400

T. C. Raymond

Heuristic Algorithm for the Traveling-salesman Problem

Abstract: The classical traveling-salesman problem is to determine a tour that will minimize the total distance or cost involved in
visiting several cities and returning to the starting point. This paper describes a new heuristic algorithm that has been programmed for
a digital computer and that obtains optimal or near-optimal solutions to the problem. The author’s general approach was derived
from an existing algorithm developed by Karg and Thompson in 1964. Computational results for five multi-city tours are presented
and the algorithm is shown to be competitive with other existing heuristic techniques.

Introduction

One of the most intriguing problems encountered in
operations research is the traveling-salesman problem.
Simply stated, the problem is to find an optimal “tour”
through » locations or cities that starts at one location,
visits each of the n — 1 remaining locations once and
only once and returns to the starting location. An optimal
tour is defined to be a tour whose total distance or cost
is a minimum.

To define the problem mathematically, we define a
distance or cost matrix D = (d;;). Each element d;
represents the distance or cost of going from city i to
city j. A solution to the problem is then a permutation
P(iy, iy, -+ - , i,), Where iy, iy, --- , I, are distinct integers
with a range of 1 through », that minimizes the quantity
di,iz + di,.', + e + da,._“‘,, + di,.«.',-

The difficulty in finding an optimal solution is evident
from the fact that there are (n — 1)!/2 solutions to the
symmetric (d;; = d;;) form of the problem. Nevertheless,
there are several existing approaches to solving the
traveling-salesman problem. A recent survey by Bellmore
and Nemhauser® describes the state of the art.

Two exact solution techniques are known, dynamic
programming and the branch-and-bound method. The
primary disadvantages of dynamic programming are that
it requires of the order of (n — 1)(n — 2)2"~° calculations
and more than (n — 1)2"° storage locations for an
n-node problem.? Consequently, practical application of
dynamic programming to the traveling-salesman problem
is limited to tours with few cities. The branch-and-bound
method can handle larger problems, but the amount of

The author is located at the IBM Systems Development Division Labora-
tory, Poughkeepsie, New York 12602.

T. C. RAYMOND

computing time is unpredictable and increases rapidly
with the size of the problem. Sweeney et al.® stated that
computer running time increases by approximately a factor
of 10 for each increment of 10 in the number of nodes.
Many applications, however, do not demand optimal
solutions. One trades optimality for reduced running
time or storage. Several heuristic algorithms, which are
fast and yield optimal or near-optimal solutions, exist
for solving the traveling-salesman problem. Perhaps the
best of these is the “3-opt” method developed by Lin.*
Another, developed by Karg and Thompson,” obtains a
single solution more rapidly, but the solutions in general
are further from optimality. This paper describes exten-
sions to the Karg-Thompson algorithm and computa-
tional results that reflect improvements in the algorithm.
Additional related results are available in Ref. 6.

Basis for the algorithm
Karg and Thompson and also Lin developed two-phase
algorithms. In each case the second phase uses the results
of several first-phase solutions to obtain improved solu-
tions. The same technique could be used with the author’s
algorithm.

A statement of the basic (first-phase) Karg-Thompson
algorithm is the following:

1. Construct a permutation P of the nodes, e.g., P =

(ily iZ’ i?n T in—ls in)'

2. Choose the first two nodes i, and /. The links rep-
resented by (iy, i) and (4, i) form a tour or cyclic per-
mutation. Set the number of links j equal to 2.

IBM J. RES. DEVELOP.

(a) (b)

(c) (d)

Figure 1 Seven-city example of the traveling-salesman prob-
lem: (a) incomplete tour, (b) starting mistake, (c¢) non-
optimal tour and (d) corrected tour. Node 6 inserted be-
tween Nodes 1 and 2 completes the optimal tour.

3. Choose the next [the (j 4+ 1)th] node k£ from the per-
mutation P. For each link (p, ¢) in the tour, calculate
using the distance matrix the quantity I = d,,, + d,, — d,,.
This is the increment to the tour length that results if
node k is inserted between nodes p and g.

4. Find the minimum I over all existing links (p, g). Call
this increment I* and call the link that produced the incre-
ment (p*, g*). Remove link (p*, g*) from the existing
tour and produce a new tour by adding links (p*, k)
and (k, g*). Increase j by 1.

5. If j = n, a solution exists; if j < n, repeat Steps 3
and 4.

Each distinct permutation chosen in the first step leads
to a locally optimal solution. The number of operations
required for a single solution is proportional to »° and
many solutions can be obtained for large problems in a
short time. By obtaining many solutions, each of which
is locally optimal, one achieves a good probability of
obtaining a globally optimal solution.

The author has found that better solutions can be
obtained by deterministically choosing the next node to
insert and by improving the existing tour at intermediate
stages. The details can be understood by viewing the
Karg-Thompson algorithm as follows:

1. Aninitial state is defined to be a tour through two nodes.

JULY 1969

2. A transition is made to an intermediate state by includ-
ing another node in the tour.

3. After n — 2 transitions are made, the resulting state
represents a feasible solution.

The decision involved in the state-to-state transition
requires two choices, which node to include and where
to insert the chosen node in the existing tour. Karg and
Thompson chose the next node from a randomly generated
permutation and inserted it between the two nodes in the
existing tour for which the smallest increment to the
tour length resulted. The author, however, considered that
a better decision could be made if all remaining nodes were
evaluated in some way before making a transition.

By making increment calculations for all remaining
nodes, one can in effect look ahead. One of several decision
rules can then be applied. For example, one could choose
the minimum of the best (minimum) increments for each
node; that is, for the k£ nodes evaluated in each link (p, ¢)
choose
min [min (d,; + die — doo)]-

k {(p.q)

Figure 1a shows four links of a seven-node tour; three
decisions are yet to be made. The corresponding distance
matrix D = (d;;) is given in Fig. 2 and Table 1 lists the
tour length increments. In this example the choice would
be min{4, 7, 5} = 4, which corresponds to inserting
Node 5 between Nodes 4 and 1 in the existing tour.
Another possibility would be to choose the node that
produces the maximum of the minimum increments,

max [min (d,, + dv, — dpo)].

k (p.q)

Applying this rule, we would choose Node 6 and insert
it between Nodes 1 and 2.

What one really must seek is a criterion of “sureness’
before making a decision. In other words, the question
emerges: How can one be most sure that the chosen node
is the right node? One answer is to look at not only the
“best” increment for each node, but also the “‘next-best”
increment. If these two criteria are nearly equal, one
is not sure which link should be broken to insert the
node. Referring to the example, we see that the best in-
crement for Node 5 is 4 and the next-best is 6, yielding
a difference of 2. Contrast this with Node 6 (a difference
of 13 — 7 = 6) and Node 7 (a difference of 26 — 5 = 21).
In qualitative terms, one draws the conclusion that he
is surest about Node 7 and least sure about Node 5.
Thus one chooses Node 7 to insert next and for this
example the best final solution results.

The author has programmed several decision rules
with varying degrees of success. The traveling-salesman
problem is quite complex and, by looking ahead only
one stage, one gets results analogous to those of the chess

401

HEURISTIC TRAVELING-SALESMAN ALGORITHM

402

i 2 3 4 5 6 7
1 0 30 40 55 28 17 33
2 30 0 29 68 35 20 56
3 40 29 0 47 22 24 46
4 55 68 47 0 31 51 27
5 28 35 22 31 0 20 25
6 17 20 24 51 20 0 36
7 33 56 46 27 25 36 0

Figure 2 Distance matrix for the seven-city problem (arbi-
trary units).

Table 1 Tour-length increments for the seven-city problem
(arbitrary units).

Node

Link 5 6 7
1,2 33 7 59
2,3 28 15 73
3,4 6 28 26
4, 1) 4 13 5
@, 5) — 40 21
G, D — 9 30

player who looks ahead only one move. To look ahead
more than one stage, one must increase the number of
calculations by an order of magnitude. The analogy with
the chess player can be extended to show the difference
between Karg and Thompson’s decision rule and the
author’s. In the former case, one randomly chooses a piece
to move, evaluates all (one-stage) moves for that piece and
makes the best one. In the latter case, one evaluates all
(one-stage) moves for all pieces and then makes a move.
The cost of making such evaluations in terms of com-
puting time can be anticipated by determining the number
of increment calculations. For a problem of n nodes, one
makes2(n — 2)+ 3 —3)+ -+ (n— Dn— (n— 1)}
calculations. Each term represents the number of links in
the tour times the number of nodes that are not in the
tour. The sum is (#* — 7n + 6)/6. One can avoid redun-
dant calculations by saving the increments for each
node-link pair in a matrix. When two new links are
created at each stage, the matrix can be updated by
performing increment calculations involving each remain-
ing node with only the two new links. Thus, instead
of recalculating the same increments many times for

T. C. RAYMOND

nodes inserted at later stages, one simply scans the in-
crement matrix. Running time remains proportional to
r°, but the number of calculations is reduced to 2n— 2)+
20—+ -+ 24— E—Dl=@—1Dn—2).
This number is slightly less than twice the number of
calculations made by Karg and Thompson.

Before describing tour-correction techniques, it should
be pointed out that one can change decision rules between
stages. Thus in the early stages of a solution one can use
one rule and in later stages use another. This flexibility is
important because the final solution is highly dependent
on the early stages. From a practical standpoint the tour
should take on in an early stage the general form of the
final tour. This implies making an intelligent choice of
the first several nodes, particularly the initial two. The
author had little success in predicting which two initial
nodes would lead to the best solution. Given the first
two nodes, however, the author visualized that by using
the maximum best-increment criterion for the first few
nodes, the tour would include nodes located at corners
of a polyhedron that encloses many nodes. The shape
of this tour often approximates that of the final tour. On
the other hand, if the minimum best-increment criterion
is used for the first few nodes, the resulting tour is very
short and encloses only a small area. Thus it cannot
approximate the final tour and generally produces an
inferior result. After several nodes are in the tour the
transition decision can be based on the sureness criteria.

Correction techniques

With any decision rule based on a one-stage “look ahead,’”
mistakes are made and nonoptimal solutions result.
Ideally one should be able to examine a tour at any stage,
determine whether it is the optimal tour and, if not,
correct it. Obviously, if this could be accomplished one
could completely solve the traveling-salesman problem
by starting with any random tour through all nodes.
Because this is not possible with currently known methods,
the author sought partial correction techniques with the
idea of correcting glaring mistakes.

The example introduced previously will suffice to il-
lustrate a “mistake.” Let us assume that Node 5 was
inserted before Nodes 6 and 7. The resulting next stage
is shown in Fig. 1b and the increment calculations for
Nodes 6 and 7 are given in Table 1. Now let us assume
that Node 7 is inserted next (see Fig. 1c). At this stage
the tour is not optimal and without correction would lead
to a nonoptimal solution. It is evident that Node 5 is in
the wrong place in the tour; thus a mistake has been made
that should be corrected before proceeding to the next
stage.

The first correction technique developed by the author
involves taking each node in turn out of the present tour,
reevaluating its insertion increments and inserting the node

IBM J. RES. DEVELOP.

in the link that now gives the minimum tour length incre-
ment. In most cases one reinserts the node in the link that
was created when the node was taken out of the tour,
thus producing no change. For example, taking Node 1
out of the solution (Fig. 1c) by deleting links (1, 2) and
(1, 5) and creating link (2, 5), one obtains the following
increments for the respective links: 23 (5, 2), 41 (2, 3),
48 (3, 4), 61 (4, 7) and 36 (7, 5). The minimum increment
is 23, which results in our breaking link (5, 2) to produce
links (1, 5) and (1, 2). The tour in this case remains the
same. When Node 5 is considered, however, an improved
tour does result. Links (5, 1) and (5, 7) are first deleted
and link (7, 1) is created. The increments for the respective
links are 33 (1, 2), 28 (2, 3),6 (3, 4), 29 (4, 7) and 20 (7, 1).
Thus Node 5 is to be inserted between Nodes 3 and 4 by
producing the links (5, 3) and (5, 4) and deleting the
link (3, 4). The resulting tour, which is 14 units shorter,
is shown in Fig. 1d.

In effect this procedure exchanges three links in the
tour for three other links. Although a similarity exists in
this respect to the “3-opt” algorithm,* much smaller sets
of three links each are considered here at each stage (be-
cause two of the three links must be adjacent). In addition,
far fewer changes occur in the tour at each stage. As a
result, the computing time needed to generate the cor-
rections remains relatively short. The timing estimate
cannot be precise because an additional pass is made
for each tour improvement. If no corrections are ever
made, although a correction pass is made at each stage,
timing can be estimated and is proportional to the number

JULY 1969

(b)

Figure 3 Thirteen-city problem: (a) nonoptimal tour with data for five-link-exchange correction and (b) corrected tour.

of increment calculations. At each stage there are k nodes
that must be evaluated in & — 1 links. Summing over
all stages one gets (n*° — n — 6)/3. A shortcut can be
taken by considering at each stage only the new links
from the previous stage, but this procedure was not
incorporated in the results described.

Another correction process developed by the author
handles some complex situations that arise in large prob-
lems. The process begins in the same manner as the three-
link exchange described previously. A node is isolated
from the solution by deleting the two links adjoining the
node and creating the link L that completes the tour.
This produces a tour of reduced length and the length
reduction will be called I;. The insertion increments for
the isolated node are then calculated for all links except L.
The link that produced the best of these increments
(the next-best for the node if we assume that L produced
the best increment) is identified and increment I, is the tem-
porary addition to the tour length. Each remaining node
in the tour that is not connected to any of the links in-
volving I, and I, is then isolated in turn in the same
manner as the first node and we obtain a tour-length reduc-
tion called ;. Finally, the tour-length increment 1, is calcu-
lated when the last isolated node is inserted in link L. The
resulting tour is shorter if I, 4 I, — I, — I, < 0. This type
of correction involves substituting five links in the existing
tour for five other links. Figure 3a illustrates the cor-
rection procedure.

Consider Node 9 in this figure. If Node 9 is taken out of
the tour, the reduction I, in tour length is ds o + do.10 —

403

HEURISTIC TRAVELING-SALESMAN ALGORITHM

404

dg,10 = 23. The link created (L) is (8, 10). The next-best
place to insert Node 9 is in link (5, 6) with an increase
L, in tour length of d; o + ds — ds ¢ = 24. As each node
is considered in turn, Node 13 is eventually isolated
and I; = dij3,13 + diz,; — dia,1 = 36. When Node 13
is inserted in link (8, 10), the increment I, is diz s +
dy3 10 — ds,10 = 11. The tour has been changed by creating
links (6, 9), (5, 9), (13, 8), (13, 10) and (1, 12) and deleting
links (8, 9), (9, 10), (6, 5), (13, 12) and (13, 1); it is now
24 units shorter and is shown in Fig. 3b.

The five-link exchange is obviously expensive in terms
of computing time. For a tour of k nodes, timing is
proportional to k(2k — 6). If used at each stage, the
expression must be summed from k = 5 to k = n. Cor-
rections made with this technique are rare relative to
those derived from the three-link exchange. The author
used the five-link exchange only at the final stage.

The algorithm

These ideas indicate that a variety of algorithms can be
developed from the basic one of Karg and Thompson and
a variety of decision rules can be used in conjunction with
the correction techniques. The most successful combina-
tion of decision rules and tour-improvement techniques
was developed after considerable experimentation, most
of which is described in Ref. 6, and resulted in the fol-
lowing algorithm:

1. Choose two nodes i, and i, and form a tour with links
(i1, i) and (i, i;). Set the number of links j equal to 2.

2. Define I as the minimum tour-length increment that
results from the insertion of node k in each existing link
(», @). Define nodes p* and g* as the nodes connected
by the link (p*, g*) that produced I*%. In addition, define
J*% as the increment for node k& most nearly equal to I%.
Thus for node %, I% is the best increment, J% the next-
best increment and (p*, g*) the link to break if inserting
node k. Calculate I% and J% for each node that is not
currently included in the tour.

3. If j < 4, choose the node m for which 7% is a maximum.
If j > 4, choose the node m for which |J%¥ — I%| is a
maximum. In cither case, p* and g* are identified.

4, Insert the node m into the tour between p* and g*

by adding links (p*, m) and (m, ¢*) and deleting link
(p*, g%). Increase the number of links in the tour by one.

5. If j < 10, or if jis even, or if j = n, use the three-link-
exchange correction procedure on the present tour. If a
tour improvement results, repeat this step after making
the correction. If no improvement results, continue with
Step 6.

6. If j < n, return to Step 2. If j = n, use the five-link-
exchange correction procedure. If a tour improvement

T. C. RAYMOND

results, apply the correction and repeat Step 5. If no
improvement results, a solution exists.

Note that for a symmetric n-node problem only n(n—1)/2
starting states are possible and thus there are only n(n—1)/2
possible solutions (if we make a deterministic decision in
cases in which I = J*). The basic Karg-Thompson
algorithm produces solutions for each of the n! permu-
tations of the nodes.

Application

Computer results have been obtained and compiled for
a variety of problems. Each problem is well known and
is generally labeled by the number of cities or nodes it
includes. These are (1) the 25-city problem of Held and
Karp,” (2) the 33-city problem of Karg and Thompson,®
(3) the 42-city problem of Dantzig, Fulkerson and John-
son,” (4) the 48-city problem of Held and Karp® and (5)
the 57-city problem of Karg and Thompson.® The distance
matrices for the 33-, 42- and 57-city problems can be
found in Ref. 5 and for the 25- and 48-city problems in
Ref. 2. Each of these problems involves finding a tour
through a set of cities in the 48 contiguous states. Although
there are similarities in the general shape of the optimal
tours, the author conjectures that most of the complexities
of the metrict traveling-salesman problem are demon-
strated by these problems. Despite the metric nature of
the problem, the distances used are functions of highway
route lengths, not the point-to-point lengths of Euclidian
distances. The known or conjectured optimal tours of
these problems are shown in Figs. 4 through 8, respectively.

o Numerical results

Table 2 contains a summary of the results of the five
problems studied and Table 3 shows the distribution of
solutions with respect to their deviation from the optimal
tour. The data were obtained for all problems by using
node numbers corresponding to the row (column) sub-
scripts in the referenced distance matrices. For each prob-

lem, solutions were obtained for n(n — 1)/2 unique
starting states (i;, i) corresponding to (1, 2), (1, 3), --- ,
(ls n)’ (21 3)3 (29 4): RS (2’ n)a e, = 2: n — 1)’

(n— 2,nyand (n — 1, n).

The distribution of the solutions (Table 3) is evidence
of the nature of the locally optimal solutions. A relatively
small number of unique solutions can be obtained. The
problem is discrete in nature and, furthermore, consecutive
integral solutions may not exist. Thus gaps appear in the
frequency distribution and flat intervals in the cumulative
distribution.

t A metric problem is one for which the nodes exist in a metric space.
A space is metric if, for each pair of points (x, ») in the space, the distance
d(x, y) between the points is such that (1) d(x, ») = 0 if and only if x = y,
(2) d(x,y) = d(y, x) and (3) d(x, ¥) + d(», 2) 2> d(x, 2).

IBM J. RES. DEVELOP.

Va

From the data in Table 3 the computing time for an
n-node problem can be approximated by (9x° 4 140n° +
400n) psec per solution; the time will be slightly greater
for smaller problems because the three-link-exchange pro-
cedure is executed disproportionately often.

o Comparison with other algorithms

Some comparisons can be made of the results presented
here with the first-phase-algorithm results of Lin* and
of Karg and Thompson.® Differences in the computers
and programming languages used make exact comparison
difficult, however.

Figure 4 Optimal tour for the 25-city problem.

24 13 n 14 15

25

Figure 7 Optimal tour for the 48-city problem.

45
46

Karg and Thompson report finding one optimal solution
out of 100 tours for the 33-city problem and 10 out of
225 for the 42-city problem. In 100 tries, the best solution
for the 57-city problem was 331 distance (cost) units
(2.8%) from the conjectured optimal value. The author, in
earlier work, found no optimal solution in 600 tries on
the 48-city problem, but a best solution of 11,470 units.
The extensions described here obviously shift the distribu-
tion of solutions toward the optimum.

Lin, without the second-phase reduction, reports a
probability of about 0.05 of finding an optimal tour for
the 48-city problem and 0.02 for the 57-city problem.

Figure 5 Probable optimal tour for the 33-city problem.

1. Chicago, Ill. 12. Little Rock, Ark. 23. Lewiston, Idaho
2. Indianapolis, Ind. ~ 13. Kansas City, Mo. 24. Boise, Idaho
3. Marion, Ohio 14. La Crosse, Wis. 25. Twin Falls, Idaho
4. Erie, Pa. 15. Blunt, S. Dak. 26. Salt Lake City, Utah
5. Carlisle, Pa. 16. Lincoln, Nebr. 27. Mexican Hat, Utah
6. Wana, W.Va. 17. Wichita, Kans. 28. Marble Canyon, Ariz.
7. Wilkesboro, N. C. 18. Amarillo, Texas 29. Reno, Nev.
8. Chattanooga, Tenn. 19. Truthor Consequences, 30. Lone Pine, Calif.
9. Barnwell, S. C. N. Mex. 31. Gustine, Calif.

10. Bainbridge, Ga. 20. Manuelito, N. Mex. 32. Redding, Calif.

11. BatonRouge, La. 21. Colorado Springs, Colo. 33. Portland, Oreg.

22. Butte, Mont.

Figure 8 Probable optimal tour for the 57-city problem.

48

49

47

405

JULY 1969 HEURISTIC TRAVELING-SALESMAN ALGORITHM

Table 2 Summary of computational results.

Solution (arbitrary distance units) Number of
Problem Number Average Number of optimal
(number Known of computing unique solutions;
of cities) Best Worst Average optimal solutions time (sec) solutions percent -
25 1,711 1,763 1,731 1,711 300 0.28 4 53; 17.7
33 10,861 11,122 10,958 10,861 528 0.55 5 31; 5.9
42 699 728 702 699 861 1.06 12 553; 64.3
48 11,461 12,143 11,582 11,461 1,128 1.32 28 46; 4.1
57 12,955 13,908 13,150 12,955 1,596 2.14 104 9; 0.056

406

Table 3 Cumulative distribution of solutions.

Percent of solutions within &=p percent
Problem of the optimal solution
(number

of cities) p=1 2 3 4 5 6 7 8

were used for this correction, Overall computing time has
been reduced in a later version of the program (by im-
plementing the three-link-exchange shortcut) to approxi-
mately (4n® + 150 n° + 300n) usec for an r-node problem,
with observed average times per solution of 0.163, 0.768
and 1.25 sec for the 25-, 48- and 57-city problems, re-

25 72.3 72.8 78.7 78.7 100 spectively.

33 69.3 93.0 100 Additionally, the author considers that the algorithm

42 68.3 947 98.8 99.7 100 d ibed d the K Th leorith best

48 69.9 863 97.8 99.8 99.9 100 escribed and the larg-thompson algonthm are bes
suited to problems with geometric properties. Both, how-

57 52.4 71.6 83.6 90.4 945 99.8 999 100

The average results of ten tours each reported for the
42-, 48- and 57-city problems are, respectively, 713, 11,667
and 13,176 units. Computing times on an IBM 7094
Model 2 were 2.08, 2.80 and 5.05 sec per solution, re-
spectively. The average computing time was approximately
30n° usec.

The author’s algorithm yields a slightly better average
solution, but the difference is not necessarily significant.
Lin’s algorithm yields slightly higher probabilities of
optimal solutions, which may be significant for large
problems. Running times are roughly comparable when
differences between the IBM System 360/65 and 7094/2 are
considered. The minimum storage requirements for the
two algorithms are also comparable.

sRemarks

Certain nodes in large problems, if included in the starting
state, seem to produce many more optimal solutions than
other nodes. For example, Node 10 of the 57-city problem
was in the starting state of eight of nine optimal solutions.
Node 13 of the 48-city problem was involved in 31 of the
46 optimal solutions. The reason for this consequence is
not known.

The author learned in prior work that the five-link-
correction procedure produces only small average improve-
ments, even though the improvements may produce an
optimal solution. Approximately 0.3 and 0.7 sec per
solution for the 48- and 57-city problems, respectively,

T. C. RAYMOND

ever, can be applied to nonmetric problems and modified
to solve nonsymmetric problems.

Conclusions
The algorithm described appears to be competitive with
existing heuristic techniques. It would be naive to assume
that the best combination of decision rules and correction
techniques has been found; further experimentation may
prove fruitful.

The method does yield a high percentage of near-
optimal solutions, with over 509, of the solutions for
each problem within 19, of the optimum. Thus one needs
to obtain only a small number of solutions to be assured
with a reasonable degree of confidence that the best
solution is close to optimum.

The size of the problem does not determine the degree
of difficulty of solving it. This conclusion is borne out
by the large number of optimal solutions of the 42-city
problem. Large problems with nodes concentrated in one
or more areas, however, prove difficult. For dense prob-
lems, increased size results in more unique solutions and,
in turn, a longer tail on the frequency distribution of
solutions away from optimality.

Acknowledgment

Some of the material in this paper, but not the precise
algorithm described, was included in the author’s M.S.
thesis’ at Syracuse University. Special thanks are due
R. Sargent of Syracuse for his assistance in preparing
the thesis and for his suggestions on formulating this paper.

IBM J. RES. DEVELOP.

References

1. M. Bellmore and G. L. Nemhauser, "The Traveling-
Salesman Problem: A Survey,” Operations Res. 16, 538
(1968).

2. M. Held and R. Karp, “A Dynamic Programming Ap-
proach to Sequencing Problems,” SIAM J. Appl. Math.
(formerly J. Soc. Indust. Appl. Math.) 10, 196 (1962).

3. J. Little, K. Murty, D. Sweeney and C. Karel, “An
Algorithm for the Traveling-Salesman Problem,” Oper-
ations Res. 11, 972 (1963).

4. S. Lin, “Computer Solution of the Traveling-Salesman
Problem,” Bell System Tech. J. 44, 2245 (1965).

JULY 1969

5. R. L. Karg and G. L. Thompson, “A Heuristic Approach

to Solving the Traveling-Salesman Problem,” Manage-
ment Sci. 10, 225 (1965).

. T. C. Raymond, “New Heuristic Algorithms for the

Traveling-Salesman Problem,” M.S. thesis, Syracuse Uni-
versity 1968.

. G. B. Dantzig, D. R. Fulkerson and S. M. Johnson,

“Solution of a Large-scale Traveling-Salesman Problem,”
Operations Res. 2, 393 (1954).

Received January 6, 1969

407

HEURISTIC TRAVELING-SALESMAN ALGORITHM

