Application  to  the  simple  and face-centered 
cubic lattices 
The application of the energy  diagram  method to the 
(001) face of the simple  cubic  (sc) lattice is  shown in Fig. 
5a. This diagram  differs from Fig. 2 in  that a normalized 
energy  scale eaz is used (applicable to sc  lattices with 
any  value of the cubic cell  edge a) and the wave number  is 

slopes  with  the  same  sign.  Then, as pointed out by  Jennings and McRae,e no 
An  exceptional  case  occurs when two intersecting  reduced curves  have 

LEED peak is produced.  This  case  can also be  understood from our rule 
because this Bragg  reflection does not reverse k ,  and any incomplete  Bragg 
reflection  cannot  reverse k,. Hence no reflected  wave can he produced 
because no step  in  the  chain can reverse ks. 

diffraction.’ 
1 Equation  (10) is equivalent to one  given  by  Laue  in  the  analysis of x-ray 
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(a) (b) 
Figure 5 Free-electron energy diagrams for a beam inci- 
dent  normally (e = $I = 0) on a (001) surface of (a) a 
simple  cubic  lattice and (b) a face-centered  cubic  lattice. 
The  line  spectrum on the right-hand side of each  diagram 
is the  possible 00 spectrum  for the case considered.  The 
ordinate  unit is rydberg-(Bohr radius)z. 

reduced to a dimensionless  scale [k,a] that is  independent 
of a. In addition, the higher order bands ~,,,,([k,a]) with 
nl and n2 different from zero  have  been  introduced and the 
n,, nz, n3 values  have  been  used to label the branches  of 
each band. For the case of normal incidence, the higher 
order bands are all degenerate; thus the 100 branch also 
refers to the 010, TOO and oio branches,  etc. All inter- 
sections of the branches of the 00 band  (drawn as solid 
lines) with  each other or with branches of higher order 
bands (dashed  lines)  indicate the energies  of the Bragg 
peaks  (primary and secondary,  respectively). The 00 Bragg 
reflection  spectrum is shown at  the right of the diagram 
(Fig. 5a); the reflections are drawn as horizontal lines, 
those corresponding to the primary  peaks  being  longer and 
continuous. Not all lines will appear with appreciable 
strength in the actual spectrum (the detailed  theory  of 
scattering by the crystal potential is needed to determine 
the intensities), but the Bragg spectrum in Fig. 5 indicates 
which  lines are possible. In general, the primary  peaks 
corresponding to electrons  scattered  directly into the 00 
beam are stronger than  the secondaries.? 

The diagram in Fig. 5b  is a similar  plot for normal 
incidence on  the (001) face of a fcc lattice. The normalized 
energy  scale  includes a factor 4-$ to relate it to a crystal 
with the same atom density as the sc crystal (a is  always 
the unit  cell  edge,  not a primitive  cell  edge in the fcc  case). 

peaks should also appear on the right-hand side of Figs. Sa and 5b. 
t To obtain the complete Bragg spectrum, the positions of the tertiary 
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The energy diagram for normal incidence (0 = 0) on 
the (001) face of the sc lattice is shown in Fig.  6a.  Cases 
of oblique  incidence are shown in Figs. 6b and 6c. In Fig. 
6b 0 = 6" and 4 = 0; some but not all of the degeneracy 
of the bands is  removed;  e.g., the 01 and O i  bands and 
the 1 1  and 1 i bands are still degenerate  (only the initial 
branch of each  band is labeled). All of the degeneracies 
are removed  in the example of Fig.  6c in which 0 = 6' and 
I$ = 26'34'. The 00 Bragg spectrum on the right-hand side 
of each  diagram  shows an increasing number of secondary 
lines as  the degeneracy  is  removed  progressively. 

Figure 7 is  similar to Fig.  6, but applies to the (001) face 
of a fcc lattice. As in Pig. 5, the nl, nz labels of the band 
are different from the sc  case  (only nl, nz, n3 all even or 
all odd are allowed). 

The angular dependence of the Bragg  lines  is  shown for 
the fcc lattice in Figs. 8 and 9; here  only the intersection 
points of the 00 branches of Fig. 7 are plotted as functions 
of  angle. In Fig. 8 the 0 dependence of primary  peaks 
(solid  lines) and secondary  peaks  (dashed  lines)  is  shown 
for two  values of 4; in Fig. 9 the 4 dependence  is  shown for 
two  values of 8. These  curves are based on Eq. (10) 
specialized to the case bll = bzz = b3 = 27r/a, b2, = 
bl, = 0: 

2 a  = -7r(nT + 4 + n 3  
(n,cos + + n, sin +) sine + n,d cos0 

A vertical  section of Fig. 8 or 9 gives the discrete Bragg 
spectrum as a function of  energy at the particular angles 
selected by the section; a horizontal section,  however, 
gives a Bragg spectrum as a function of one angle at 
given  values  of the energy and the other angle. The princi- 
pal Bragg peaks are independent of 4 and change slowly 
with 0 for small  values of 0. The secondary  peaks,  how- 
ever,  show  stronger 0 and + dependence. 

Bragg reflections for a  general lattice 
Bragg  reflections in special  simple situations, namely 
when  two  reciprocal-lattice  basis  vectors are in the surface 
plane and the third is  perpendicular to the plane, were 
discussed in the preceding  sections.  This  class  includes 
many of the important practical cases and was  used for 
easy introduction of the energy  diagram for the beams of 
a particular surface and for identifying  Bragg  reflections 
by intersections of two  energy  curves or beam  lines on  the 
reduced  plot. The reflections  occurring in a particular 
beam can  be  determined by the intersections of that beam 
line  with other beam  lines.  However, if more  general  cases 
are to be  studied it is  necessary to solve the problem of 
locating Bragg  reflections for a general lattice and to 
assign  those  reflections to the various  beams character- 
istic of an arbitrary surface  plane. The solution includes 
the previous  special  cases, but requires  more-formal 
development and notation. It is  convenient to discuss 6511 
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special case of a beam with  fixed orientation but with 
nonconstant Ikl or E is of particular interest. In this case 
k (or E = k2) serves as a  parameter and we set 

k' = kk^(<e, 4), (1 1) 

where &<e, 4) is a unit vector oriented at angles 0 and 4 
with respect to suitable axes fixed in the crystal lattice. 
The effect of the lattice on  the incident wave  is to  scatter 
that wave into  the set of scattered waves k" obtained by 
adding a general reciprocal-lattice vector to k', 

k" = k' + (n,b, + nzbz + n,b,) = k' + n. (1 2) 

The plane wave exp (ik" . r) has  the same  translational 
symmetry as the plane wave exp (ik' . r); the  added terms 
b, do  not affect the phase factor of the wave when r 
changes by a  lattice vector R. However, the scattered 
wave does not have a strong amplitude unless the  addi- 
tional  condition that  the scattered and incident waves have 
the same energy (or jk" I = /k' I )  is satisfied, in which case 
the wave is said to be Bragg-reflected. Thus  the scattered 
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Figure 7 Free-electron energy diagrams for a  beam incident with orientation (a)  B = Q = 0 (normal  incidence);  (b) B = 
6" ,  @ = 0; and (c)  9 = 6" ,  9 = 26"34' on a (001) surface of a face-centered cubic crystal. The ordinate  unit is rydberg- 
(Bohr radiusjz. 

Figure 8 Dependence of the energy of Bragg peaks in  the 00 reflected beam on the  polar angle of the  incident  beam for  (a) 
9 = 0 and  (b) @ 20"; the surface is a (001) plane of a face-centered cubic lattice.  Principal Bragg peaks are represented 
by solid lines and  secondary peaks by dashed lines. The  ordinate unit is rydberg-(Bohr  radius)2. 
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Figure 9 Dependence of the energy of Bragg  peaks in the 00 reflected  beam on the azimuthal angle of the  incident beam 
for (a) 8 = 6" and (b) 8 I 20"; the  surface is a (001) plane of a face-centered  cubic lattice. Principal Bragg  peaks are re- 
presented by solid  lines  and  secondary  peaks by dashed  lines. The ordinate unit is rydberg-(Bohr radius)2. 

wave is Bragg-reflected only for discrete members of the 
incident wave set that satisfy the relations (13) or (14): 

[k'(t) + nIz = k'(t)' = e@), (13) 

which is equivalent to 

2k'(t).n = -nz. (14) 

For  the case of a beam of k e d  orientation as  in Eq. (ll), 
a n  explicit solution of E q .  (14) for  the energy enln2na of the 
Bragg reflection denoted by integral indices nl,  nz, n3 is 

enInBn. = in4/[ii(e, +).n12, (1 5 )  

which generalizes Eq. (10). The energies of the complete 
set of Bragg reflections for  the given lattice and  the given 
orientation e,+ are obtained from (15) by using all allowed 
values of nl, n2, n3 and  the known values of bl ,   b2,   b3,  k  ̂and 
their  scalar  products. 

If the basis set b, is a primitive set,i.e., if the cell volume 
8 ~ ~ 8 "  = b,. bz X b3 is the maximum value (correspond- 
ing to the minimum volume 8 of the lattice cell), all 

reciprocal-lattice vectors n are obtained from all integral 
sets of values of nl,  nz,  n3. However, if the bi are non- 
primitive and, say, 8n38" is a fraction N" of the maxi- 
mum cell volume, then nl,  n2, n3 take  on only the fraction 
N-' of the possible integral sets. This difference is il- 
lustrated later with cubic bases for  the fcc lattice for which 
N =  4. 

Transformations of basis and of Bragg reflection indices 
The integral indices ni depend on  the basis set and  are 
not unique.  Alternative indices nl', n2', n3' for a Bragg 
reflection can  be found by introducing a new basis bi' and 
by expressing n in  the new  basis;  i.e., 

n = nib, + nzbz 4- n3b3 = n j b i  

= nl'bl' + na'bz' + n3'b3' = ni'bi', (1 6) 

where a repeated literal  subscript implies summation over 
the values 1, 2 and 3. If the bi' are obtained from  the 
bi by the linear  transformation 

b,' = T,,bk, (17) 
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the transformation on the nj’s  is 

nh’ = n i q t ,  (18) 

where the q L  are the elements  of the matrix inverse to 
Tik. If the Tik are integers and if the value  of the deter- 
minant IT( is 1, the are also integers and the nk’ are 
integers  which take  on the same sets of values as  the 
nk.7 If IT1 = A“’, as in  the transformation from a primitive 
to a nonprimitive basis set, the unit cell of the bj‘ is one- 
Nth the size of the unit cell  of the b,; the 7: and 
nk’ are again integers, but the nk‘ do not take  on  as many 
values as do the nL. 

Crystal surfaces and the occurrence of beams 
In contrast with the analysis of the introductory sections, 
all Bragg  reflections have now been described and their 
energies determined without reference to a surface. To 
complete the discussion an arbitrary surface is introduced 
and all Bragg  reflections are assigned to  the beams that 
characterize that surface. This assignment  is carried out 
most  easily by using the particular basis set that refers to 
the plane of the chosen surface. To describe that plane 
we  need the basis  vectors ak, k = 1, 2, 3, for the lattice in 
coordinate space,  which allow any lattice translation 
to be  described as R = The ak are related to the 
bi by 
a,.b,  = 2 ~ 6 ~ ~ ;  (19) 

b, = 2nak X a,/O, j ,  k,  I in  cyclic order; and (20) 

O = a, ‘ a, X a,.  (21) 

Transformations to other basis  sets ak’, corresponding 
to the bi’ and cell  volume O‘, are made with the same 
T;: used in Eq. (18), namely 

ak’ = aiTLi, and (22) 

0’ = IT”I O .  (23) 

We consider a surface plane that contains the two basis 
vectors a,‘ and a,’. This is a sufficiently general specification 
of a plane for all practical purposes because such planes 
can be chosen arbitrarily close to any desired plane. Let 
a,’, a,’ be  primitive vectors in the two-dimensional lattice 
of the surface plane (the surface net) and choose an 
a3‘ such that al’, a2‘, a3’ form a primitive set, which  is 
always possible (see the Appendix).  We can now  describe 
the scattering of an incident plane wave  beam  exp (ik’ - r) 
by a crystal with this lattice and this surface plane. The 
incident beam  is scattered into a set of plane waves  of the 
form exp (ikn -r), where the scattered wave vector k” is 
related to the incident wave  vector k’ by Eq. (24): 

k” = k’ f nl’bl’ + nz‘bz’ + j&‘b3‘; (24) 

indlces nk and nc’ take on all integral values. i.e..  all  combinations of three 
t, For example, if both sets of bj and bj’ vectors are primitive sets, the 

integers. positive or negative. 
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here n,’ and n,‘ are arbitrary integers, but i,’ need not be 
an integer. Each such scattered wave has translational 
symmetry for displacements parallel to  the surface plane; 
i.e., translation through a lattice vector R = &’al’ + 
&’a2’ affects  exp (ik‘ r) and exp(ik”. r) the same way 
and leaves the phase factor exp (ik’ .R) unchanged. Note 
that we do not require that translational symmetry be 
preserved for translations out of the surface plane, i.e., 
for  an R with a term I3’a3’. This omission is appropriate 
because the surface discontinuity breaks the translational 
symmetry for displacements out of the plane. 

The condition that the energy of the scattered wave  be 
the same as that of the incident wave (the assumption of 
elastic scattering) determines k,‘ for given k‘, n,’ and n,’ 
and for any E by the relation 

E = (k’ + nl’bl’ + nz’bz‘ + i3‘b3’)’ = (k’)’. (25) 

For t large enough, or nl’ and n,’ small enough, Eq. (25) 
has two real solutions for k3’ corresponding to two scat- 
tered plane waves,  each  with  wave vector k”, which have 
opposite components in  the direction of the surface normal; 
thus one wave  will always  come out of the crystal. 

For a general scattering potential with the given  sym- 
metry, a crystal with the given surface, and any k’, some 
intensity can be  expected in each of the scattered beams 
coming out of the crystal. The beams are finite in number 
at any E and exist and shift continuously in direction as 
the incident beam  changes continuously. These are,  in fact, 
the LEED “spots” for  the given crystal surface and they 
are designated by the indices nl’, n,’ = 0, f 1 ,  f 2 ,  - . .$ 

At certain discrete values of E the corresponding k,’ 
satisfies the additional condition that i,‘ = n,’; in this 
case k” and k satisfy all the conditions for Bragg  reflec- 
tion. Thus  the Bragg  reflections  assigned to  or associated 
with the n1‘n2’ beam are  the n1’nz’n3’ reflections for all 
integral values of n,’. By transforming the indices n,’, 
n,’, n3‘ back to indices nl, nz, n3 in some common reference 
basis  set bl, b,, b3, we can identify all Bragg  reflections 
nl n, n3 assigned to particular beams for  the surface defined 
by the vectors al’ and a,’. For the fcc lattice the natural 
common  basis set is the cubic  basis. 

Energy diagrams for the general lattice 
As a final stage in the solution of the general problem, 
energy diagrams analogous to those used earlier can be 
introduced to describe the different  beams.  If Eq. (25) 
is  solved for k3’ for each E, the  total b,’ component of the 
scattered wave vector is 

ki’ = ka’ + z,’ = [k:’] + n,’ ,  - 1 5 [k:’] 5 1 ,  (26) 

t The weakened interference condition (25) for beams, as contrasted with 
the full interference conditions (1) and (2), corresponds to introducing “rods” 
in k space through the reciprocal-lattice points parallel to bs’ (hence perpen- 
dicular to the surface). The E.wald sphere always intersects these rods and 
thus indicates LEED spots at all energies in definite directions. 



where n3’ is an integer? and [ki’] is the reduced value of 
k i f .  For each pair n,’, n,‘ a separate curve E vs. [kl’] can 
be plotted over the range - 1 to 1,  so that each beam is 
represented by a ladder-like succession of curved branches 
~ ~ , . ~ , ~ ~ , , ( [ k : ’ ] )  for n3’ = 0, f l ,  f 2 ,  . . .  which are 
continuous at  the boundaries 1 and - 1.  Note  that  for 
n,‘ = n,‘ = 0, one solution of Eq. (25) is kg’ = 0; hence, 
k” = k‘, the incident beam wave vector. The  other  solution 
is k3‘ = -2k$‘; hence, k!/ = - k i f ,  which corresponds to 
the specularly reflected wave, i.e., the incident wave with 
its component  normal to  the surface reversed. 1 

The intersections of the branches of the 00 beam  curve 
corresponding to the incident  beam (i.e., ~ ~ ~ ~ ~ ~ ( [ k i ’ ] ) ,  
where [k:’] = [kill) with the branches of the nl’nz‘ beam 
curve  corresponding to scattered waves leaving the crystal 
determine Bragg reflections in  the beams leaving the 
crystal. This is a consequence of the fact that  at each 
such intersection k” and k’ differ  by a reciprocal-lattice 
vector but correspond to  the same value of E .  For  the 
two branches involved 

k” = (ki’ + nl’)bl’ + (kg’ + n,’)b,’ 

+ { [k:’] + n3’(nl’, n2’)Ib3’  

on  the nl’n2’ beam curve and 

k’ = kr’ b,’ + ka’ b,’ + ( [k j ’ ]  + n3’(0,  O))b,’ 

on the 00 beam curve, where n3’(n1’, n,’) denotes the value 
of the n3’ index on  that branch of the n,‘n2‘ curve. Since 
[k:’] = [kat] at  the intersection, 

k” - k’ = nl’ b,’ + a,’ b,’ + ai’ b3’, (27) 

,,dt - 
3 - n3’(nlf, nz’) - n 3 / ( 0 ,  0) (28) 

and  the intersection  corresponds to  the Bragg reflection 
n1’n2’n:’. If b,‘ is directed into  the crystal, the incident- 
beam branches of the 00 beam curve have, successively, 
n3‘(0, 0) = 0 ( k i f  > 0), 1,  2, 3, . . . , while the outgoing- 
beam branches of the n,’n,’ beam have n3’(n1’, n,’) = 

0 (k:! < 0), - 1,  - 2 ,  - 3, . . . . Therefore nil 5 0 from 
Eq. (28). 

Application to  faces of the fcc lattice 
First define the cubic basis vectors 

a, = a i , ,  b, = (27r/a)i1, 

a2 = ai , ,  b, = (27r/a)i2, (29) 

a3 = ai , ,  b3 = (27r/a) i3, 
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t The  integer na‘ in Eq. (26) is not the  same  integer as in the  discussion of 
Eq. (25). where na‘ corresponds to the  special  integral  values of ka’, because 
an additional  integer comes from replacing ka‘ by its reduced  value in (26). 
However, it is convenient to use n d  for the integer in both cases. 

in  that  plane. 
$ Note that  bz’ is perpendicular to the  surface  plane because 81’ and a; are 

MARCUS, F. P. JONA AND D. W. JEPSEN 

where i,,  i, E md i3 are unit vectors alon lg the  three cubic 
axes and a is the length of the edge of the cube. Any other 
basis vector can be specified  by its  components in  the 
cubic basis system as a set of three  numbers  written  in 
parentheses. Thus a primitive set of basis vectors for  the 
fcc lattice can be expressed as 

a; = (0 3 i), b? = (i 1 l ) ,  

a; = (3 0 i), b: = ( 1  l ) ,  (301 

a: = (3 a 0), b: = (1 1 i), 
where, for example, a: = (0 h 3) means a; = $a2 + $a3 
and by = f i -11)  means b: = -b, + b, + b,, etc. From 
Eq. (22) we see that  the components of ai in Eq. (30) are 
equivalent to  the elements of the transpose of the matrix 
T-l which transforms cubic basis vectors into  the primitive 
basis vectors. Since IT-’\ = $ it follows that  the deter- 
minant of the cubic-axis components of any primitive 
vector set is equal to $, a  condition that is useful in check- 
ing the primitive sets introduced below. This value of 
IT-’\ corresponds to 0” = $0 and  to  the presence of four 
equivalent atoms  in  the cubic unit cell. 

The assignment of Bragg reflections to beams for  the 
(OOl), (110) and (111) surfaces of the fcc lattice requires 
that a primitive basis set  be  found for each plane with 
a,’ and a,‘ in  the plane and  that  the Bragg reflections in 
the n,’n2’ beam for  that surface (which are given  by integral 
values of n3‘) be transformed to  the cubic indices n,, n2 and 
n3 by the  operation inverse to  that of Eq. (18), namely 
nk = ni’Tik. Suitable sets of basis vectors for these sur-- 
faces and  the corresponding  transformations of indices 
are listed in  Table 1.  

The formulas given for n l ,  nz and n3 in  Table 1 were used 
to determine explicitly five Bragg reflections associated 
with each of ten beams for  the  three faces of the fcc lattice 
(Table 2). With the convention that b,’ is directed into 
the crystal, only values of n3’ 5 0, corresponding to beams 
outgoing from  the surface, are listed in  Table 2.  The 
n,’ and n,’ values form  an  arbitrary  but systematic enumera-. 
tion of all beams. If values of nl’, nz‘, n3‘ with n3’ > 0 are 
of interest, the corresponding n,, n,, n3 values can be 
obtained by reversing all the signs in  the row containing 
- n,’, - a,’, - n3‘. 

The n,, nz, n3 indices for  the (001) surface show that 
fixed values of nl and n2 still characterize each beam, as 
might be expected because the cubic basis vectors a, and 
a, are  in  the (001) plane. However, because the set a,, 
a2, a3 is not primitive, only  certain index sets n,, n2, n3 are 
allowed, namely all even or  all  odd integers (one-fourth of 
the possible sets), and  the indices of the beams change; 
e.g., the 1 0  beam becomes the 11 beam while the 11 beam 
becomes the 20 beam. 

The Bragg reflection nl nz n3 appears  in different beams 
for different surfaces; e.g., the 1 1  1 reflection is assigned’ 
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Table 1 Basis  vectors  and  index transformations for three surfaces of the face-centered  cubic lattice. 

to the  third beam for  the (001) surface, to  the seventh 
beam for  the (110) surface and  to  the  fourth beam for 
the (111) surface. Using the  formulas  for n,’, nz‘, n3’ in 
Table 1, one could easily prepare a table enumerating 
.nl,  n,, n3 systematically (as was done  for nl’, n2’, n3’ in 
Table 2) and list for each  surface the nl’, nz’, n3’ values, thus 
identifying the beam in which that reflection appears by 
.the nl’, n,’ values. 

For each Bragg reflection specified  by its cubic indices, 
the corresponding energy of a beam  incident at angles 
8, C$ with respect to  the cubic axes is calculated using Eq. 
(IS), which can  be put  in a simple form  for cubic basis 
vectors; we find 

*enln9n, 
2 a 

-” 

(n: + n: + n;)’ - 
a* ( n ,  sin e cos C$ + n, sin 0 sin 4 + n 3  cos e)” 

(3 1) 

The beam labels nl’, n,‘ vary with the choice of primitive 
vector set, but  the set of Bragg reflections or  the set of 
.nl, n,, n3 values associated with a particular  beam is fixed 
by the surface and does not change. Consequently the 
.energy values cnln,ns of the Bragg reflections associated 
with one beam for a given direction of the incident beam 
.do not depend on  the choice of basis vectors. 

Two characteristic properties of the Bragg reflections in 
a given beam should  be  noted particularly: (1) The vectors 
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n corresponding to these reflections all have  the same 
component  parallel to  the surface and differ only in the 
value of the component perpendicular to  the surface. 
(Recall that  in  the bl’, b,’, b,’ basis system these vectors 
differ only in the value of n3’.) The Bragg reflection 
points  are  on  the rods described in the discussion of Eq. 
(25). (2) The Bragg reflection vectors associated with a 
given beam differ  by multiples of I,, l,, &, the Miller indices 
of the surface plane. This property is obvious in  the ai’ and 
bj’ basis sets because in these sets the Miller indices are 
0, 0, 1. The property is established in  the ai and bi basis 
sets from  the transformation  relation 

b,’ T S k b k  = IIb1 -t Izb, + l,b, 

because b,’ is the  normal vector and n4 = n,’Tik.  There- 
fore, differences between the indices of any  pair of Bragg 
reflections associated with the same beam can  be expressed 
as 

An, = A(n3‘T3J = (An3’)lk 

because nl’ and n,’ are constant for a given beam.? 

t Alternatively, because Bragg reflections in the same beam differ only  by 
a reciprocal-lattice vector along the normal, the reflections differ only by 
multiples of hbl + lab2 f labs, where h ,  12,  l a  are the Miller indices of the 
surface in the bj basis. That is, a;* - ni = q / i ,  i = 1, 2, 3, where ni* and ni 
are the indices of two Bragg reflections in the same beam and q is an integer. 
For the 00 beam all Bragg indices have the form qh, ah, 418. 
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Table 2 Beam  assignments of Bragg  reflections  from three su 

n1 a2 a3 

Beam n l f  n2' n3' t  
(001)  (110)  (111) 

0 0 0  0 0 0  0 0 0  0 0 0  
~ ~ _ I _ _ _  

" 

o o i  0 0 2  2 2 0  1 1 1  

1 0 0 2  0 0 4  4 4 0  2 2 2  

0 0 3  0 0 6  6 6 0  3 3 3  

0 0 4  0 0 8  8 8 0  4 4 4  

" 

" 

" 

Irfac 

I 1 0 5   I 1 1 7  
" 

8 6 0  

10 8 0 
" 

" 

1 1 1  

3 3 1  
- _  
" 

5 5 1  

2 4 2  

3 5 3  

1 1 1  

2 0 0  

3 1 1  

" 

0 1 5  1 1 5  7 7 1  4 2 2  

0 1 4  1 T 7  9 9 1  5 3 3  

1 1 1  2 0 0  l i l  

1 o i  1 1 1  0 2 0  2 0 2  

1 0 2  

" 

" 

-" 
- 
1 0 0  

" _  
- " 

- 
4 

" " 

1 1 3  2 4 0  3 1 3  
" 

1 0 3  

1 0 4  

I I I I 
t Primed indices refer to the primitive basis vectors listed in Table 1;  

Appendix:  Primitive  basis  sets  in  an  arbitrary 
lattice  plane 
For a lattice plane specified  by integral Miller  indices 
l,, l,, Z3 (assumed to have no common factor) in a  primitive 
basis  set a;, a;, a;, it is  useful to have  a procedure for 
finding at least one primitive  basis  set al', az', a,' in which 
a,' and a,' are in the plane.  Such  a  basis  set  is  a natural 
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the vectors  currently  being  considered are found not to be 
primitive; this process terminates in a finite  number of 
steps with a primitive  set.  However, a procedure for 
constructing the ai’ can be based on a simple  algebraic 
analysis. 

The general equation of the lattice plane can be written 
as r.n = c, where r is the position  vector of a point in the 
plane, n is the normal to the plane and c is a constant. 
If c = 0, the plane contains the lattice point at the origin. 
In the basis a: with corresponding  reciprocal-lattice 
vectors b: we express r and n as 

r = xlaT + x,a; + x3az and (A 1) 

n = &by + 12bg + l3b:; (A21 

the equation of the plane is 

I1x, + &xz + 13x3 = 0. (‘43) 

A solution of  Eq. (A3) with integral values  of x,, xz, x3 
yields a lattice vector  in the given plane. A general solution 
of (A3) can be obtained for arbitrary integers p,, p z ,  p3  
in the form (p3& - p2f3, pl& - p3f1, p211 - ~ ~ 1 , ) ;  this will 
be the basis  vector a,‘. For the basis  vector a,’ we replace 
pi by qi. Let the components of a3‘ be (T,, T,,  T3); values 
of pi, qi and T ,  are needed that satisfy the determinantal 
equation 

This is the condition that makes the set a,’, a,‘, a3’ a 
primitive  set. Equation (A4)  is  equivalent to 

PI P z  P3 

( ~ I T I  L T ,  + l 3 T 3 )  41 q z  4 3  = 1 ,  ( A 9  

11 12 13 

so that (A4) can be  satisfied by satisfying the separate 
equations 

1,T1 + 12T2 + = f l  and (A61 

Pl(qz13 - q 3 1 d  + P Z ( ~ I  - 9113) f p3(ql& - 9211) f 1.  

(‘47) 

The  existence of solutions of  Eq. (A6) for integral 
TI ,  T,, T3 depends on a theorem which states that such an 
equation always has a solution if I,, 12, l3 have no common 
factor (although any pair may  have a common factor). This 
theorem follows from the basic  algebraic theorem that 
the indeterminate equation mlxl f m2xz = 1, where m, 
and m2 are integers  with  no  common factor, always has an 
integral solution for x1 and x,.’ Thus if I, and I, have a 

largest  common factor f, the equation I,Tl + IzT, = f r 4  

has a solution for  all integral T4. For the corresponding 
T, and T,, Eq. (A6)  becomes fT4 + &T3 = 1 ,  which always 
has a solution for T4 and T3 because f and l3 have no 
common factor; hence  (A6) is solved. Note  that additional 
solutions of  (A6)  can  be obtained by adding solutions of 
(A3),  e.g., al’ or az’. 

Similarly, Eq. (A7)  always has a solution if the coeffi- 
cients q21, - q312, q3Il - 4113 and qll, - q24 have no 
common factor. This situation can  always be produced by 
a suitable choice of ql, q2, q3. First note that q,, q2, q3 can 
be found which satisfy q213 - q312 = ha, q311 - q113 = j& 
and q112 - q21, = &, where Li is the largest  common 
factor of li and li. However, h3, f3, and f i z  cannot have a 
common factor because this factor would then be common 
to 11, 12, 13. Thus, defining the q’s in this way, we obtain 
coefficients in Eq.  (A7) without common factors so that 
(A7) can be  solved for the p’s. Alternatively, if q3f2 - 
q,l,, qI13 - q311 and q211 - ql12 have a common factor 
f, this factor can be  canceled to give a new vector a,’ 
shorter by a factor f and now (A7) and hence (A4) have 
solutions for pl ,  p,, p3. From one solution of  (A7) other 
solutions can be obtained by adding solutions of the 
homogeneous form of  (A7);  such  homogeneous solutions 
can be found from the coefficients  of  (A7) just as the 
solutions of  (A3)  were found. This procedure can be used 
to obtain a more convenient  set of a,’. 

To illustrate the application of Eqs. (A6) and (A7), 
primitive  vector sets were constructed using q1 = q2 = 
q3 = 1 for all planes  with li 5 4 and with a,’ and a,’ in 
the plane;  these sets are listed in Table 3. This procedure 
fails for 1, = 1, = l3 = 1, for which  case the choice q1 = 
q3 = 0, q2 = 1 and p1 = 1, p z  = p3 = 0 was  made. Equiva- 
lent vector  sets that k.eep a,’ and az’ in  the plane (l,, I,, 1,) 
can  be formed by taking linear combinations of  a,’ and 
a,’ (using integral coefficients) for which the 2 X 2 deter- 
minant equals one, e.g., by adding any multiple of az’ 
to a,’ or any  multiple of a,’ to az’; in some  cases the 
magnitudes of the coefficients  listed in Table 3 can be 
reduced.  Any linear combination of a,‘ and a,’ could also 
be added to a3’. Table 3 applies to any primitive  basis 
a:, i = 1, 2 ,  3,  of any lattice and can be used to find a 
primitive  vector  set  expressed in the a: basis  with  two 
elements in the plane specified by the Miller  indices li  (also 
expressed in the a: basis).  Miller  indices lk” in any other 
basis ak“ can be obtained by a transformation 

Ik” = l jT$ 

where T;: is the transformation from a: to ak” as in 
Eq. (22). Thus, in the ak‘ basis  given in the table, the 
Miller  indices  of the given plane are always 0, 0, 1. 

To use Table 3 for  the fcc lattice, we let the primitive 
basis a: be the vectors in Eq. (30), but we specify the 
Miller  indices of the plane in the cubic  basis (29) as 
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1, 12 13 a3 ' a2' a,' 

1 0 0  0 0 1  

0 0 1  1 1 0  

1 0 0  o i l  

0 1 0  1 5 1  0 0 1   2 1 0  

1 0 0   1 0 1  o l i  1 1 1  

1 0 0  1 i o  

1 2 0  o i  1 0 0 1  

2 2 1  1 0 2  1 i o  0 0 1  

3 1 0  0 1 0  1 3 2  0 0 1  

1 0 3  o i l  0 0 1  

___________ 

- 

2 1  1 
- 

- 

3 1 1  

3 2 0  

o l i   io 2 0 3  3 3 2  

3 3 1  

l i o  o i  1 2 0 3   3 2 2  

0 0 1  121 o i 2  3 2 1  

I i o  2 3 1  2 3 0  

.- 

- 

- 

- 

0 1 3  0 0  1 1 0 3  
- 

4 1 0  

4 1 1  

0 1 0  1 4 3  0 0 1  

0 0 1  o i l  1 0 4  
- 

4 2 1   0 0 1  1 3 2  o i 2  

4 3 0   3 4 0  l i o  3 4 1  
- 

- 

4 3 1   0 0 1  2 3 1  3 4 0  

4 3 2  

4 3 3  

o l i  121 0 2 3  

l i o  o i l  3 0 4  
- 

4 4 1  

0 3 4  4 4 3  

0 0 1  I i o  o i 4  

o l i  1 i o  

(0 3 31 

If the I; obtained from Eq. (A9) are  not integers, we make 
them integral by using a common multiplier. From Table 
3 we find aL', a,', a3' in terms of a:; i.e., the coefficients 
in the table are elements of (T")T, which enter the trans- 
formation ak' = aYT;:. To express ab' in terms of the 
cubic vectors ai given in Eq.  (29), we substitute for a; in 
terms of ai using the same matrix as in Eq. (A9). For 
example, if l:, I;, 1; = 0, 0, 1, respectively, Eq. (A9) yields 
17, I;, l[ = 1, 1, 0, respectively; hence, al', a,', a,' in  the 
a: basis have the values in  the second line of Table 3 and 
these ai' can be transformed to a cubic basis as follows: 

(al',  a2', a3') = (a;, ai, a;) 

l o  o a J  
These vectors are listed for  the (OOl), (011) and (1 11) 
surfaces (cubic basis) in Table 4. The ai' vectors in the 
cubic basis are simple variants of the vectors found pre- 
viously for these surfaces (Table 1) and their properties can 
be  verified.? 

centered cubic and  hexagonal close-packed lattices are given in the Atlas by 
t Primitive  vector sets in various  planes of the  face-centered cubic, body- 

Nicholas.9 

Table 4 Miller indices and  primitive basis vectors for three  planes (with a: and aa' in the given plane) expressed in cubic 
and  primitive  bases for the face-centered cubic lattice. 

Plane ! 

0 0 1 

1 2 0  2 1 1  0 1 1  

0 0 1  1 1  0 
- 

Primitive basis Cubic basis 

a2' 83 '  a2 ' a,' a3' 
- 
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