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Parametric Amplification and Frequency Shifts
in the Acoustoelectric Effect

Abstract: Mechanisms for the downshift in the frequency of maximum acoustic intensity f.: for high flux domains in piezoelectric
semiconductors are reviewed. For the simple case where an externally introduced acoustic wave (pump) produces a single-frequency
domain in photoconducting CdS, clear evidence is given that the downshift in . is due to parametric amplification of thermal acoustic
noise, For a pump of 990 MHz, after some initial growth (vs = 1.14 v,), the pump is found to be depleted In the pump depletion
region, signals in a 200 MHz band about the even subharmonic (445 MHz) are found to grow. At pump strains of about 1076 the
signals propagated at angles to the pump equal to those that give phase matching according to the dispersion of linear theory. For
higher pump strains, however, the collinear process is dominant, The signal domain is narrower than the pump domain, as expected,
because the parametric growth is exponentially dependent on pump strain. The downshifting of f.: in the region where deviations
from linear theory are still small is discussed in terms of a parametric interaction model, with the initial acoustic strain distribution

considered as an incoherent pump.

Introduction

The linear theory of acoustic amplification in piezoelectric
semiconductors’ is in satisfactory agreement with ex-
periment”® only for small signals. When acoustic domains
are propagated, in which the acoustic flux levels are high,
important departures from the predictions of this theory
have been found experimentally.®* In particular, it has
been observed that the frequencies of maximum net
acoustic gain and intensity decrease, as the acoustic
intensity increases, to a value as much as an order of
magnitude lower than that predicted by linear theory.®"*
In this paper we consider mechanisms which may explain
these downshifts.

Traveling-wave parametric amplification of acoustic
waves provides us with one such mechanism. Since we
have unambiguous evidence for strong parametric amplifi-
cation due to externally introduced power in piezoelectric
semiconductors,”™" let us consider this process first.

Parametric amplification

Parametric amplification may be thought of as a stimu-
lated emission process® in which a pump phonon of fre-
quency w, emits signal and idler phonons of frequency
w, and w,, respectively, where for conservation of energy

w, = w, + w. @
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Figure 1 Phase matching for parametric amplification
where k,, k., ki are the wave vectors of the pump, signal
and idler respectively.

In this paper we consider only parametric amplification of
the thermal noise. The identification of “‘signal” and
“idler” frequencies, therefore, is arbitrary. The phase
matching, conservation of momentum condition is shown in
Fig. 1 in which k,, k,, and k; represent the pump, signal
and idler wave vectors, respectively. Since we have found
strong transfer of pump energy to signal energy, we
assume that the phase matching condition holds. The
three waves are shown propagating at angles to one
another, indicating the presence of dispersion. If there
were no dispersion, conservation of energy and momentum
would be satisfied by collinear waves.

Keeping terms in the electric field up to second order in
the displacement, Conwell and Ganguly have set up
coupled wave equations for pump, signal and idler shear
waves and solved them for the initial rate of growth of the
signal and idler.®® This theory predicts, for conditions
generally met in the experiments, that the gain will be
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greatest for w, ™ w,," as is experimentally observed.”””
Consider then the growing solution for the signal ampli-
tude u, where w, = w; and all waves are confined to the
basal plane. For drift velocity v, greater than sound
velocity v,, the solution may be written approximately6

us(xs ~ u‘,(O)EHMHM"_M)“, (2)

where u,(0) is the signal amplitude at x, = 0, |a.| is the
linear acoustoelectric gain under amplifying conditions,’
a; is the nonelectronic loss and |7,| the parametric gain
coefficient defined in Ref. 6. Parametric gain would be
observable in the presence of linear gain only when
[90l/]et.| is of order unity. For small 8 (defined in Fig. 1)
we have

()
Imol _ euss S %“’D,“’D"*’v (3)

e, | 2ev, © Iyl

where e;;3 is the piezoelectric coefficient, e is the dielectric
constant, u is the mobility, «, is the conductivity divided
by the dielectric constant, wp is the velocity of sound
squared divided by the electron-diffusion constant, S, is
the pump strain, v = 1 — uE/v,, E is the electric field and
{ is a function given in Ref. 6. Note that this ratio is
proportional to ¢ and S,,. The factor { i (which comes from
|m0]) is only weakly dependent on v and is of order unity.’

Single frequency domain

Let us next discuss the experimental evidence for para-
metric amplification. First we consider an unambiguous
situation in which the initial spectrum of the acoustic
domain consists of a single frequency. Figure 2 shows how
we generate and detect the single frequency domain (SFD).
A photoconducting CdS bar of dimensions 1 X 1 X 4 mm®
is placed with one polished end inserted into the high-
electric-field region of a coaxial cavity with a loaded Q
of about 1000. The cavity is subjected to a 0.5 usec pulse
with nominal peak microwave power of 20 watts. Since
the ¢ axis of the sample is perpendicular to the long direc-
tion, a 0.5 usec shear wave acoustic pulse is transduced
into the sample. The sample is grounded about 10 mils
from the polished end in order to reduce the microwave
fields in its body. However, similar results were obtained
when the entire sample was placed within the microwave
cavity.® The trailing edge of the microwave pulse is made
coincident with the leading edge of a voltage pulse of
sufficient amplitude ¥ to cause v; = v, (y = 0.14). This
value of V is chosen in order that the SFD be slightly
amplified, but the amplification of the thermal noise be
negligible.

The acoustic waves were detected by means of Brillouin
scattering of a 10 mW 6328 A He-Ne laser beam which
was chopped to keep the laser-induced photoconductivity
below 1%, of the total photoconductivity.® It was focused
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Figure 3 Brillouin scattering from a shear wave in CdS
with particle displacement in the ¢ direction.

to a spot about 0.2 mm in diameter on the sample. Figure
3 illustrates the Brillouin scattering process in more detail.
A photon of wave number k; absorbs or emits a phonon of
wave number g, energy being conserved. Since the phonon
energy is much less than the photon energy, the change in
energy of the scattered photon may be neglected. The
conservation of momentum condition is shown in Fig. 3.
k, > k; because scattering by a shear wave rotates the
plane of polarization of the light by 90° and CdS is bire-
fringent. A measurement of 4; and 6, uniquely determines
g and 6. The resolution in acoustic frequency is about
50 MHz and the resolution in 8 is about 1°.
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Figure 4 P, and P;,,, vs x, where the power is traveling in the
basal plane at the angles shown in Fig. 6. A photoconducting
715 ohm-cm CdS sample is used.
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Figure 5 Maximum intensity of the signals parametrically
amplified from noise vs frequency.
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Figure 6 The angle of acoustic propagation vs frequency.
The solid line represents the phase matching condition using
linear theory-dispersion for v = 0.1.
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For the data to be discussed, the SFD was transduced in
at f, = 990 MHz. Similar results were obtained at other
frequencies. The sample resistivity was 715 ohm-cm,
which corresponds to a frequency of maximum net gain
fnn of about 450 MHz according to linear theory.'''!
The frequency spectrum of the acoustic domain changes
as the domain propagates down the sample, as shown in
Fig. 4. The power at f,, P;,, is at first amplified by the
linear gain at about 6 dB/mm to a maximum value, after
which it falls rapidly to a saturated value. In the region in
which P,, drops, we observe the growth of acoustic waves
in the frequency range around the even subharmonic at
1»/2. Such behavior is characteristic of parametric amplifi-
cation where the pump is the SFD and the signal and
idler are amplified from the thermal noise. In Fig. 4 we see
that, for example, P;,,, grows at about 22 dB/mm,
reaches a peak and drops quickly. Such attenuation often
implies the generation of waves around f,/4.° The fre-
quency distribution of the parametrically amplified noise
at 3 mm (see Fig. 4) is plotted in Fig. 5. It peaks around
f»/2 and has a half-width of about 200 MHz.* The waves
shown in Fig. S are not collinear with the pump but prop-
agate at the angles indicated by the points in Fig. 6. Note
that the pump propagation direction is at an angle of
—41° to the current direction, possibly because of a mis-
alignment of the sample in the cavity. At each signal fre-
quency, the intensity peaks symmetrically on either side of
the pump direction, as one would expect. The solid lines
represent the theoretical predictions using conservation
of momentum (illustrated in Fig. 1) and the dispersion
according to linear theory," assuming v = 0.1. (The curve
is not very senitive to v). Clearly, there is good agreement
between experiment and second-order theory, at least for
pump strains equal to or below those present in this
experiment i.e., S, < 107°. In previous experiments where
S, ~ 107°, the signals have been found to be collinear
with the pump.

It is interesting to look at the domain shapes of the
pump and signals in the region of pump depletion. Figure
7 shows an oscilloscope trace of the photomultiplier
output vs time due to Brillouin scattering from P;, and
P, » in the pump depletion region. Note that the pump is
depleted and the signal is strong only in the center core
of the domain. Thus the signal domain is narrower than
the pump domain. This narrower signal domain is to be
expected for a nonlinear process which, in the present
case, depends exponentially on the pump strain.

Downshifting in domains
Now that we have considered the simple case of a SFD
where the mechanism for the downshifting of the fre-

* When the voltage is increased, one begins to detect in addition the mixing
terms fp + fs, 2fs and 2f,. These are initially at least an order of magnitude
below fp /2.
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quency of maximum intensity f,,; is clearly parametric, let
us consider the case of the conventional acoustoelectric
domain amplified from the noise by electrons with super-
sonic drift velocities. As stated previously, the frequency
of maximum gain and intensity in propagating domains
can decrease to a value as much as an order of magnitude
below the predictions of linear theory®'* and the acoustic
intensity can continue to grow several orders of magnitude
even though the current and electric field remain relatively
constant.’”'® In our samples the domains arise from
acoustic waves continuously amplified at a high-gain region
near the upstream contact. Potential probing showed the
electric field to be high in this region. The domains narrow
as they propagate downstream.

The significant results of this experiment are shown in
Fig. 8 in which f,; is plotted versus distance from the
cathode x and the current is plotted vs time in units of
x/v,. The initial v as determined from the ohmic field was
0.65 and the frequency of maximum net gain,""'" f,,,, was
2.5 GHz for a 10.4 ohm-cm CdS sample calculated on the
basis of a mobility of 300 cm®/V-sec. When the domain is
first observed the current is still approximately ohmic
and f,; =~ 2.7 GHz, in reasonable agreement with the
above prediction'”"* in view of the fact that K* and the
nonelectronic loss are not known accurately. As the cur-
rent falls to its saturated value, f,. drops to about 1.2
GHz, while the total acoustic intensity increases by a
factor of about 85 (relative intensities are given in the
diagram). Some researchers in the field have attempted
to describe the nonlinear regime by assuming that linear
theory holds with ¥ = 1 — v,/v,. Such a model predicts
that, as vy drops in time, the gain drops, causing the
frequency of maximum net gain to drop as well.”® Putting
the relevant numbers into the gain theory' and subtracting
the expected loss'’ data for our sample gives a downshift
which is much too small to explain the experimentally
observed downshifts. For longer samples or higher applied
voltages, f,.; and the relative intensity approach a limiting
value which, in the case of {,.;, can be more than an order
of magnitude less than the maximum net gain according to
linear theory. The high-frequency acoustic waves saturate
first and peak at the same 6 as do the low-frequency waves.

Let us attempt to understand the downshifting in §,,, by
considering the situation in the region where deviations
from linear theory just begin to occur. In this case a second
order calculation should be valid. Using a high-intensity
single-frequency acoustic wave as an initial spectrum,
Butcher and Ogg®® have concluded that, due to trapping
of the carriers, the apparent w. would decrease as the
acoustic intensity increased, thus causing a downshifting
in the frequency of maximum gain. However, Ganguly
and Conwell”* have done a calculation in which terms
in the electric field up to third order in the displacement
are kept. This calculation predicts that mixing of the
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Figure 7 Brillouin scattering from P;, and Py, ,, vs time for the
region of pump depletion. f, = 990 MHz.

Figure 8 Frequency of maximum intensity f.. vs distance
x in mm and current vs time in units of x/v, where v, is
the shear wave velccity for a 10.4 ohm-cm CdS sample.
The approximate relative intensity of the domain is noted
above the points.
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different frequencies will cause, in effect, an increase in
the apparent w,. Therefore, for small deviations from
linear theory, only parametric amplification would seem
to be available to generate downshifts in f,,;.

An approximate calculation of the effect of parametric
amplification on the acoustic spectrum in a domain has
been made using the second order calculation mentioned
earlier. Up-conversion has been neglected since in the
SFD it is found that down-conversion dominates, at
least in the early stages of growth. The initial spectrum
consists of an acoustic domain formed through amplifica-
tion from the thermal noise, the amplification character-
istic being given by linear theory. Each frequency is as-
sumed to be pumped by all higher frequencies in the
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domain. The resulting net parametric gain at any given
frequency is obtained by summing over all contributions,
taking into account the randomness of the phases. At
v = 0 the parametric gain is found to increase monotoni-
cally from zero at the high-frequency cutoff of the domain
(where linear gain equals lattice loss) to a peak at half
the frequency of maximum net gain f,,./2 predicted by
linear theory.?” One might then speculate that, for v, > v,,
where the gain characteristic is determined by a combina-
tion of the linear and parametric gain, and for sufficiently
large parametric gain, the frequency of maximum net
gain would smoothly shift downward (as observed in
Cds,'*** ™' ZnO* and GaAs'®) and a subsidiary peak
would appear at f,,,/2. Such a subsidiary peak has been
reported for GaAs in the region of small deviations from
linear theory.'®'*® One might expect to observe stronger
parametric effects in GaAs from Eq. (3) because the im-
portant parameter in |qo|/|c.|, (e/2ev,)u, is six times
greater for GaAs than for CdS, principally because the
mobility of GaAs is about 25 times that of CdS.
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