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Bulk Negative Differential Conductivity in

Germanium: Theory

Abstract: Two mechanisms have been proposeds? for the bulk negative differential conductivity of n-type germanium first observed
by Elliott et al.2 These are discussed with reference to recent Monte Carlo calculations in which effects due to intravalley acoustic
phonon scattering, (100) and (000) minima and ellipsoidal constant energy surfaces are explored. Strong evidence is presented that
electron transfer to (100) minima causes this negative conductance. The origin of its temperature and orientation dependence is dis-

cussed.

Introduction

Bulk negative differential conductivity (BNDC) has been

observed in n-type germanium under a wide variety of

conditions, for example,

(1) in gold-doped material at 77°K,!

(2) in fairly pure material below 150°K,*"*

(3) in fairly pure material under unijaxial stress at 300°K
and below, and

(4) in very pure material at 4°K.°

These observations originate from different mechanisms.
The first is due to the field-dependent capture cross-section
of gold ions for electrons." The third is due to a field-
induced transfer of electrons between (111) minima split
by the unaxial stress.* The fourth is almost certainly due
to a field-induced transfer of electrons between (111)
minima under exceptional intervalley scattering con-
ditions.® Controversy surrounds the origin of the second;
one suggestion is that it originates from a field-induced
transfer of electrons to higher ({100)) minima,’® another
is that it is due to acoustic phonon scattering under con-
ditions for which spontancous emission is important.”

This paper will be devoted to a consideration of the
origin of the second BNDC>?® effect listed above. This
effect is of particular significance because it occurs in
what we may refer to as normal material and is observed
under usual conditions. The main features of this BNDC
are (a) it is observed only below 150°K, increasing as the
temperature is lowered; (b) even at low temperature (27°K)
is small by comparison with effects in gallium arsenide;”
(c) it is orientation dependent, being observed with electric
field vector E parallel to {100) but not for E || (111);
and (d) it is removed by hydrostatic pressure.7
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Figure 1 Schematic diagram of the conduction band minima
of germanium near the energy gap.

First we examine the suggestions put forward for its
origin. Figure 1 shows the relative positions of the lower-
energy conduction band minima of germanium. It was
suggested some time ago’ that population of the (100)
minima was occurring in high electric fields and was re-
sponsible for the (then) apparent saturation of drift
velocity. More recently it was suggested that this process
was the mechanism responsible for the BNDC.® Calcu-
lations based on displaced Maxwellian distribution
functions for carriers in the (100) and (111) minima did
predict BNDC that had the observed temperature de-
pendence and the approximately correct magnitude.
However, as mentioned earlier, the BNDC is small and
consequently any prediction of it invites criticism of the
approximations that are employed. The main approxi-
mations introduced were (1) the imposed form of the
distribution functions, (2) neglect of the {000) minimum
and (3) representation of the ellipsoidal constant energy
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surfaces of the (111) and (100) minima by spherical
constant-energy surfaces characterized by a density-of-
states mass and a conductivity mass.

An alternate suggestion of an intraband effect for the
origin of the BNDC was put forward by Dumke,” who
proposed that the failure of the equipartition of energy
approximation for those acoustic phonons involved in
scattering high-energy electrons in the (111) minima was
responsible, though no estimates of the effects in ger-
manium are available. Some general analytical expressions
are available from the work of Stratton.'® The failure of
their approximation was ignored in the calculations of
Fawcett and Paige’® though it is clear an electron in the
{111) minimum with an energy of 0.2 eV (i.e., sufficient
energy to make a transition to the (100) minimum) can
emit a phonon of energy greater than kT at 27°K.

Recently Fawcett and Paige'' carried out a series of
calculations in which the various approximations intro-
duced in earlier work were examined and more realistic
parameters were used. In particular, the form of the distri-
bution function was not assumed but was calculated by the
Monte Carlo method; ellipsoidal constant energy surfaces
were introduced for (111) and {100) minima; and the
importance of the (100) minimum and intraband acoustic
phonon scattering were investigated. The remainder of
this paper is devoted to a discussion of that work.

Calculation of the distribution function

We are concerned with calculating the distribution func-
tion associated with a minimum with ellipsoidal constant
energy surfaces. By transformation into w-space where
the electron energy, e, is given by

Hw'
2my

e(w) = , (1)

m, being the free electron mass, and assuming that all
scattering processes are randomizing, the distribution
function has cylindrical symmetry about the field E’,
which is the accelerative field in w-space obtained from E,
the field in k-space, by the transformation

E' =T-E 2)
where T is defined by the transformation

w= Tk ie., 3)
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From the distribution function a mean value, {w), of w
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was found. It was transformed to a velocity in real space
to find the drift velocity, (v)

W = 2 1w) @)

associated with the minimum. The form of T reveals that
E and (v) were referred to the principal axes of the ellip-
soidal constant energy surfaces. In general, further trans-
formations were required to refer E and {v) to a common
set of crystal axes because the principal axes of the various
minima do not coincide.

The Monte Carlo technique which was used to determine
the distribution function has been described previously.'®
In this method, the motion of a single electron through
w-space is simulated by generating successive random
numbers to represent the time of free flight in the electric
field, the scattering mechanism and the final state after
scattering. The w-space within each minimum is divided
into boxes and the time spent by the electron in each box
(the visiting time) is recorded. After many collisions the
visiting time in each box is proportional to the distribution
function in w-space. The total time spent by the electron
in each minimum is proportional to the carrier population
in that minimum and is given by Z (ws — w)H/eE’ where
w; and w; are the initial and final wave vectors of the
flight and the summation is over flights in w-space.

In addition to the phonon scattering mechanisms, a
“self-scattering” process was included for which the
scattering rate between two states w and w’ in minimum
o was taken to be

So(w, w') = [Pa - Am(w)] dw — w') Q)

where I', is a constant and A, (W) is the total scattering
rate for the state w due to the real scattering process s.
While this “self-scattering™ is of no physical significance,
since it does not change the electron-wave vector, it
simplifies the numerical procedure by distributing the
times of free flight according to the simple negative ex-
ponential distribution 1/T', exp [— T ,7."*

When the electron has suffered about 40,000 real col-
lisions in each minimum the distribution function con-
verges and w could be evaluated by numerical integration.
In practice, w was not obtained in this way, since the
accuracy depends on subdividing w-space into a sufficiently
small mesh. Instead the expression

w = %Z (wi — W?)/Z (We — W;)

was used where the summations are over flights in w-space.

Band structure and scattering processes

The essential features of the band structure of germanium
for the problem in hand are shown in Fig. 1. The (000)
minimum has spherical constant-energy surfaces, while
the surfaces of the (111) and (100} minima are ellipsoids
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Table 1 Conduction band parameters of germanium.

Minimum Number my/my me/my A (eV)
111 4 1.577= 0.0815»
000 1 0.037° 0.037% 0.14v
100 6 0.90¢ 0.192¢ 0.18¢

* Ref. 9, page 145.

®W. Paul, J. Phys. Chem. Solids 8, 196 (1959).

e C. J. Rauch, J. J. Stickler, H. J. Zeiger and G. S. Heller,
Phys. Rev. Letters 4, 64 (1960).

4 Ref. 14,

of revolution. The effective masses and energy separations
relative to the (111) minima are given in Table 1. The
(100) effective masses have been assumed to be identical
to those in silicon.

The electric field lowers the crystal symmetry. Two
directions of E have been considered, E || [100] and
E || [111]. When E || [100], all four {111) minima remain
equivalent and a determination of distribution function
is necessary for only one of these. However, the (100)
minima form two sets, the [100] and [100] minima in one
set, [010], [010], [001] and [001] in the other. These will be
referred to as the [100] and [010] sets. Similarly when
E [| [111], all six {100) minima are equivalent but the [111]
minimum must be distinguished from the [111], [111] and

Table 2 Electron-phonon scattering processes in germanium.

[111]. These will be referred to as the [111] and [111] sets.

The scattering processes considered have been limited
to phonons. They include acoustic and optic intravalley,
equivalent intervalley and non-equivalent intervalley.
They are listed in Table 2 together with their branch.
energy (if they are high energy) and deformation potential,

An approximate treatment of intravalley acoustic
phonon scattering for ellipsoidal constant energy surfaces
gives a scattering rate

(m m2m3)%E§va' 3

N /h4pS2 € 6)

where E,. is an average deformation potential chosen
to give agreement between the zero-field lattice mobility
calculated using Eq. (6) and the observed acoustic phonon
limited value, p is the crystal density, s is the velocity of
sound, T is the lattice temperature and k Boltzmann’s
constant. An approximate treatment of this form for
ellipsoidal constant energy surfaces was found necessary
to avoid time consuming computation.

Optical and intervalley scattering has been calculated
using the usual expressions.9 Three distinguishable types of
equivalent intervalley scattering among {(100) minima
have been included by analogy with silicon.*?

Ae) =

The role of the (000) and (100) minima
First the results of calculations in which the {000 ) minimum
has been ignored will be presented, followed by results

Minimum
_— Phonon energy
Type Initial Final Branch (equivalent temp.) Eav (€V) D/a (eV /em)
111 111 Acoustic —_ 11.8»
111 111 Optic 430 °K — 9 X 10%=
000 000 Acoustic — 5b
Intravalley 000 000 Optic 430 °K — Forbidden
100 100 Acoustic — 7.4 —
100 100 Optic 430 °K — Forbidden
J 111 111 Acoustic 320 °K — 1.6 X 108
Equivalent 100 100 Optic 430 °K — 1.1 X 10%
Intervalley 1 100 100 Acoustic 100 °K — 8.8 X 107
100 010 Acoustic 320 °K — 3.8 X 108
Non- 111 000 Acoustic 320 °K — 2 X 108f
Equivalent 111 100 Acoustic 320 °K — 1 X 108¢
Intervalley 000 100 Acoustic 320 °K — 2 X 108¢

& Ref 9, page 102.

*T. P. McLean and E. G. S. Paige, J. Phys. Chem. Solids,
23, 833 (1962).

¢ Ref. 13. .

4G. Weinreich, T. M. Saunders and H. G. White, Phys.
Rev. 114, 33 (1959).

° See fext.

f Assumed values,
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Figure 2 Variation of the drift velocity with field for
E||(100) at various temperatures. The figures in parentheses
are the maximum negative mobilities in units of cm®*/V-sec.

which show that the (000) minimum has an insignificant
effect on the mobility.

Calculations have been performed for E || [100] and
E || [111]. In both cases three distinguishable sets of minima
are required as described above. All minima are ellipsoidal
and it is therefore necessary to perform the transformation
to w-space for each (see the section on the distribution
function). Even with neglect of the {000) minimum, the
number of parameters involved is large. They were selected
in the following way; Parameters for the (111) minima
are well known and these were taken from the literature
(see Tables 1 and 2), the possible exception here being
the coupling constant for optical modes. The author has
been strongly influenced by the arguments in Ref, 9 in
selecting a value for this parameter! Parameters for the
(100) are not well known. In the absence of any good
experimental evidence, the effective mass parameters have
been taken as identical to those for silicon. A value of
900 cm’/V-sec for the mobility in the (100) minima has
been found for germanium subjected to a hydrostatic
pressure such that the (100) minima have a lower energy
than the (111) minima.'* From this mobility, the ratio
of deformation potentials from silicon'® and the silicon
effective masses, the deformation potentials of Table 2
were obtained. The nonequivalent intervalley deforma-
tion potential was treated as an adjustable parameter.

Figure 2 shows the variation of drift velocity with
electric field for E || (100) for various temperatures
with a coupling strength of 1 X 10° eV/cm for the adjust-
able parameter. A BNDC is predicted at low temperature,
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Figure 3 Variation of drift velocity with field for E|[{100)
at 77°K showing a comparison between theory and various
experimental results. (Low frequency microwave results pre-
sented in the paper by A. C. Baynham, p. 568.)

diminishing with increasing temperature, until at 150°K
it has disappeared. Values of threshold field, level of drift
velocity and magnitude of negative mobility (shown in
brackets in Fig. 2) are within the range of experimental
results.”® Figure 3 shows a comparison of theory with
experimental results at 77°K.

Having shown that a BNDC can be predicted for
E || (100), it is vital to establish the validity of the model
to show that no BNDC occurs when E || (111)*, Figure
4 shows results for E || (111} as well as for E || (100)
at 77°K; the E || (111) results show a positive mobility
over the complete field range. The maximum in the
anisotropy as measured by the ratio of drift velocities
for E parallel to (100) and {111) occurs at about 1 kV/cm
and has a value of 1.57 in good agreement with experi-
mental results.'®'” At all temperatures in the 27°K to
300°K range, no BNDC was predicted for E || (111).

Hydrostatic pressure experiments have been simulated
by changing the energy separation between (100) and
(111) minima. Resulis at 77°K for an energy separation
of 0.117 eV (0.18 eV for zero pressure) are shown in
Fig. 4 by the dashed curves. This separation is equivalent
to a hydrostatic pressure of 10 kbar."* Despite the large
distortion of the band structure the effects are modest for
E || (100) and remarkably small for E || (111). The
threshold field for BNDC is little affected but a high
field limit has appeared in the field range up to 8 kV/cm.

* We refer to the high field results, E > 500V /cm. The BNDC observed
by Kastalskii and Ryvkin,s when E |} (111), occurred at very low field strengths,
about 5 V/cm, and are not our concern here.
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Figure 4 Anisotropy of the BNDC and simulation of the
effect of hydrestatic pressure at 77°K.

These results are qualitatively similar to those seen ex-
perimentally’ though the BNDC has disappeared even
at a pressure of 4 kbar. The difference may be attributed
to an overestimate of the BNDC by the model.

Simulation of uniaxial stress measurements, for a stress
collinear with an electric field in the (100) direction, is
possible with the present model but has not yet been
investigated.

The importance of the {000) minimum was investigated
by introducing additional approximations into the treat-
ment of the problem in order to confine our considerations
to three distinguishable minima. Only the case of E || {100)
was considered. Then the two distinguishable sets of
{100) minima were treated as one suitably averaged set
(due to strong equivalent intervalley scattering this is a
good approximation). Comparison was then made be-
tween velocity-field curve calculations including and ex-
cluding the (000) minimum. With the parameters given
in Tables 1 and 2 the agreement was within 19,. It was
clear that although the mobility of electrons in the (000)
minimum was high (fourfold increase over mobility in
{111) minima), the density-of-states factor rendered them
ineffective in influencing the drift velocity (population less
than 0.29, of total).

Discussion

These calculations show that a BNDC can exist in n-type
germanium due to the presence of {100) conduction band
minima. A comparison with experimental results suggests
that the calculation is, if anything, overestimating the
magnitude of the BNDC. This overestimate may be rem-
edied by a small increment in the (111) to {100) minima
scattering rate. In fact, in trying to fit exact expressions to
Jayaraman and Kosicki’s'* zero field, hydrostatic-pressure

measurements we find that the measurements cannot be
reproduced without assuming appreciable pressure depend-
ence of mobility in the (100) minima and a stronger (111)-
{100) coupling (|D/a] = 5 X 10° €V/cm) than used in
the preceding calculation. A 209, increase in (100) masses
and this value of {111)-{100) coupling still give a negative
mobility at 27°K, which at 77°K has become so small
that it is indistinguishable from saturation within the
error of our present calculations. (The experimentally
observed BNDC is also so small that we would not
expect to have the necessary accuracy to predict it).
Calculations with these parameters are incomplete.

o Origin of temperature dependence:

At zero field, since impurity scattering has been neg-
lected, the low-temperature mobility of (111) electrons is
greater than at a high temperature. Consequently, the rate
of gain of energy in an electric field is higher and the
mobility falls to a value comparable to that in the higher
temperature crystal, but never below it. The mobility
of carriers in the (100) minima shows little dependence
on lattice temperature in the 27°K to 150°K range. The
consequences of these features are that for the lower
lattice temperature (1) the rate of decrease of mobility
({111)) with field is greater, (2) the peak in the variation
of the rate of transfer of electrons from (111) minima
to (100) minima occurs at lower fields, when (d°v/dE?) 11,
is greatest, and (3) the change in mobility of an electron
on transfer from a (111) to a (100) minimum is greater.
It is this combination of features that leads to the larger
BNDC at the lower temperature.

o Origin of orientation dependence.

The orientational dependence of the BNDC originates
from the transfer of electrons between minima which are
equivalent in the absence of E. When E || [100] no net
transfer of electrons between (111) minima occurs but
there is a weak tendency for the low mobility {100] set
of minima to have a higher occupancy than the [010] set
(see Fig. 5). This tends to enhance the BNDC. In contrast,
when E || [111], there is a very large transfer of electrons
from the high mobility [Ill] set to the low mobility [111]
set of minima due to the weak intervalley coupling. The
rate of transfer with field to the (100) minima is reduced
and the transfer becomes insignificant since electrons
in the minimum have a lower mobility than in the {100)
minima. This destroys the BNDC as shown in Fig. 4.

e Other sources of BNDC.

Other factors that can contribute to a BNDC are electron
transfer from the (111) minima to impurity states asso-
ciated with the (100) minima, non-parabolicity of the
(111) minima and the previously mentioned intra-band
acoustic phonon scattering.” No estimates have been made
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Figure 5 Variation of the fraction of the total number of carriers in the distinguishable sets of minima at 27°K for
E||[111] and E||[100] (full curves). The long-dash curves show the combined contributions of minima that are equivalent
when E is zero. The short-dash curves show variation of mobility.

of the importance of the first two of these possibilities
for germanium. Regarding the third, we find that in the
region of 3 kV/cm and above, a wide variation in the
value of =,, has little effect on the results. This reveals
that the effect of intraband acoustic phonon scattering
is small when the presence of the (100) minima is taken
into account and strongly suggests that this intraband
effect is not making a major contribution to the BNDC.

The present calculations do not preclude some con-
tribution to the BNDC of n-type germanium by mech-
anisms listed here. What they do show unequivocably
is that population of {100) minima must be taken into
account in any meaningful calculation and that, with
apparently realistic parameters, the main feature of the
BNDC can be accounted for solely by the electron transfer
mechanism to (100) minima.
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