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A Topological Theory of Domain Velocity

in Semiconductors

Abstract: A theory is given for the velocity of a free, steadily travelling domain of high electric field in a semiconductor exhibiting a
negative differential conductivity. Explicit results are derived for the cases for which the domain behavior is dominated either by the
(electric-field dependent) diffusion of electrons, or by the rate of transfer of electrons between states having different mobilities. It is
shown that the solution for the electric-field distribution has the required properties only if the system of differential equations involved
possesses singular points with special topological properties; this requirement serves to fix the domain velocity. The velocity depends
only on the properties of the semiconductor at that high electric field where the effective drift velocity of electrons is equal to that

outside the domain.

Introduction

The existence of travelling domains of high electric field
in a semiconductor™® requires that the material possess
two properties: 1) The current carried in a steady electric
field must be a decreasing function of field over a certain
range, and 2) during the passage of the domain, the
conduction current at a point must not be a single-valued
function of electric field. In cases of practical interest,
the first property results from the transfer of electrons
from high- to low-mobility states as the electric field
increases, while the second arises predominantly either
from the contribution of diffusion currents, or from
the finite rate of transfer between states. From these
properties it follows that the differential equation de-
scribing domain propagation is a partial one, of at least
the second degree, and nonlinear. In general, it can be
solved only by computer techniques.®* However, if
conditions are such that a domain can be assumed to
be travelling steadily (that is, with constant shape and
velocity, in homogeneous material), the equation can
be reduced to an ordinary one of the first degree. The
velocity of this steady motion enters the equation as
an unknown parameter, whose value is to be determined
by satisfying the boundary conditions. This has been
done, for the diffusion type of domain, by the use of
the “Equal Areas Rule,”’ which is valid only if the dif-
fusion coefficient is constant.

The boundary conditions are most easily discussed
if the electric field in the domain is described, not as
a function of position or time, but as a function of its
derivative with respect to position or time. In such a
phase-plane representation, acceptable solutions appear
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as closed trajectories, starting from and ending at a given
singular point, and encircling a second one. So much
has been known for some time®™® but it does not seem
to have been recognized that the condition that determines
the unknown velocity is just the requirement that the
trajectory be indeed closed. In this paper we show, by a
topological argument, that the requirement that the
trajectory be closed determines the nature of the singular
point that it encloses. The classical topological theory of
nonlinear differential equations gives a necessary con-
dition for the existence of the requisite type of point, in
terms of a linear expansion of the equation about that
point. Since the domain velocity appears in the expansion
as a parameter, it can thus be deduced from the values of
the other variables in the problem, ar the point itself.

Analysis

Let n, u, D represent the number density, mobility, and
diffusion coefficient of electrons in a state. For each
of the two kinds of state, which we distinguish by sub-
scripts 1 and 2, these quantities may depend on the elec-
tric field E. Also dependent on E are the rates, S; and
S, at which electrons leave each kind of state for the
other. If k is the dielectric constant of the medium, N
the net donor density, and e the charge on an electron,
we have equations for the total current density J,

J = eE(un + uane)
— eN(Dyny + D3ng) + (x/4w) OE/0¢, (1)
for the continuity of one of the electron currents,

V- (Busny, — YV Dony) + 6”2/‘” = Sy — Sen,, (2)
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and Poisson’s equation,
V -E = (4re/k)(n, + n, — N). (3)

Assuming that J is constant, and that the domain is
travelling steadily in the x-direction with velocity ¢, we
have 8/dy = 3/9z = 0, 8/0t = —cd/0x = —cd/du,
where u is the moving coordinate x — ct. Then, by elimi-
nating n, and n,, Egs. (1), (2) and (3) can be reduced to
an ordinary differential equation of the second order
under either one of two simplifying assumptions. If it
is assumed that S; and S, are much larger than the highest
frequencies involved in the problem, Eq. (2) reads ap-
proximately

Sy = Sens; )

that is, the populations of the two valleys are always
in dynamic equilibrium and the domain is controlled
by diffusion. In this case, the resulting differential equation
is

d°E (1)<dE>2 ( 4me N m) dE
p L5 + pEE -~ ey £
al T a) T\CTREFT T D)
4xe N 4
~ T UE+ T U =0, (5a)

where we have written u for the mean mobility (S.u, +
Siu)/(S1 + S.), D for the mean diffusion coefficient
(2D, + S.Dy)/(S; + S.), and D for dD/dE. Alter-
natively, if it is assumed that the diffusion coefficients
D, and D, are sufficiently small, the terms involving
them can be neglected, and the domain is controlled by
the rate of transfer between states. Then, after elimi-
nating n; from Egs. (1) and (2), dividing the resulting
equation by E(u, — us) 7 0, substituting the resulting
value of n, in Eq. (3), and dividing by S; 4+ S,, we obtain

_ v, dE_ G (@y
(81 + 8,) du® ' (S, + S,) \du
4re N H dE
+{“ - *‘“Tm}z;

. 4me N 4 J

rE + — =0,
K

(5b)

where we have written
v, = uE —c¢,
v, = wFE — ¢,
po= (S + u8)/(S: + S,).
G = (it — wio))/ @ — vs),
{use\(J/eN — p,E)
— uloo(J/eN — wE)} /0, — vy),

. d
w o= d—E(ulE), and

d
By = B (uE).

It will be seen that both Eq. (5a) and Eq. (5b) can be
written in the form
d&’E dEY’
F(E)— + Fz(E)(_>
du du
dE
+ F3(E)E + Fu(E) =0 (6)

where F,, F,, F;, F, are all continuous functions of E.
By means of the substitutions dE/du = p, d°"E/di’® =
dp/du, Eq. (6) can be replaced by the system of equations

i _F . F B

du F, F, F’ @
dE _

du e

The nature of the solutions of this system, in the (E, p)
plane, can be discussed using the classical topological
theory® of nonlinear differential equations.

We note first that the system (7) has singular points
at p = 0, Fy(E)/F,(E) = 0; that is, in the (E, p) plane,
a singular point exists at a point E; on the E-axis wherever
W(E)-E;, = J/eN, provided the appropriate quantity
D or v,;v,/(S; + S.) is not zero. Now, if a solution is to
describe a single, steadily travelling domain in the (E, u)
plane, as shown in Fig. 1(a), the trajectory T in the (E, p)
plane must be a closed curve, emanating from and re-
turning to a saddle point, as shown in Fig. 1(b). The
closure of T depends on the value of ¢ relative to other
quantities in the problem, as we now show. Suppose
there exists a closed trajectory* T,, corresponding to a
particular velocity c,. If we can show that, when the
conditions are changed, the new trajectories cross 7,
only in one sense, then it follows that, as we trace out
a given one of these, say T,, more and more trajectories
enter the space between T, and T,. Thus, if Tj is closed,
T, cannot be, and must diverge farther and farther from
T,. (See Fig. 2.) To show this, in the diffusion-controlled
case, we have only to eliminate u between Egs. (7), by
taking their ratio and then differentiating with respect
to c¢. Thus, at any given point (E, p), say on T, we have

(@), - -ve

Since it will be shown later that other mathematical
conditions (not to mention physical considerations)
require that D be positive, we see that the trajectories
corresponding, e.g., to ¢ = ¢, -+ Ac have, at any point

(8a)

*This closed trajectory is not a Poincare limit cycle, as it is not periodic.
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(a) (b)
Figure 1 A steadily travelling high-field domain. (a) Elec-
tric field E as a function of the moving coordinate «. (b) E
as a function of p = dE/du.

(a) (b)

Figure 2 Effect of variation of parameters on trajectories
in the (E, p) plane. T, is an acceptable closed trajectory,
T. is a result of incorrect choice of parameters. (a) Diffu-
sion-controlled case: variation of velocity c¢. (b) Transfer-
controlled case: variation of transfer rate § at E = E..

on Ty, a smaller value of dp/dE than has T,. Since the
change in trajectory shape must be a continuous function
of ¢, this change in dp/dE can amount only to a small
change, not a reversal of direction, of the motion of
the representative point. Hence almost all trajectories
for ¢ = ¢g + Ac cross T, toward the inside, and therefore
spiral inward. Since it cannoi cross them, the singular
trajectory T, which starts from the saddle point must
spiral similarly, as shown in Fig. 2(a). Correspondingly,
for ¢ = ¢, — Ac the trajectories spiral outward.

In the case of the transfer-controlled domain, it is
not possible to prove such a simple result, because ¢
appears in F; and F,, as well as in F;. However, the con-
clusion that the relative value of ¢ determines the closure
of the trajectory can be reached in a more roundabout
way. Thus for comparison with 7, we take a new situation
in which, with one exception, all parameters (including c)
have the same values. The exception is that, in the im-
mediate neighborhood of the field E, corresponding
to the upper singular point, S; and S, have been changed
while their ratio has been kept constant. This leaves u(E)
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unchanged, while varying S = S)(E;) + Su(E,) from its
value S, on T,. On eliminating « as before from Eq. (7),
and differentiating with respect to .S, we obtain

d (d
[5& (:1%) ],,'EE = [WE — co)/vi0s]x, - (8b)

The term in F,/F, does not appear because Fy(E,) = 0,
by definition. The right-hand side of Eq. (8b) has the
same, as yet unknown, sign on both sides of the E-axis.
Thus new trajectories cross Ty, €.g., inward on both sides
near E,, and T, again fails to close in the same way
[Fig. (2b)]. Inwardly or outwardly spiralling behavior
again results, depending now on the departure of S from
So. If we can show (as we shall do) that the value of S,
depends on c¢;, and that ¢, # (uE)g,, then it follows
that a departure of ¢ from ¢, at fixed S, leads to inward
or outward spiralling for the transfer-controlled case
also. This change from inward to outward spiralling as ¢
passes through ¢, shows that, for ¢ = ¢, the trajectories
immediately inside 7, must be closed curves, both in
the transfer- and diffusion-controlled cases. Because all
the functions entering the problem are continuous, no
limit cycle can exist inside T, under these conditions.
The nest of closed curves must therefore continue inward
to enclose a singular point, which is thus seen to be a
center when ¢ = c¢,. Note that the proof that the singular
point inside Ty is a center, on which the rest of this paper
depends, is purely topological in nature, and does not
depend on the usual analytical expansion procedure.
This procedure is used in the next section to obtain a
condition on c,.

We are now in a position to state a topological con-
dition for the existence of an isolated, steadily-travelling
high-field domain: There must be at least two singular
points, of which the lowest (E;, 0) is a saddle and the
next lowest (E,, 0) is a center. The nature of a singular
point can be determined by making an expansion to
first order in (£ — E;) and p in its neighborhood:
dp Fs L( w _ FRY

~ - . — E);
du F1 14 F] 4 F1 >(E 1)’

d(E — E;
aE=B) 9)
u
Then the characteristic equation for Eq. (9) is
_B_ _I_(F;n _F, i“)
F, F Fi = 0. (10)
1 —A

A necessary condition for a center is that the roots A,
and A\, of Eq. (10) be purely imaginary, whereas the

* Strictly speaking, this singularity might be an outwardly stable or un-
stable limit cycle, but these do not in fact exist in this problem.

593

THEORY OF DOMAIN VELOCITY




594

J. B. GUNN

condition for a saddle is that they be real but of opposite
signs. Thus the required conditions are found to be

(1) 2 — 0-
FUE)F{(E) > }F(E) = 0; an

F(E)F(E) < 0,

where we have made use of the conditions F,(E,) =
F4(E)) = 0 defining the singular points.

If now we interpret conditions (11) in terms of Egs.
(5a) and (5b) for the diffusion and transfer-controlled
domains, respectively, we obtain, after some rearrange-
ment,

J . 4re N

©TeNT Tk D(Ey), (12a)
D(E))u'(E;) < 0 < D(ENW'(E),
and
. = L(l — wi“*/S) ’
eN\1 + o*/S /5, (12b)

v1(E)va(Exdu ' (E2) > 0 > vy (EDv(EDu'(Ey).
Here we have written S = S; + S, 4/ = d(uE)/dE,
wf = (4reN/k)(S1us + Soui)/S, and

wk* = (%GN/K)(Sll-‘«lMg -+ SZ“Z“;)/(SU‘Z + Saomi)-

The quantity u’ is simply the macroscopic differential
mobility. Both w}* and w* have the form of a dielectric
relaxation frequency. In addition, the latter has a simple
physical significance; it is the value that would be measured
at high frequencies, where only the drift velocities of
the carriers can follow a changing applied field, and
n, and n, remain constant at the appropriate average
value. It will be seen that the required dependence of
¢, on S has now been deduced, so that our previous
conclusion about the effect of ¢ on the trajectories is
justified as long as N and S are finite.

A striking feature of Egs. (12) is that, given J, the
domain velocity is independent of the properties of the
semiconductor, except for those at a single high value
E, of electric field. This field is, of course, that at which
the electron velocity returns again to the value J/eN,
which it must have outside the domain in order to carry
the current density J under constant-field conditions.
As long as they do not introduce additional singular
points, the properties at other fields are irrelevant.

Discussion

In spite of its simplicity, Eq. (12a) for the velocity of a
diffusion-controlled domain appears to be novel. Butcher’
and Lampert'' have previously obtained a result, which
in our notation can be written as

J _ 4re N
eN K

Cyg =

X f @D/ D) dE/?g [1/D(p + 4weN/x)] dE,
(13)

which gives the domain velocity in terms of integrals
around the closed trajectory in the (E, p) plane. This
result, however, cannot be evaluated until the exact
shape of the trajectory is known, whereas (12a) requires
only a knowledge of w(E) and D(E). The two results
appear qualitatively consistent, both depending on D’
in a similar way. The biggest contribution to (13) comes
from the region where the trajectory is widest, that is,
near E,. Presumably, it should be possible to show that
the two results are equivalent, but we have not been
successful in this. The conditions on the sign of Du/,
given in (12a), contain nothing surprising. For D > 0,
they merely require that the differential mobility u’ be
positive at E; and negative at E,. We now see that the
other assertion made in the introduction to this paper
(that a steadily-travelling domain cannot exist unless
D 5 0 or (S, + S,)"" # 0) can be proved from the con-
dition F, # 0, which is required in order that the points
p = 0, Fy(E) = 0 be singular points. It may also be noted
that the condition u/(E;)D(E;) < 0 precludes the ex-
istence of domains due to a field-dependent D (the diffu-
sion instability'®) alone, as long as D and p’ remain
positive.

For the transfer-controlled domain, Eq. (12b) shows
that, if u;, e, uf, us are non-negative, as is normally the
case, the velocity of the domain is less than J/eN, that
of the electrons outside the domain. In the important
case for which the transfer is between the conduction
band and traps, for which, e.g., u. = u5 = 0, the velocity
is given by

o = i{1 L dmeN  uls, }”1

eN k(S 4 S8
where the field-dependent quantities are, of course, to
be evaluated at E,. This equation can be compared with
a result of Kalashnikov and Bonch-Bruevich'® which,
under certain approximations, gives a similar equation,
but in which the field-dependent quantities are to be
evaluated, not at E,, but at the somewhat higher field
existing at the peak of the domain.

(14)
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