428

J. D. COLAS

J. D. Colas

Operational Program for the IBM 2750

Abstract: This paper describes the operational program of the IBM 2750 Voice and Data Switching System. The program runs in the
supervisor unit of the two network controllers used in the 2750. This program controls: (1) the duplexing of the network controllers;
(2) the switching network; (3) the data collection and transmission operations passing through the system, including interconnection
with IBM System/360; (4) the on-line error handling and system testing.

The IBM program uses all available core storage. It is flexible, is tailor-made to each customer’s requirements, and runs continuously

without customer assistance.

Introduction

The IBM 2750 Voice and Data Switching System extends
IBM’s information handling activities to include private
automatic branch telephone exchanges. The 2750 is
first a modern PABX offering the user wide and flexible
telephone service. It is also a data collection system
using telephones as input or inquiry terminals and paper
tape as an output medium. Finally, direct linkage between
a 2750 and a customer’s IBM System/360 allows applica-
tions that combine data processing and line switching.
Accompanying papers in this issue describe the capabilities
of the system" and its switching network.”

The IBM 2750 system is program controlled. The
program which operates it—the operational program—
must reconcile two activities: it must control the switching
network of a telephone exchange in real time and must
handle message exchanges with the data processing sys-
tem to which the IBM 2750 is linked.

This is not the first time that a stored program is used
to control an electronic telephone exchange. The specific
qualities that are expected from this kind of program
have already been defined in the journal literature, for
instance when the ESS No. 1 stored program was described
in The Bell System Technical Journal® in 1964 or, more
recently, the programming of the Péricles-Michelet ex-
change.* Other examples published recently include the
development work on the Aristote project” and on L. M.
Fricsson’s AKE 12 telephone system.”

The various developments in the past ten years in the
area of program-controlled telephone exchanges, how-
ever, differ with respect to the proportion of functions

The author is located at IBM Centre d’Etudes et Recherches, La Gaude,
France.

assigned to the program. The design of any exchange is
the result of an economic balance between the cost of
core storage and other hardware equipment and the
severe requirements relating to reliability, flexibility and,
especially, response time.

The design of the IBM 2750 system is the result of a
balance which adequately fits the dual purpose of the
system: line switching and data collection for some 700
lines. Had the objective been a bigger system, the balance
would have been different and probably less onus would
have been put on the program for scanning and distribu-
tion functions.

After an introductory survey of the control element
containing the program, and of the characteristics of the
program, this paper will describe the various functions
accomplished by the operational program in the IBM 2750,
including network control, data applications, duplex con-
trol, error handling, and on-line maintenance.

Organization of the program

o Controllers

The control element of the IBM 2751 Switching Unit, the
main unit of the IBM 2750, is in duplicate. Each controller
includes a network control unit and a supervisor unit, i.e.,
a built-in binary processor’ with the following charac-
teristics: storage cycle, 4us; storage capacity: 32,768
words; 12 interruption levels; 3 index registers; and a
30-instruction directory (Fig. 1).

Instructions may be located in one or two storage
words, according to their addressing scheme. The logic
words are 16 bits long, but the store contains a 17th bit
for parity checking and an 18th for program protection.

IBM J. RES. DEVELOP.

Telephones Network Telephones
T
(Active) { (Stand-by)
|
!
|
I
Control Control
unit A unit B
Supervisor Supervisor
unit A unit B
___________ R
Storage Storage
Controller A Controller B

Network control element

Figure 1 The IBM 2751 Switching Unit.

The programs cannot be modified by mistake, although
they are loaded in the same storage as the data and tables
concerning the state of the system.

The control units execute network commands sent by
the supervisor unit and perform the scanning and ele-
mentary marking operations, such as firing the crosspoints
of a network path, or modifying the status of a group
of eight tone senders or eight operator desk lights.

o The programs

The program loaded in each controller is entirely
written by IBM and is tailored to each customer’s re-
quirements. Each customer may choose a particular
system size and feature configuration. In fact, each pro-
gram in the field is different and generated specially from
a single master tape. The program, however, is written
in machine language and has been optimized to provide
the best possible service compatible with the storage
limits.

The operational program consists of instructions in
logical sequences, forming routines or programs and
data in logic structures, forming tables.

The tables contain two types of information. Some
information is required more or less permanently. The
permanent tables are loaded with the rest of the program,
and can be updated manually through an I/O device;
they include control blocks, registers, buffers and queues,
used dynamically by the program, and overwritten at
each new call; and inhibition tables to identify faulty
elements that must not be used any longer.

The same program is loaded in the two controllers
and uses all the core available. But the two controllers
do not operate synchronously. While one is active, the

JuULY 1969

program in the other is standing by and performs a limited
number of supervisory tasks, namely the cyclic tests
and the Go AHEAD signal control.

o Task scheduling: controller load

The most stringent requirement imposed on the system
is to respond quickly, i.e., fast response (0.2 to 1 second)
must follow the action of the telephone user. To satisfy
this constraint, the operational program has been made
entirely core-resident, except for maintenance programs;
programs are not called from a drum or disk.

Various priorities have been established in the program.
The program makes extensive use of the hardware inter-
ruption levels available in the controller, which allow a
fast but discriminating reaction to immediately identified
events. At the normal level, i.e., when no interruption is
in progress, programmed priorities have been added,
since not all the tasks need the same response time.

To control the network properly, the operational pro-
gram must

a) detect incoming signals sent on the lines by external
agents and cause changes in the network circuits;

b) carry out the network switching actions called for by
these signals.

Most signals are transient and must be detected before
they disappear. Hence these circuits must be scanned, not
only at regular intervals, but at a frequency such that no
change can pass unnoticed. A clock signal every 8.13 ms
has been chosen (interruption level 1).

Scanning is done by a set of synchronous programs,
running at the interruption level 6; they depend on, but
have a lower priority than, the clock signal, so that they
may be interrupted by the status change interruptions
(level 4), the end-of-scan interruption (level 5) and the
following clock signal (level 1), which protects the syn-
chronous program against an abnormal overrun.

Once incoming signals have been detected, their analysis
to determine the switching actions required, and the
execution of these actions, need not be immediate provid-
ing they are carried out within a reasonable time.

These tasks are therefore accomplished by network con-
trol programs, at the normal processing level, that run in
the time left over by the synchronous programs. The dis-
tribution of tones, ringing voltages and pulses, being
periodic, is also controlled by the synchronous programs
once the network control programs have decided that a
tone, a pulse or a ringing voltage must be sent.

The network control programs are interrupted at each
clock signal to let the synchronous programs run and
are then resumed, as indicated in Fig. 2. In addition to the
levels used by the synchronous programs, other inter-
ruption levels are used for duplex control and error
handling routines, and for the service of standard I/O

429

IBM 2750 OPERATIONAL PROGRAM'

430

J. D. COLAS

% Normal-level

network control programs

Synchronous programs

Level-6 |

Normal
level

Wait

CPU status —

8.13 msec phases
(clock interruptions) —»

Figure 2 Sharing the controller time.

devices. At the normal level, the network control pro-
grams must share the controller time with other programs,
for duplex control, error handling or on-line maintenance.

These programs are all given different priorities and
are called by an asynchronous scheduler program.

Every normal level program is designed not to run more
than 400 ms and ends by returning to the asynchronous
scheduler. The scheduler examines a control word and
calls the program of highest priority whose run has been
requested or scheduled. In this manner, some twelve
levels of program-controlled priorities come below the
hardware interruption levels. However, the scheduler
cannot interrupt a running program. If no program is
ready to be called in the control word, the scheduler
waits. At the next clock interruption, the controller
restarts and the control word will be examined again.

Tables 1 and 2 indicate the assignment of the interrup-
tion levels and of the program-controlled priorities at the
normal level. Figure 3 summarizes the program organiza-
tion under normal operation. The synchronous programs
(scanning, distribution) and various permanent tasks take
up about 459, of the controller time. In addition to this
fixed load, there is a traffic-dependent variable load.
To ensure that the traffic expected through a given IBM
2750 system does not exceed its capacity, the average load
of every type of telephone call has been evaluated and
the controller load can be predicted. In normal cases,
the “voice” calls leave room for the data applications.

Synchronous programs

The synchronous programs scan the system for changes
in the terminal circuits (incoming signaling), distribute
the periodic outgoing signaling, and provide timing bases
for other programs. These programs must be fast and
accurate, The order in which the synchronous programs
are executed and the frequency at which they are called
are governed by a program called the synchronous task
scheduler, activated every 8.13 ms by a clock interruption.
Since the frequency at which tasks, or programs, need
to be performed varies, the task scheduler is divided into

Table 1 Interruption level assignment.

Error in supervisor unit

Clock signal (8.13 ms)
Switchover control

Error on network command
Status change (scanning)
End-of-scan, end-of-distribution
Synchronous programs

BSCA operations

Paper tape operations
Keyboard /printer operations
Debugging /0 units
Customer engineer console key

= OWVWHOIAWMAWNRO

—

Table 2 Assignment of priorities for the normal-level pro-
grams under the control of asynchronous scheduler.

100 ms timer (top priority)

GO AHEAD signal control

Functional tests : inhibition of network elements
Recovery program

Keyboard message analyzer

On line loading of maintenance programs
Traffic analysis

Network control (event assembler, event processor)
Data input-output program

Maintenance programs

Cyclic tests

Dis-inhibition of network elements at IBM
Customer Engineer’s request

= OWRNANE,WNR~RO

-

phases and cycles; each clock interruption initiates a
phase, and twelve phases comprise a cycle (97.6 ms).
At each phase, the tasks scheduled for that phase are
executed in the order in which they appear in a special
table, for instance out-pulsing, extension scanning and
tone distribution. Each task has a duration that depends
on the traffic. Therefore, the tasks called first are executed
with the best possible accuracy.

e Scanning

The scan programs issue network commands that use
tables containing the list of items to be scanned and their
previous status. When the control unit detects a change
in status, it causes an interruption. The changes are placed
in a scan queue, the status is updated in the tables, after
which the scan is resumed from where it was interrupted.
Extensions already engaged in a call are scanned every
16.3 ms, i.e., at every other clock interruption, and con-
firmed 8.13 ms later, as a protection against surges. Idle
lines are scanned every 100 ms, the public network lines
are scanned every 100 ms, and multifrequency receivers
and operator desks every 16 ms.

IBM J. RES. DEVELOP.

Interruption programs

—@—— Clock signal (8.13 msec)
|
1
|
]
(4> Status -
change
Telephones Network o
7\ End o
\sj command [T
5 Programmed
interruption
Scan and
Control distribution
unit commands
Synchronous programs [«—
J
Fm——————————
i Normal level programs
\j
Asynchronous
scheduler
Scan
queue
Mark T Control word
commands :
Eve\g{ Other normal
assembler level programs
Path finding
and mark
Event
processor
Network control

Figure 3 Network control programs.

& Distribution
The various outgoing signals to be distributed are:

1) Ringing pulses to extension lines

2) Tone pulses to extension or public network lines
3) Lamp control pulses to the operator control desks
4) Outgoing pulses on public network lines.

The distribution programs use tables containing lists
of terminals to which the pulses must be sent. The con-
tents of the distribution tables are updated by the network
control programs.

Outgoing pulses on public network lines must be
separately generated by a synchronous program because
1) the signals produced by the operator dialing keys and
push-button extension sets cannot operate the selector
circuits of the public exchanges, and 2) although rotary
sets produce the right pulses, these cannot be allowed
to go through the network since they would unmark
established paths.

JuLy 1969

All the digits to be sent out on public network lines
are therefore detected first by the scan programs. They
are then pulsed out by the outpulsing program, which is
called every 8.13 ms. Two line loops are opened and two
closed at each phase to spread the load on the public
exchanges.

& Scan queue

The scan queue is the interface between the synchronous
and the network control programs: the changes in status
discovered by the synchronous programs are stored in
it until such time as the network control programs can
process them. The entries in the queue are created, one at a
time, by the various status-change interruption processing
routines and read one at a time by a network control
program called the event assembler.

The scan queue has 50 entries. Each entry contains,
in more or less unchanged form, information collected
during a scan, so that the interruption processing routines
can be kept short and the scans held up only briefly (0.4 ms
on the average per interruption).

This arrangement allows a large number of status
changes to be handled in a given 8.13 ms phase, the
remaining processing load being dealt with by the network
control programs. In this manner, higher peaks may be
accepted without disturbing the scanning and distribution
timing. The synchronous programs place a timing mark
in the scan queue every 100 ms to separate status changes
that have occurred in one cycle from those occurring in
the next one. Such a single scan queue, divided by timing
marks, is a powerful method of storing the exact and
relative chronology of all the status changes, and of
processing them correctly in their right order, even if this
processing must be delayed for a few hundred milli-
seconds in cases of synchronous peak load.

Network control programs
The asynchronous network control programs are a set
of normal level programs that carry out the network
switching actions called for by the status changes dis-
covered by the synchronous scan programs. These pro-
grams are therefore called whenever there are any entries
in the scan queue. Their design is based entirely on a
simple concept, the event, which is defined as an oc-
curence that requires a switching action in the network.
An event assembler examines the contents of the scan
queue and with this information prepares events. It works
on tables called dial registers. One after the other, the
events are passed by the event assembler to an event
processor. The event processor is divided into different
pages, addressed by decoders. Each page processes an
event in a particular context. It operates on tables called
transaction blocks, and when necessary calls path finding

431

1BM 2750 OPERATIONAL PROGRAM

32

. D. COLAS

Table 3 Event processor decoders.

Digit dialed on rotary telephone set
Take-off

Hang up

Flashing

Digit dialed on multifrequency telephone set
Timer run out

Tone on public network line

Ringing current on public network line
Metering pulse on public network line
Operator desk key

OV XN B WRN -

—_

and marking programs to carry out the switching actions
required by the event, as indicated in Fig. 3.

o Fvent assembler and dial registers

The event assembler is in charge of converting “raw
status changes, as found in the scan queue, into typical
events, with which the event processor is able to deal.

Some status changes in the scan queue may be defined
immediately and unambiguously as an event, e.g., a
ringing signal on a public network line, a digit emitted
by a push-button telephone set and received on a multi-
frequency receiver, and pressing or releasing an operator
key.

Other events, which concern extensions only, require
more than one status change before they can be correctly
identified. The opening of an extension line-loop (break)
for instance, can be caused by hanging up, by flashing or
by part of a digit dialed on a rotary set. Such status
changes must therefore be accumulated and evaluated
against a time scale in order to be assembled into significant
events. This is done in the dial registers.

As soon as an event has been processed, the event
assembler takes a new entry in the scan queue and ex-
amines it. If it appears that an idle extension circuit has
been closed, i.e., that the handset has been lifted off its
hook, a dial register is assigned to that line.

A dial register is a temporary work area in which data
are collected while the extension user is dialing; it is used
to keep a count of the pulses making up each digit and
the value of each digit making up the number required.
In addition, it contains a timer (which is updated by
means of the 100-ms timing marks in the scan queue)
and a status indicator.

(3]

o The event processor

The event processor is designed primarily to support the
standard facilities offered to customers in conventional
telephony but optional “voice” features may be added
easily to the program at generation time, such as three-

party-conference calls, direct access to an integrated
paging system from every extension, abbreviated dialing,
and external number repetition, as described in Ref. 1.

The main requirement for the event processor is flex-
ibility: it embodies the telephone procedures, which vary
from one system to another, and memory saving, which
accounts for the major part of the core storage load.

These objectives have been achieved by building around
the “event” concept two programming techniques: the
page decoder and the page interpreter. The first provides
adaptability to any procedure; the second, making use
of one-word statements for subroutine linkage, reduces
storage requirements.

o Page decoders

During the static period of a call, when no processing
is required, various parameters are gathered for each line
in a transaction block, a table that is assigned to a line as
soon as it becomes active, and is updated at each event.
Transaction blocks contain such information as the
network path and service circuit attached to the line; the
number of the operator dealing with the call, if any; a
procedures timer; and a dynamic line status.

Each time the event assembler has recognized an event,
it calls the event processor to take the appropriate action.
This action depends on the nature of the event and the
previous line status, and consists of a limited number
of things to do, arranged in many possible combinations:

1) Marking or resetting a path in the network between
two terminals (extensions, public network lines, service
circuits).

2) Preparing the data for tone, ring, lamp or public
exchange dialing pulses to be distributed by the syn-
chronous programs or stopping the distribution of these
pulses.

3) Setting a timer to limit the duration of a procedure, or
stopping it.

Each combination is an event processing page. A page is
completely executed before a new event is accepted. But
the event processor must be able, one event after another,
to process simultaneously several calls in progress.

Therefore the events {(e.g., a digit for one call, a timeout
for another) arrive in random order to the event processor,
which needs, for each type of event, a number of pages
equal to the number of line statuses for which the occur-
rence of this event is possible. These pages are classified
and addressed through a page decoder, one per type of
event. The take-off decoder, for instance, indicates a
page for each of the following statuses: idle, ringing
(called by an operator), and ringing (called by an extension).
Table 3 lists the decoders used by a basic program.

IBM J. RES. DEVELOP.

-——»1 Interpreter XR1«+—XR1+1
XR1
- Subroutine 1
Page i (actual coding) |
Page Subroutine 1}~
Page+1 Subroutine 2 = Subroutine 2 b
Page+N Subroutine M
|
I
L+{ Subroutine M
Figure 4 Page interpreter.
Figure 5 The switching network.
1: Extension 2: Public
line terminal network line
circuits terminal circuits
1 Internal External 2
network network
1J
Telephones ¢ :—T
T
Service
network
[Service circuits

The decoders list all the existing pages: they form a
kind of tabulated counterpart of the experience of a
manual switchboard operator, “What to do in a given
situation”? They are the key to the event processor
flexibility. Every feature may be added separately to the
basic program and requires special pages (also some
pages are modified when a feature is required). A condi-
tional assembly in the program generation process retains
only the pages which are necessary for the system being
generated. No other page needs to be loaded in that
system. The decoders are finally built to take into account
the existing pages only. Each program is completely
adapted to its purpose at minimum storage cost.

& Page interpreter

If the pages were coded in machine language, they would
be mostly sequences of instructions to call subroutines.
To avoid this, a page interpreter has been developed
using an index register as a statement counter. The pages

JULY 1969

have been designed as source programs, and have been
written as lists of defined constants using the subroutine
names, which are considered as statements.

The index register 1 (XR 1) is used as a statement
counter. To start with, it is loaded with the address of
a page by the page decoder. The first word of the page is
the address of the first subroutine (see Fig. 4). The inter-
preter causes an indirect branch to the address in XR 1,
so control is given to the first subroutine. The subroutine
ends with an instruction that returns control to the inter-
preter. The latter increments XR 1 and branches to the
next subroutine. The process is repeated until all the
subroutines called by the page have been executed.

The interpreter provides other facilities, such as branch-
ing from a page to another page, mixing interpretive
and machine modes, and providing a subroutine with a
constant. An interpretive approach minimizes the number
of storage words used to call a subroutine: the sequence
is reduced to one word. In addition, all subroutines work
on the same common table, called the communication
area. The address of the communication area is loaded,
as a base in the index register 2 (XR2) and the various
items of the area are addressed by a short displacement.
This reduces most of the subroutine operations to one-
word instructions.

& Finding and marking paths

To connect two terminals, the event processor must first
find a free path through the switching network, after
which it can establish the electrical connection between
them.

The switching network (Fig. 5) is divided into three
areas: the internal network, the external network, and
the service network. These networks can be interconnected
by 1) the internal junctors, which close a path between
two extensions through the internal network, or 2) the
external junctors, which close a path between a public
network line and an extension through the external and
internal networks.

The service circuits are attached to the service network,
and both sides of each internal or external junctor are
connected to the service network. Each of the three
networks consists of two or three levels of crosspoints
arranged in matrices; the outputs of one level of matrices
are wired to the inputs of the next level and these con-
nections are referred to as links.

To find a free path through the network between two
terminals, the event processor calls on a pathfinding
program. This program is based on the following
principles:

1) There is only one possible path through the networks
between a given terminal and a given junctor, although
each link is common to several paths.

2) The terminals at both ends of a path are fixed.

1BM 2750 OPERATIONAL PROGRA

434

J. D, COLAS

3) The network elements must be used in rotation to
allow them to be tested dynamically and to spread
the traffic over the whole of the network and not
concentrate it in one part. Furthermore, this will reduce
the likelihood of blocking and speed up pathfinding.

To select a path, the pathfinding program needs to
record and know the status of all the path elements in
the network, especially the links, the status of which
cannot be tested by hardware means. The information
concerning these elements is stored in occupancy tables
which show whether an element is free or busy and which
are updated every time a path is reserved or cancelled.

The pathfinding program has been designed so that
the more the network and the controller are congested
by a traffic peak, the faster this program runs. A straight-
forward approach leads usually to the reverse effect,
which increases the congestion.

Once a path has been found and reserved, it can be
marked, that is, established electrically by a pathmarking
program. To mark a path, the program first tests that
both ends of the path are effectively free; it then marks
the path, after which it tests that both ends of the path
are busy. Both the tests and the marking are executed
through network commands.

When a path is no longer required, it is reset by a path-
unmarking program. The occupancy table entries con-
cerning the elements used for the path are then updated
by a pathcancelling program to show that the elements
are now free.

» Example of an internal call

To illustrate the operations accomplished by the network
control program, the procedure used to deal with an
internal call, typical of all calls, will be summarized. Let
us assume that both the extensions that will be engaged
in the call, X and Y, are idle. When X picks up his hand-
set, the scan programs detect a change in line status and
place it in the scan queue.

A few milliseconds later, the event assembler assigns
a dial register to line X, recognizes the status change as a
take-off and passes this event to the event processor.
The event processor checks the previous status of X and
since it was idle, asks the take-off decoder for the idle page.
This page assigns a transaction block to the line and
attempts to give it the dial tone. To do this, the event
processor page must find a free tone sender and a free
path in the network, including a junctor, and finally the
page must mark that path. Pathfinding and marking
programs are successively called.

The page then notes that the status of the extension is
now “dialing” and starts a timer in the transaction block
to cut the connection if X does not start dialing within
10 seconds.

As soon as X starts dialing, the event assembler cuts
the dial tone and assembles the line status changes into
digits. When the last digit forming the number of Y has
been received and assembled, the event assembler passes
the information on to the event processor. The latter
asks the rotary digit decoder for the page internal dialing.
That page checks that the status of Y is “idle”” and looks
for a path through the internal network and a free junctor
to connect the two extensions.

Once the path is found, the event processor must ring Y
and give the ring-back tone to X. To do this, it puts the
appropriate data in one of the ring tables and the cor-
responding ring-back tone table, so that the synchronous
distribution programs can distribute these signals at the
correct intervals. At the same time, it sets the timer in
the transaction block to 1 minute, to limit the ringing time
if Y should not reply, and updates the statuses of X and
Y to “receiving ring-back™ and “receiving ring,” re-
spectively.

When Y picks up his handset, the event assembler
again detects a take-off. However, since in this case the
previous status of Y was “receiving ring,” the event
processor does not give him the dial tone, but removes
the data from the distribution tables to stop the ring
and ring-back signals, sets the middle of the junctor to
connect both parties, and updates both statuses to
“talking”.

When one of the parties hangs up, say Y, the event pro-
cessor frees both half-paths and the junctor, and gives
the dissuasion tone to X. Should X not hang up within
ten seconds, the dissuasion tone is disconnected and the
line is placed in “fault” status. If X hangs up, the event
processor sets the status of X to “idle”.

Figure 6 illustrates the procedure just described and
also shows what happens if X hangs up before dialing
or before Y answers and what happens if the transaction
block timer runs out while a tone is being sent.

Data applications
There are two types of data features. The first type provides
connections between data terminals (autoconnection and
teleconnection') and senses or activates a line circuit
(contact monitoring). From a control point of view,
it resembles the voice features. Additional pages in the
event processor suffice to support this type of data feature.
The other type of data feature consists in storing and
buffering data collection messages entered on pushbutton
telephone sets or multifrequency terminals. To enter a
message on a pushbutton telephone set, for instance,
a user lifts his receiver and keys a special code. Up to
this point, the call is handled by the event processor as
a regular call. When the code is identified, the multifre-
quency receiver digit decoder routes the next characters
to specific pages, which accumulate messages in 32-charac-

1IBM J. RES. DEVELOP.

: Xisacaller
)Y(igiz Y is the called party

! n: Page decoder
L n| Event ! number (sec Table 4)
X
2 picks-up
handset Event processor action

Give ——— Program sequence
dial tone
toX ———~=~+ Call sequence

X dialing
Y idle
Ao T T 1
4 ¥
X X has Time-out
3 dialed 4or3 during 6
hangs up Y number dialing

L

Gi;;e{,ing (Y is assumed
ring backto X to be idle)

" X receiving
ring back
Y being rung

o e b e -
¥ ¥ y
Y X Time-out
picks-up 2 h 3 during
handset angs up ring back

Cancel
ring and
ring back

Give
dissuasion tone
toX

Connect
XtwoY

Y idle
X receiving
dissuasion tone

X talking
Y talking

]
! e -1
¥) 1

Time-out
N Y 3 b X u during 6
angs up angs up dissuasion

Give
dissuasion
toneto X

Cancel
dissuasion
tone

Cancel
dissuasion
tone

Figure 6 Simplified procedure for an internal cail.

ter buffers. Once a message is completed, the event proces-
sor checks its length, converts the character code and adds
such information as data, time and originating line identifi-
cation. The message is then punched on a paper tape or
sent to a data processing system, immediately after it is

JULY 1969

received. A tone signal informs the user of the result
of the punch or send operation.

Between the 2750 System and a System/360, the data
exchanges follow the standard IBM Binary Synchronous
Communication (BSC) procedure. BSC link permits the
unique combination of voice and data processing facilities,
which is the main novelty of the 2750 link. The link not only
permits data collection and outgoing call recording
messages to be sent to the System/360, but also allows
contact monitoring and auto-connection orders to be
received from System/360. These orders are handled like
events detected by scanning telephone lines; however,
acknowledgment messages are returned to System/360
instead of tone signals.

The BSC adapter causes level-7 interruptions in the
2750 operational program. A typical message to Sys-
tem/360 is transmitted as follows:

1) The 2750 sends an inquiry, by issuing an I/O command:
this initializes transmission.

2) System/360 is interrupted and sends an acknowledg-
ment.

3) The 2750 is interrupted and sends the message text.

4) System/360 sends an acknowledgment.

5) The 2750 is interrupted and sends an END OF TEXT signal.

6) The BSC line is then idle. :

The operational program has to process these interrup-
tions and, at the normal level, has to perform initialization
and termination tasks for the messages sent to System,/360,
and termination tasks for the messages received from
System/360 (for the latter, the initialization is under
System/360 control). For instance, termination consists
in freeing a buffer and sending a tone to the user. A queue
of outgoing messages and a gueue of incoming messages
are dedicated to BSC transmission.

Punching a message or sending it over the data link
is a type of job that the event processor cannot handle
directly. It is assisted by a data input-output program,
which has the next priority after the network control
program at the normal level. Every 100 ms, this program
is called by the asynchronous scheduler. It processes the
quenes and, according to their contents, performs one or
more of the tasks with the following order of priority:
termination, initialization of an outgoing BSC message,
termination of an incoming BSC message, termination,
initialization of a paper tape message. The data input/out-
put program performs appropriate recovery routines
whenever transmission failures or hardware faults have
been detected.

Duplex control
At this stage, it is necessary to summarize the other func-
tions which the program is expected to monitor: the

435

IBM 2750 OPERATIONAL PROGRAM

436

J. D. COLAS

duplexing of the two controllers, the tests that check that
the system is operating correctly, and the on-line mainte-
nance.

The electrical switchover from one controller to the other
is carried out by hardware logic, but the changes in the
operational program in the two controllers is governed
by a duplex control program.

Each controller sends a pulse to the switchover logic
every second to indicate that it is operating correctly.
This pulse, called the Go-AHEAD signal, is produced by
one of the synchronous programs, which must first test
a word set by one of the normal level programs; thus
the signal indicates that both the synchronous and the
normal level programs are running correctly.

The test programs may request a switchover by causing
a burst of three-consecutive GO-AHEAD signals.

If the Go-AHEAD signal from the active controller does
not occur regularly once every second, the switchover
logic executes a switchover, unless the standby controller
is not in a state to take over control of the network.

Whenever a switchover occurs, the switchover logic
forces an interruption level-2 in both controllers, which
calls a switchover control program. This program ensures
that the appropriate programs will be run in each con-
troller according to its new state (active or standby) and
gives control to a recovery program in the active controller.
The recovery program is called whenever the tables in
the storage of the active controller do not reflect the
state of the network, as the result of either a switchover
or a program error in the computer. All established
internal and external conversations are maintained and
their *““image” reconstructed in the program tables.

Error handling

To make sure that the 2750 is working properly, both
the switching network and the control element are checked
continually by test routines that run in both the active
and the standby network controllers. These test routines
are divided into functional tests and cyclic test routines.

o Functional tests
These routines are entered when an error has occurred
either in the execution of a synchronous or marking pro-
gram (when the controller is active) or in the execution
of a cyclic test in the active or stand-by controller. For
instance, should either a driver anomaly or a negative
answer on test occur during a marking procedure (both
resulting in a level-3 interruption), the same network com-
mand is repeated. Should the command still not be suc-
cessful, the functional tests inhibit one or several network
elements and print a message, while the event processor
tries an alternate procedure, the same as the one used
in case of network blocking.

Depending on the type and gravity of the error, the

functional tests can also require that the customer en-
gineer be called (a light on the operator’s desk) and/or
that a switchover be executed.

e Cyclic test routines

These routines normally run every three seconds in both
the active and the standby controllers when no other
more urgent task needs to be performed.

Switching network. Some of the cyclic test routines
check the scan detectors, which cannot be tested while
they are in use. These test routines are run only in the
active controller, since the standby has no access to the
scan detectors which are in the switching network. When-
ever an error is detected, a message is printed.

Network controllers. The other cyclic test routines check
the control element and are run in both controllers.
They test the core storage, the operation codes, the inter-
ruptions, and certain control unit circuits. Any error
detected is printed and a counter records how often it
occurs. A switchover is called if the repetition exceeds
an acceptable frequency.

Program errors

Successive levels of protection against a system interruption
being caused by a program error, i.e., a logical error re-
maining in the program, have been built into the program
design:

1) The program is thoroughly checked out before delivery
by means of simulations and very exacting test equipment.
2) No HALT instruction exists in the program, which has a
functional test routine ready for all types of detected
hardware error.)

3) If in some circumstances, an erroneous way of handling
a particular type of call leads to an incorrect response be-
cause of a program imperfection, its effect will be limited
to one call and one person. Once the dissatisfied user
hangs up, the trace of the error disappears, since the
transaction block which contains the call data is released
at the end of the call. If it is frequent, the trouble will be
reported by the customer and corrected by IBM, but in
no case will it interrupt the system.

4) Under very improbable circumstances, not simulated
at the debugging time, a more serious inconsistency in the
program logic may result in a completely erroneous
sequence. Experience has shown that every time an erron-
eous program sequence occurs, the program finally
attempts to write in a protected area or to execute a data
word as an instruction. In the first case, the memory
protection has proved to be a powerful safeguard against
program errors. All the program instructions are protected,
i.e., if the program attempts to store anything in a protected
word, a supervisor unit error interruption (level 0), will

IBM J. RES. DEVELOP.

BN

immediately occur. In the second case, the program very
quickly encounters an invalid operation code, which
causes the same type of interruption. In both cases, the
recovery program is executed. The operational program
then generally restarts on a sound basis.

5) Should the program have to repeat the above process
too many times, it finally requests a switchover, and the
second controller takes over. The most serious effect of
the logical errors described above would be an undesired
loop, to which any system is equally vulnerable, whatever
its storage medium is (e.g., READ ONLY storage, etc.).
Means exist in the network control program to detect
most of such loops but in the worst case a switchover
occurs through the absence of the Go-aHEAD signal.

It must be emphasized that a program inconsistency
in the active controller cannot, at the same time, affect
the standby one since both controllers operate independ-
ently: for instance, while the active one processes an
.outgoing call, the standby controller may run a cyclic test.
6) If the second controller does not run satisfactorily and
also calls for switchover, the system is eventually inter-
rupted. But a final protection has been devised: FALL BACK
protects the system against program errors which could
remain undiscovered in a version of the program including
recently delivered features. In case of system interruption
{both controllers down), the customer is allowed to press a
FALL-BACK key, which puts the controllers in FALL-BACK
mode.

The upper part of storage is abandoned and the
program runs only on the lower part. Since recently
installed or exotic feature routines are all loaded in the
upper part, they are now ignored. In this way, all lines will
.continue to benefit from a basic telephone service, includ-
ing outside calls until the customer engineer diagnoses
the trouble.

On-line system maintenance

‘The operational program allows the customer engineer
‘to load programs and certain diagnostic programs in a
special “CE area” with an IBM 1134 paper tape reader.
‘These programs are executed under control of the CE in
a time-sharing mode with the automatic functions of the
.operational program.

The service programs comprise:

1) A table initialization program, used to initialize the
‘tables containing information supplied by the customer
‘whenever a new operational program is loaded into the
system.

2) A table updating program, used to modify or update
the permanent tables at the customer’s request.

3) 1/0 utility programs, allowing various sorts of dumps,
<ither on paper tape or on an IBM 1816 printer, as well
.as copying paper tapes and checking them for validity.

JuLy 1969

4) A traffic analysis program, to measure the traffic load
on various parts of the system.

5) The debugging aids, which record events occurring in
the system or allow a snapshot dump on the 1816 printer.

Most of the diagnostic programs are designed to be ex-
ecuted off-line, i.e., when the complete system is stopped,
or in the standby controller, while the active controller
operates the switching network normally. However, to
confirm a fault in the network detected by the functional
tests, to check a repair or to execute preventive maintenance
in the network, the customer engineer needs access to the
switching network from the active controller. In order
not to stop the system under these circumstances, a
special diagnostic program, the network verification test,
has been designed and can be loaded in the CE area,
like the service programs. It runs under the control of
the operational program and allows the customer en-
gineer to test on-line the network matrices, the junctors, the
multifrequency receivers and the tone senders.

Conclusion

The IBM 2750 operational - program is now running
satisfactorily, its performance objectives have been met,
and its design options have already proved to be sound.
Should this program need to be rewritten, only a few
changes would need to be made to take advantage of
experience from the installation of the first models, and
these would all be made to enhance the most significant
advantage of controlling the exchange by a stored program,
i.e., its flexibility.

Changes in the program are often required at short
notice because of national PTT* requirements, special
customer requirements, or the redefinition of an operating
feature; all these changes must be carefully tested and
controlled before being accepted. Telephony is a world of
specific detail and local practices, and the objective is to
react promptly to any such requirements solely by means
of program changes.

Acknowledgments

The author acknowledges the efforts of J. F. Kennedy,
C. Beudrion, F. Bohy, S. Huon, and D. Lake, who were
responsible for the design and development of the IBM
2750 programs. The program description is based on
technical drafts prepared by Ph. Meyer.

References and footnotes

1. B. Corby, “IBM 2750 Voice and Data Switching System:
Organization and Functions.” IBM J. Res. Develop. 13,
408 (1969), this issue.

* “PTT” is the official designation of telephone administration agencies in
Europe.

IBM 2750 OPERATIONAL PROGRAM

438

J. D. COLAS

2. R. Reynier et al, “Electronic Switching Network for the

IBM 2750,” IBM J. Res. Develop. 13, 416 (1969), this
issue.

. J. A. Harr, E. S. Hoover and R. B. Smith, “Organiza-

tion of the No. 1 ESS Stored Program.” The Bell System
Technical Journal 43, No. 5, Part 1, 1923-59 (1964).

. C. Abraham, G. André, J. C. Mahieux and F. Robert,

“The programming of the PERICLES-MICHELET EX-
CHANGE. The monitor program.” Commutation et
Electronique, pp. 7-15 (January 1969).

. P. Lucas, A. J. Profit, M. Rouzier et J. Pouliquen,

“L’Autocommutateur Electronique de Lannion. Projet

Aristote,” Colloque International de Commutation Elec-
tronique, Paris 1966, p. 105.

. K. Katzeff, A. Svensson, “The stored program in the

L. M. Ericsson telephone system AKE 12,” Colloque
International de Commutation Electronique, Paris 1966,
p. 195.

. The basic design of this processor is due to the early

work of L. Roy Harper, Brian G. Utley, and their asso-
ciates.

Received February 3, 1969

IBM J. RES. DEVELOP.

r

