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A Topological  Theory of Domain  Velocity 
in Semiconductors 

Abstract: A theory  is  given  for the velocity  of a free,  steadily  travelling  domain of  high  electric  field  in a semiconductor  exhibiting a 
negative  differential  conductivity.  Explicit  results are derived  for the cases for which the domain  behavior is  dominated  either  by the 
(electric-field  dependent)  diffusion of electrons,  or by the  rate of transfer of  electrons  between states having  different  mobilities. It is 
shown that the  solution  for  the  electric-field  distribution  has  the  required  properties  only if the system  of  differential equations involved 
possesses  singular points with  special  topological properties;  this  requirement  serves to fix the domain velocity. The velocity  depends 
only on  the  properties of the  semiconductor at that high  electric  field  where the effective drift velocity  of  electrons  is  equal to that 
outside  the  domain. 

introduction 
The existence of travelling domains of high electric field 
in a semiconductor'" requires that  the material possess 
two properties: 1) The current  carried in a steady electric 
field must be a decreasing function of  field over a certain 
range, and 2 )  during the passage of the domain, the 
conduction  current at a point  must not be a single-valued 
function of electric field. In cases of practical  interest, 
the first property  results from  the transfer of electrons 
from high- to low-mobility states as  the electric field 
increases, while the second arises predominantly  either 
from  the contribution of diffusion currents, or from 
the finite rate of transfer between states. From these 
properties it follows that  the differential equation de- 
scribing domain propagation is a  partial  one, of at least 
the second degree, and nonlinear. In general, it can be 
solved only by computer  technique^.^'^ However, if 
conditions are such that a  domain  can be assumed to 
be travelling steadily (that is, with constant shape  and 
velocity, in homogeneous  material), the  equation can 
be reduced to  an ordinary  one of the first degree. The 
velocity of this  steady  motion  enters the  equation  as 
a n  unknown  parameter, whose value is to be determined 
by satisfying the boundary  conditions.  This has been 
done, for  the diffusion type of domain, by the use of 
the "Equal Areas which is valid only if the dif- 
fusion coefficient is constant. 

The boundary  conditions are most easily discussed 
if the electric field in  the  domain is described, not  as 
a  function of position or time, but as a  function of its 
derivative with respect to position or time. In such a 
phase-plane  representation,  acceptable  solutions appear 
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as closed trajectories, starting from  and ending at a given 
singular point, and encircling a second one. So much 
has been known for some time6-' but  it does  not seem 
to have been recognized that  the condition that determines 
the unknown velocity is just  the requirement that  the 
trajectory  be indeed closed. In this  paper we show, by a 
topological argument, that  the requirement that  the 
trajectory be closed determines the  nature of the singular 
point  that  it encloses. The classical topological  theory of 
nonlinear differential equations gives a necessary con- 
dition for  the existence of the requisite type of point,  in 
terms of a  linear  expansion of the equation about  that 
point. Since the domain velocity appears in  the expansion 
as a  parameter, it can thus be deduced from  the values of 
the  other variables in  the problem, ut the point itself. 

Analysis 
Let n, p, D represent the number density, mobility, and 
diffusion coefficient  of electrons in a  state. For each 
of the  two kinds of state, which we distinguish by sub- 
scripts 1 and 2 ,  these quantities may depend on  the elec- 
tric field E. Also dependent on E are  the rates, S,  and 
S,, at which electrons leave each kind of state  for  the 
other. If K is the dielectric constant of the medium, N 
the net donor density, and e the charge on  an electron, 
we have equations for  the  total current density J, 

J = eE(plnl i- w 2 )  

- eV(Dlnl  + Dznz)  + ( K / ~ T )  d E / d t ,  (1) 

for  the continuity of one of the electron currents, 

V.(Epznz - V D z n z )  + d n z / d t  S1n1 - S2n2, (2) 
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and Poisson's equation, 

V.E = ( 4 a e / ~ ) ( n ,  + n2 - N).  ( 3 )  

Assuming that J is constant, and  that  the domain is 
travelling steadily in the x-direction with velocity c ,  we 
have a / a y  = d/az = 0, a/& = -ccd/dx = -cd/du, 
where u is the moving coordinate  x - ct. Then, by elimi- 
nating n, and n,, Eqs. (l), (2) and (3) can be reduced to 
an ordinary differential equation of the second order 
under  either one of two simplifying assumptions. If it 
is assumed that S ,  and S,  are much larger than  the highest 
frequencies involved in  the problem,  Eq. (2) reads ap- 
proximately 

S,n, = S,n,; (4) 

and 
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that is, the populations of the two valleys are always 
in  dynamic  equilibrium and  the domain is controlled 
by diffusion. In this case, the resulting differential equation 
is 

- ~- 
4ae N 

p E + -  J =  0 ,  
4a 

(5a) 
K 

where we have  written p for  the mean mobility (S,pl + 
S1p2)/(S1 + S,), D for  the mean diffusion coefficient 
(S,Dl + S,D,)/(S, + S,), and D"' for dD/dE. Alter- 
natively, if it is assumed that  the diffusion coefficients 
Dl and D, are sufficiently small, the terms involving 
them can be neglected, and  the  domain is controlled by 
the  rate of transfer between states. Then, after elimi- 
nating n, from Eqs. (1) and (2), dividing the resulting 
equation by E(pl - p2) # 0, substituting the resulting 
value of n2 in Eq. (3), and dividing by S, + S2,  we obtain 

- u,u2 d 2 E  G 
-~ + (SI + Sd du2 (SI + S 2 )  ( . q 2  du 

47eN H 

-- 4ae N 4a J 
p E  + - = 0 ,  

K K 

where we have written 

It will be seen that both  Eq. (5a) and Eq. (5b) can be 
written in  the  form 

+ F,(E) + F4(E) = 0 
d E  

where F,, F2,  F3, F4 are all continuous  functions of E. 
By means of the substitutions dE/du = p ,  d2E/du2 = 
dp/du, Eq. (6) can be replaced by the system of equations 

d E  
du 

The  nature of the solutions of this system, in the (E,  p )  
plane, can  be discussed using the classical topological 
theor? of nonlinear differential equations. 

We note first that  the system (7) has singular points 
at p = 0, F4(E)/Fl(E) = 0 ;  that is, in  the (E,  p )  plane, 
a singular point exists at a point E; on  the E-axis wherever 
p(E,)-Ei = J/eN,  provided the  appropriate quantity 
D or ulu2/(S,  + S,) is not zero. Now, if a solution is to 
describe a single, steadily travelling domain in the (E,  u)  
plane, as shown in Fig. l(a),  the trajectory T i n  the (E,  p )  
plane  must be a closed curve, emanating from  and re- 
turning  to a saddle point, as  shown in Fig. l(b).  The 
closure of T depends on  the value of c relative to  other 
quantities in  the problem,  as we now show. Suppose 
there exists a closed trajectory* To, corresponding to a 
particular velocity eo. If we can  show that, when the 
conditions are changed, the new trajectories cross To 
only in one sense, then it follows that, as we trace  out 
a given one of these, say T,, more and more  trajectories 
enter the space between T, and To. Thus, if To is closed, 
Tl cannot be, and must diverge farther  and  farther  from 
To. (See Fig. 2.) To show  this, in  the diffusion-controlled 
case, we have only to eliminate u between Eqs. (7), by 
taking  their ratio  and  then differentiating with respect 
to c.  Thus,  at any given point (E,  p ) ,  say on TI ,  we have 

-~ - - P. 

Since it will  be shown later  that  other mathematical 
conditions (not to mention physical considerations) 
require that D be positive, we see that  the trajectories 
corresponding, e.g., to c = co + Ac have, at  any  point 

'This  closed  trajectory is not  a  Poincare'limit  cycle, as it is not periodic. 
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(a )  (b)  
Figure 1 A steadily  travelling  high-field  domain. (a) Elec- 
tric field E as a function of the moving coordinate u. (b) E 
as a function of p = dE/du 

i 

(a)  (b)  
Figure 2 Effect of variation of parameters on trajectories 
in the ( E ,  p )  plane. To is an acceptable  closed trajectory, 
TI is a result of incorrect choice of parameters. (a) Diffu- 
sion-controlled  case: variation of velocity c.  (b) Transfer- 
controlled case:  variation of transfer rate S at E = El. 

on To, a smaller value of dp/dE than  has To. Since the 
change  in trajectory shape must  be a continuous  function 
of c,  this  change in dp/dE can amount only to a small 
change, not a reversal of direction, of the  motion of 
the representative point.  Hence  almost  all  trajectories 
for c = co + Ac cross To toward  the inside, and therefore 
spiral  inward. Since it cannot cross them, the singular 
trajectory TI which starts  from  the saddle point must 
spiral similarly, as shown in Fig. 2(a). Correspondingly, 
for c = co - Ac the trajectories  spiral outward. 

In  the case of the transfer-controlled  domain, it is 
not possible to prove such a simple result, because c 
appears in Fl and F2, as well as in F3, However, the con- 
clusion that  the relative value of c determines the closure 
of the trajectory  can be reached in a more roundabout 
"way. Thus  for comparison with To we take a new situation 
in which, with one exception, all parameters (including c) 
have the same values. The exception is  that, in the im- 
mediate  neighborhood of the field E2 corresponding 
to the upper singular point, S,  and S2 have been changed 
while their  ratio  has been kept  constant. This leaves p(E) 
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unchanged, while varying S = S,(E2) + &(E2) from its 
value So on To. On eliminating u as before from 3. (7), 
and differentiating with respect to S,  we obtain 

The  term  in F4/F, does not  appear because F,(E2) = 0, 
by definition. The right-hand side of Eq. (8b) has  the 
same, as yet unknown, sign on  both sides of the  Saxis. 
Thus new trajectories cross To, e.g., inward on both sides 
near &, and TI again fails to close in  the  same way 
[Fig. (2b)I. Inwardly or outwardly spiralling behavior 
again results, depending  now on  the  departure of S from 
So. If we can  show (as we shall do)  that  the value of So 
depends on co, and  that co # @ E ) E , ,  then it follows 
that a departure of c from co, at fixed S,  leads to inward 
or outward spiralling for  the transfer-controlled case 
also. This  change from inward to outward spiralling as c 
passes through co shows that,  for c = co, the trajectories 
immediately inside To must be closed curves, both  in 
the transfer- and diffusion-controlled cases. Because all 
the functions  entering the problem are continuous, no 
limit cycle can exist inside To under  these  conditions. 
The nest of closed curves must  therefore  continue  inward 
to enclose a singular point, which is thus seen to be a 
center when c = co. Note  that  the proof that  the singular 
point inside To is a center, on which the rest of this paper 
depends, is purely topological in nature, and does not 
depend on  the usual analytical  expansion  procedure. 
This  procedure is used in  the next section to obtain a 
condition on co. 

We are now in a  position to  state a topological  con- 
dition for  the existence of an isolated, steadily-travelling 
high-field domain: There must  be at least  two  singular 
points, of which the lowest (E,, 0)  is a  saddle and  the 
next lowest (E2, 0 )  is a center. The  nature of a singular 
point  can be determined by making an expansion to 
first order in ( E  - E;) and p in its  neighborhood: 

d ( E  - E i )  
dU 

= p .  

Then  the characteristic equation  for Eq. (9) is 

1 1  "x I 
A necessary condition for a center is  that  the  roots XI 
and X2 of Eq. (10) be purely imaginary, whereas the 

stable limit cycle, but these do not  in  fact exist in this problem. 
* Strictly speaking, this singularity might be an outwardly stable or un- 
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condition for a saddle is  that they be real  but of opposite 
signs. Thus  the required  conditions are  found  to be 

F ~ ( E ~ ) F Y ( E , )  > $F;(E,) = 0 ;  
(1 1) 

F1(E1)Fi1)(E1) < 0 ,  

where we have made use of the conditions F,(E,) = 

F4(E1) = 0 defining the singular  points. 
If now we interpret  conditions (11) in terms of Eqs. 

(5a) and (5b) for  the diffusion and transfer-controlled 
domains, respectively, we obtain, after some  rearrange- 
ment, 

and 

Here we have  written S = S,  + Sz, p’ = d(pE)/dE, 

w f  ( h e N / K ) ( s 1 P i  + SzEL:)/s, and 

w y *  ( ~ ~ ~ N / K ) ( S I P I C L :  + S z P z d ) / ( s ~ P z  + szP1). 

The quantity p’ is simply the macroscopic differential 
mobility. Both UT* and w*, have the  form of a dielectric 
relaxation frequency. In  addition,  the  latter  has a simple 
physical significance; it is the value that would be measured 
at high frequencies, where only the drift velocities of 
the carriers  can follow a changing applied field, and 
nl and n2 remain  constant at  the  appropriate average 
value. It will be seen that  the required dependence of 
cg on S has now been deduced, so that our previous 
conclusion about  the effect of c on  the trajectories is 
justified as long as N a n d  S are finite. 

A striking  feature of Eqs. (12) is that, given J, the 
domain velocity is independent of the properties of the 
semiconductor, except for  those  at a single high value 
& of electric field. This field is, of course, that  at which 
the electron velocity returns again to  the value J/eN, 
which it must have outside the domain in  order  to carry 
the current density J under constant-field conditions. 
As long as they do  not  introduce  additional singular 
points, the properties at  other fields are irrelevant. 

Discussion 
In spite of its simplicity, Eq. (12a) for  the velocity of a 
diffusion-controlled domain  appears to be novel. Butcher” 
and  Lampert” have previously obtained  a  result, which 
in our notation can be  written as 

c 0 = - ” -  J 4 m N  
e N  K 

which gives the  domain velocity in terms of integrals 
around  the closed trajectory in  the (E, p )  plane. This 
result, however, cannot be  evaluated  until the exact 
shape of the trajectory is known, whereas (12a) requires 
only a knowledge of p(E)  and 0 8 .  The two  results 
appear qualitatively consistent, both depending on D‘l’ 
in a similar way. The biggest contribution  to (13) comes 
from  the region where the trajectory is widest, that is, 
near Ez. Presumably, it should  be possible to show that 
the two results are equivalent, but we have not been 
successful in this. The conditions on  the sign of Dp’, 
given in (12a), contain  nothing surprising. For D > 0, 
they merely require that  the differential mobility p’ be 
positive at El and negative at E2. We now see that  the 
other assertion made  in  the  introduction  to this paper 
(that a steadily-travelling domain cannot exist unless 
D # 0 or (S ,  + SJ1 # 0) can  be  proved from  the con- 
dition Fl # 0, which is required in  order  that  the  points 
p = 0, F4(E) = 0 be singular points. It may also  be  noted 
that  the condition p’(Ez)D(E2) < 0 precludes the ex- 
istence of domains due  to a field-dependent D (the diffu- 
sion  instability”)  alone, as long as D and p’ remain 
positive. 

For the transfer-controlled domain,  Eq. (12b) shows 
that, if pl ,  p,, p;,  pi are non-negative, as is normally the 
case, the velocity of the  domain  is less than  J/eN,  that 
of the electrons outside the domain. In  the  important 
case for which the transfer is between the conduction 
band  and  traps,  for which, e.g., pz = p; = 0, the velocity 
is given by 

where the field-dependent quantities are, of course, to 
be evaluated at E,. This equation can  be  compared with 
a  result of Kalashnikov and  Bonch-Brue~ich’~ which, 
under  certain  approximations, gives a similar equation, 
but in which the field-dependent quantities are  to be 
evaluated, not  at E,, but  at  the somewhat higher field 
existing at  the peak of the domain. 
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