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Heuristic  Algorithm  for the Traveling-salesman  Problem 

Abstract: The  classical  traveling-salesman  problem  is to determine a tour that will  minimize the total distance or cost  involved  in 
visiting  several  cities  and  returning to the  starting  point.  This  paper  describes a new  heuristic algorithm that has been  programmed for 
a digital  computer  and that obtains  optimal or near-optimal  solutions to the problem.  The  author’s  general  approach was  derived 
from an existing  algorithm  developed by Karg and Thompson  in 1964. Computational  results  for  five  multi-city  tours  are  presented 
and the algorithm  is shown to be  competitive  with  other  existing  heuristic  techniques. 

Introduction 
One of the most intriguing problems encountered  in 
operations research is the traveling-salesman problem. 
Simply stated, the problem is to find an  optimal  “tour” 
through n locations or cities that  starts at one location, 
visits each of the n - 1 remaining locations  once and 
only once and returns to  the starting  location. An  optimal 
tour is defined to be  a tour whose total distance or cost 
is a minimum. 

To define the problem mathematically, we define a 
distance or cost matrix D = (d i j ) .  Each element d i j  
represents the distance or cost of going from city i to 
city j .  A  solution to the problem is then a  permutation 
P(il, iz, . . . , i,J, where il, i2, . . . , in are distinct integers 
with  a  range of 1 through n, that minimizes the quantity 

The difficulty in finding an  optimal solution is evident 
from  the fact that there are (n - 1) !/2 solutions to the 
symmetric (dii = d i , )  form of the problem. Nevertheless, 
there are several existing approaches to solving the 
traveling-salesman problem. A recent survey by Bellmore 
and Nemhauserl describes the  state of the  art. 

Two exact solution techniques are known, dynamic 
programming and  the branch-and-bound  method. The 
primary disadvantages of dynamic  programming are  that 
it requires of the  order of (n - l)(n - 2)2n-3 calculations 
and more than (n - 1)2‘“’ storage locations for  an 
n-node problem.’ Consequently, practical  application of 
dynamic  programming to  the traveling-salesman problem 
is limited to  tours with  few cities. The branch-and-bound 
method can  handle larger problems, but  the  amount of 

d,,i ,  + d,,i, + ...  + din-xin + di,.i3. 
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computing  time is unpredictable and increases rapidly 
with the size of the problem. Sweeney et  al.3  stated that 
computer  running  time increases by approximately a factor 
of 10 for each increment of 10 in  the number of nodes. 

Many applications, however, do  not demand  optimal 
solutions. One trades optimality for reduced running 
time or storage. Several heuristic algorithms, which are 
fast and yield optimal or near-optimal  solutions, exist 
for solving the traveling-salesman problem. Perhaps the 
best  of these is the ‘%opt” method developed by Lin.4 
Another, developed by Karg  and T h ~ m p s o n , ~  obtains a 
single solution  more  rapidly, but  the solutions in general 
are  further  from optimality. This  paper describes exten- 
sions to  the Karg-Thompson  algorithm and computa- 
tional results that reflect improvements in  the algorithm. 
Additional related results are available in Ref. 6. 

Basis for the algorithm 
Karg  and  Thompson  and also  Lin developed two-phase 
algorithms. In each case the second phase uses the results 
of several first-phase solutions to  obtain improved solu- 
tions. The same  technique could be used with the author’s 
algorithm. 

A  statement of the basic (first-phase) Karg-Thompson 
algorithm is the following: 

1. Construct  a  permutation P of the nodes, e.g., P = 
(il, i2,  i3, . . . , in“l, in). 

2. Choose the first two nodes il and iz. The links rep- 
resented by (il, i,) and (i2, il) form a tour or cyclic per- 
mutation.  Set the number of links j equal  to 2. 
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Figure 1 Seven-city  example of the traveling-salesman prob- 
lem: (a )  incomplete tour, (b) starting mistake, (c) non- 
optimal tour and (d) corrected tour. Node 6 inserted be- 
tween Nodes l and 2 completes  the  optimal tour. 

3. Choose  the next [the ( j  + l)th] node k from  the per- 
mutation P. For each link @, q) in the  tour, calculate 
using the distance  matrix the quantity I = d, k -k d ,  - d, 
This is the increment to the  tour length that results if 
node k is inserted between nodes p and q.  

4. Find the minimum Z over all existing links (p, q). Call 
this increment I* and call the link that produced the incre- 
ment (p*, q*). Remove link (p*, q*) from  the existing 
tour  and produce  a  new tour by adding  links ( p * ,  k )  
and ( k ,  q*).  Increase j by 1. 

5. If j = n, a  solution exists; if j < n, repeat Steps 3 
and 4. 

Each distinct permutation chosen in the first step leads 
to a locally optimal  solution. The number of operations 
required for a single solution is proportional  to n2 and 
many solutions can be  obtained for large problems in  a 
short time. By obtaining many solutions, each of which 
is locally optimal, one achieves a  good probability of 
obtaining  a globally optimal  solution. 

The  author  has  found  that better  solutions can be 
obtained by deterministically choosing the next node  to 
insert and by improving the existing tour at intermediate 
stages. The details can be understood by  viewing the 
Karg-Thompson  algorithm  as follows: 

1 .  An initial state is defined to be a tour through two nodes. 

2. A transition is made  to  an intermediate state by includ- 
ing another node in  the  tour. 

3. After n - 2 transitions are made, the resulting state 
represents  a feasible solution. 

The decision involved in  the state-to-state  transition 
requires two choices, which node to include and where 
to insert the chosen node  in  the existing tour.  Karg  and 
Thompson chose the next node from a  randomly generated 
permutation and inserted it between the two nodes in the 
existing tour  for which the smallest increment to the 
tour length resulted. The  author, however, considered that 
a  better decision could be  made if all remaining nodes were 
evaluated in some  way before making a  transition. 

By making increment calculations for  all remaining 
nodes, one can  in effect look  ahead.  One of several decision 
rules can then be applied, For example, one could choose 
the minimum of the best (minimum) increments for each 
node; that is, for  the k nodes evaluated in each link (p, q)  
choose 

min  [min (dPk + dkc - &)I. 
Figure l a  shows four links of a seven-node tour; three 
decisions are yet to be made. The corresponding  distance 
matrix D = (dii) is given in Fig. 2 and  Table 1 lists the 
tour length increments. In this example the choice would 
be min(4, 7, 5 )  = 4, which corresponds to inserting 
Node 5 between Nodes 4 and 1 in  the existing tour. 
Another possibility would be to choose the node that 
produces the maximum of the minimum increments, 

max  [min (d,k + dkQ - duq)1. 
Applying this rule, we would choose Node 6 and insert 
it between Nodes 1 and 2. 

What one really must seek  is a criterion of “sureness” 
before making  a decision. In  other words, the question 
emerges: How can one be most  sure that  the chosen node 
is the right node? One answer is to look at not only the 
“best” increment for each node, but also the “next-best’’ 
increment. If these two criteria are nearly equal,  one 
is not  sure which link should be broken to insert the 
node. Referring to  the example, we see that  the best in- 
crement for  Node 5 is 4 and  the next-best is 6, yielding 
a difference of  2. Contrast this with Node 6 (a difference 
of 13 - 7 = 6) and  Node 7 (a difference of  26 - 5 = 21). 
In qualitative  terms, one draws the conclusion that  he 
is surest about  Node 7 and least sure about  Node 5. 
Thus one chooses Node 7 to insert next and  for this 
example the best final solution results. 

The  author  has programmed several decision rules 
with varying degrees of  success. The traveling-salesman 
problem is quite complex and, by looking ahead only 
one stage, one gets results analogous to those of the chess 

k (,,a) 

k (n.u) 

40 

HEURISTIC TRAVELING-SALESMAN JULY 1969 



I 2 3 4 5 6 7 

1 0  33 17 28 5s 40 30 

4 27 5 1  31 0 41 68 55 

5 25  20 n 31 22 35 28 

6 36 n 20 51  24 20 17 
I I I I I I 

I 0 36 2s 21 46 56 33 
I I I 1 

Figure 2 Distance  matrix for the  seven-city  problem (arbi- 
trary units). 

Table 1 Tour-length increments for the  seven-city  problem 
(arbitrary units). 

Node 

Link 5 6 7 

nodes inserted at later stages, one simply scans the in- 
crement matrix. Running  time remains proportional to 
n3, but  the number of calculations is reduced to 2(n - 2) + 
This number is slightly less than twice the number of 
calculations made by Karg  and Thompson. 

Before describing tour-correction techniques, it  should 
be pointed out  that  one can change decision rules between 
stages. Thus  in the early stages of a solution  one  can use 
one rule and in later stages use another.  This flexibility is 
important because the final solution is highly dependent 
on  the early stages. From a practical standpoint  the tour 
should take  on  in  an early stage the general form of the 
final tour. This implies making an intelligent choice of 
the first several nodes, particularly the initial two. The 
author  had little success in predicting which two initial 
nodes would lead to  the best solution. Given the first 
two nodes, however, the  author visualized that by using 
the maximum best-increment criterion for  the first few 
nodes, the tour would include nodes located at corners 
of a polyhedron that encloses many nodes. The shape 
of this tour often approximates that of the final tour. On 
the other hand, if the minimum best-increment criterion 
is used for  the first few nodes, the resulting tour is very 
short and encloses only a small area. Thus it cannot 
approximate  the final tour  and generally produces an 
inferior result. After several nodes are in the  tour  the 
transition decision can be based on  the sureness criteria. 

2(n - 3) + * . . + 2 + [n - (n - l)] = (n - l)(n - 2). 
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player who looks  ahead only one move. To look ahead 
more than  one stage, one must increase the number of 
calculations by an order of magnitude. The analogy with 
the chess player can be extended to show the difference 
between Karg  and Thompson’s decision rule and  the 
author’s. In  the former case, one randomly chooses a piece 
to move, evaluates all (one-stage) moves for that piece and 
makes the best one. In  the  latter case, one evaluates all 
(one-stage) moves for all pieces and then makes a move. 

The cost of making such evaluations in terms of com- 
puting time can be anticipated by determining the number 
of increment calculations. For a problem of n nodes, one 
makes 2(n - 2) + 3(n - 3) + . . . + (n - l)[n - (n  - 111 
calculations. Each term represents the number of links in 
the  tour times the number of nodes that  are  not  in the 
tour. The  sum is (a3 - 7n + 6)/6. One can avoid redun- 
dant calculations by saving the increments for each 
node-link pair in a matrix. When two new links are 
created at each stage, the matrix can be updated by 
performing increment calculations involving each remain- 
ing  node with only the two new links. Thus, instead 
of recalculating the same increments many times for 

Correction techniques 
With any decision rule based on a one-stage “look ahead,” 
mistakes are made and nonoptimal solutions result. 
Ideally one  should be able to examine a tour  at any stage, 
determine whether  it is the optimal tour  and, if not, 
correct it. Obviously, if this could be accomplished one 
could completely solve the traveling-salesman problem 
by starting with any  random tour through all nodes. 
Because this is not possible with currently known methods, 
the  author sought partial correction techniques with the 
idea of correcting glaring mistakes. 

The example introduced previously will suffice to il- 
lustrate  a “mistake.” Let us assume that  Node 5 was 
inserted before Nodes 6 and 7. The resulting next stage 
is shown in Fig. l b  and  the increment calculations for 
Nodes 6 and 7 are given in Table 1. Now let us assume 
that  Node 7 is inserted next (see Fig. IC). At this stage 
the  tour is not optimal and without correction would lead 
to a  nonoptimal solution. It is evident that  Node 5 is in 
the wrong place in the  tour;  thus a mistake has been made 
that should be corrected before proceeding to  the next 
stage. 

The first correction technique developed by the  author 
involves taking each node in turn  out of the present tour, 
reevaluating its insertion increments and inserting the node 
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Figure 3 Thirteen-city  problem: (a) nonoptimal tour with data for five-link-exchange  correction  and (b) corrected tour. 

in the link that now gives the minimum tour length incre- 
ment. In most cases one reinserts the node in  the link that 
was created when the node was taken out of the  tour, 
thus producing no change. For example, taking  Node 1 
out of the solution (Fig. IC) by deleting links (1, 2) and 
(1, 5) and creating link (2, 5), one  obtains the following 
increments for  the respective links: 23 (5, 2),  41  (2,  3), 
48 (3, 4), 61 (4, 7) and 36 (7, 5). The minimum increment 
is 23,  which results in  our breaking link (5, 2) to produce 
links (1, 5) and (1,  2). The  tour  in this case remains the 
same. When Node 5 is considered, however, an improved 
tour does result. Links (5 ,  1) and (5, 7) are first deleted 
and link (7, 1) is created. The increments for  the respective 
links are 33 (1, 2),  28  (2,  3), 6 (3,  4),  29  (4, 7) and 20 (7, 1). 
Thus  Node 5 is to be inserted between Nodes  3 and 4 by 
producing the links (5, 3) and (5, 4) and deleting the 
link (3, 4). The resulting tour, which is 14 units shorter, 
is shown in Fig. Id. 

In effect this procedure exchanges three links in the 
tour  for three other links. Although a similarity exists in 
this respect to  the ‘%opt” algorithm: much smaller sets 
of three links each are considered here at each stage (be- 
cause two of the three links must be adjacent). In addition, 
far fewer changes occur in  the  tour  at each stage. As a 
result, the computing time needed to generate the cor- 
rections remains relatively short. The timing estimate 
cannot be precise because an additional pass is made 
for each tour improvement. If no corrections are ever 
made, although a correction pass is made at each stage, 
timing can be estimated and is proportional to the number 

of increment calculations. At each stage  there are k nodes 
that must be evaluated in k - 1 links. Summing over 
all stages one gets (n3 - n - 6)/3. A shortcut  can be 
taken by considering at each stage only the new links 
from  the previous stage, but this procedure was not 
incorporated in  the results described. 

Another correction process developed by the author 
handles some complex situations that arise in large prob- 
lems. The process begins in  the same manner as  the three- 
link exchange described previously. A  node is isolated 
from the  solution by deleting the two links adjoining the 
node and creating the link L that completes the  tour. 
This produces a tour of reduced length and the length 
reduction will be called ZI. The insertion increments for 
the isolated node are then calculated for  all links except L. 
The link that produced the best of these increments 
(the next-best for the node if  we assume that L produced 
the best increment) is identified and increment Z2 is the tem- 
porary  addition to  the  tour length. Each remaining node 
in the  tour  that is not connected to any of the links in- 
volving Zl and Zz is then isolated in  turn  in  the same 
manner  as the first node and we obtain  a tour-length reduc- 
tion called Z3. Finally, the tour-length increment Z4 is calcu- 
lated when the last isolated node is inserted in link L. The 
resulting tour is shorter if Z2 + Z4 - Zl - Z3 < 0. This type 
of correction involves substituting five links in  the existing 
tour  for five other ].inks. Figure 3a illustrates the cor- 
rection procedure. 

Consider Node 9 in this figure. If Node 9 is taken out of 
the tour, the reduction Zl in tour length is d8,9 + dQ , l o  - 
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d,,, ,  = 23. The link created (L) is (8, 10). The next-best 
place to insert Node 9 is in link (5, 6)  with an increase 
Z, in  tour length of + d5,9 - d5,6 = 24. As each node 
is considered in  turn,  Node  13 is eventually isolated 
and Z3 = + d13.1 - dl, , 1  = 36. When Node  13 
is inserted in link (8, IO), the increment Z4 is d13.8 + 
d13, - d8,1, = 11. The  tour has been changed by creating 
links (6,9), (5, 9), (13, 8), (13, 10) and (1, 12) and deleting 
links (8, 9), (9, lo), (6, 5) ,  (13, 12) and (13,  1); it is now 
24 units  shorter and is shown in Fig. 3b. 

The five-link exchange is obviously expensive in terms 
of computing time. For a tour of k nodes, timing is 
proportional to k(2k - 6). If used at each stage, the 
expression must be summed from k = 5 to k = n. Cor- 
rections made with this technique are  rare relative to 
those derived from  the three-link exchange. The  author 
used the five-link exchange only at  the final stage. 

The algorithm 
These ideas indicate that a variety of algorithms can be 
developed from  the basic one of Karg  and Thompson and 
a variety of decision rules can be used in conjunction with 
the correction techniques. The most successful combina- 
tion of decision rules and tour-improvement techniques 
was developed after considerable experimentation, most 
of  which is described in Ref. 6, and resulted in the fol- 
lowing algorithm: 

1. Choose two nodes il and iz and  form a tour with links 
(il,  iz) and (iz, il). Set the number of links j equal to 2. 

2. Define Z$ as the minimum tour-length increment that 
results from  the insertion of node  k in each existing link 
(p, q). Define nodes p* and q* as  the nodes connected 
by the link (p*,  q*) that produced I?. In addition, define 
J ;  as  the increment for node  k most nearly equal to I:. 
Thus  for  node k, Zt is the best increment, J t  the next- 
best increment and @*, q*) the link to break if inserting 
node k. Calculate Z*, and J $  for each node that is not 
currently included in the tour. 

3. If j 5 4, choose the node m for which Z? is a maximum. 
If j > 4, choose the node m for which IJ? - is a 
maximum. In either case, p* and q* are identified. 

4. Insert the  node m into  the  tour between p* and q* 
by adding links ( p * ,  m) and (m, q*) and deleting link 
(p*, q*). Increase the number of links in the  tour by one. 

5. If j 5 10, or if j is even, or if j = n, use the three-link- 
exchange correction procedure on  the present tour. If a 
tour improvement results, repeat this  step  after making 
the correction. If no improvement results, continue with 
Step 6. 

6. If j < n, return to Step 2. If j = n, use the five-link- 
exchange correction procedure. If a tour improvement 

results, apply the correction and repeat Step 5. If no 
improvement results, a solution exists. 

Note  that for a symmetric n-node problem only n(n- 1)/2 
starting states are possible and  thus there are only n(n- 1)/2 
possible solutions (if we make a deterministic decision in 
cases in which Zt = 55). The basic Karg-Thompson 
algorithm produces solutions for each of the n! permu- 
tations of the nodes. 

Application 
Computer results have been obtained and compiled for 
a variety of problems. Each problem is well known and 
is generally labeled by the number of cities or nodes it 
includes. These are (1) the 25-city problem of Held and 
Karp,' (2) the 33-city problem of Karg  and T h o m p ~ o n , ~  
(3) the 42-city problem of Dantzig, Fulkerson and John- 
son,'  (4) the 48-city problem of Held and Karp' and (5) 
the 57-city problem of Karg  and Thompson.' The distance 
matrices for the 33-,  42- and 57-city problems can be 
found in Ref. 5 and  for  the 25- and 48-city problems in 
Ref. 2. Each of these problems involves finding a tour 
through  a set of  cities in  the 48 contiguous states. Although 
there are similarities in  the general shape of the optimal 
tours, the  author conjectures that most of the complexities 
of the metric? traveling-salesman problem are demon- 
strated by these problems. Despite the metric nature of 
the problem, the distances used are functions of highway 
route lengths, not the point-to-point lengths of Euclidian 
distances. The known or conjectured optimal tours  of 
these problems are shown in Figs. 4  through 8, respectively. 

Numerical results 
Table  2 contains a summary of the results of the five 
problems studied and Table  3 shows the distribution of 
solutions with respect to their deviation from  the optimal 
tour.  The  data were obtained for all problems by using 
node numbers corresponding to  the row (column) sub- 
scripts in  the referenced distance matrices. For each prob- 
lem, solutions were  obtained for n(n - 1)/2 unique 
starting  states (il, iz) corresponding to (1, 2), (1,  3), . * * , 

(n - 2, n) and (n - 1, n). 
The distribution of the solutions (Table 3) is evidence 

of the  nature of the locally optimal solutions. A relatively 
small number of unique solutions can be obtained. The 
problem is discrete in  nature and,  furthermore, consecutive 
integral solutions may not exist. Thus gaps appear  in  the 
frequency distribution and flat intervals in the cumulative 
distribution. 

(1, 4 ,  (2, 31, (2, 4), * * .  , (2, 4 ,  . . . , (n - 2, - 11, 

t A metric problem is  one  for which the nodes exist in a metric space. 
A space is metric if, for each pair of points (x ,  y )  in the space, the distance 
&x, y) between the points is such that (1) d(x, y )  = 0 if and only if x = y .  
(2) d ( x A  = db, x)  and (3) d(x, Y )  + d b ,  d 1 d(x, 2). 
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From the data in Table 3 the computing time for  an 
n-node problem can be approximated by (9n3 + 140n2 + 
400n)  psec per solution; the time will be slightly greater 
for smaller problems because the three-link-exchange pro- 
cedure is executed disproportionately often. 

Comparison with other algorithm$ 
Some comparisons can be made of the results presented 
here with the first-phase-algorithm results of Lin4 and 
of Karg  and Thompson.6 Differences in the computers 
and programming languages used make exact comparison 
difficult,  however. 

Karg and Thompson report finding one  optimal solution 
out of  100 tours for the 33-city problem and 10 out of 
225 for  the 42-city problem. In 100 tries, the best solution 
for  the 57-city problem was  331 distance (cost) units 
(2.8%) from the conjectured optimal value. The  author, in 
earlier work, found no optimal solution in 600 tries on 
the 48-city problem, but a best solution of  11,470  units. 
The extensions described here obviously shift the distribu- 
tion of solutions toward the optimum. 

Lin, without the second-phase reduction, reports a 
probability of about 0.05 of finding an optimal tour  for 
the 48-city problem and 0.02  €or the 57-city problem. 

Figure 4 Optimal  tour for the 25-city  problem. Figure 5 Probable  optimal tour for the  33-city  problem. 

Figure 6 Optimal  tour for the 42-city problem. 

33 

Figure 7 Optimal  tour for the 48-city problem. 

19 
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2. Indianapolis, Ind. 
1. Chicago, Ill. 

3. Marion, Ohio 
4. Erie, Pa. 
5. Carlisle, Pa. 

7. Wilkeshoro, N.  C. 
6. Wana, W.Va. 

8. Chattanooga, Tenn. 

10. Bainbridge, Ga. 
9. Barnwell, S. C. 

11. Baton Rouge, La. 

12. Little Rock, Ark. 23. Lewiston, Idaho 
13.  KansasCity, Mo. 24. Boise, Idaho 
14. La Crosse, Wis. 
15. Blunt, S .  Dak. 

25. TwinFalls,  Idaho 
26. Salt LakeCity,Utah 

16.  Lincoln,Nehr.  27. Mexican Hat, Utah 
17. Wichita, Kans. 28. Marhlc Canyon, Ariz. 
18. Amarillo, Texas 29. Reno, Nev. 
19.  Truthor Consequences, 30. Lone Pine, Calif. 

20. Manuelito, N. Mex. 32. Redding, Calif. 
N. Mex. 31. Gustinc, Calif. 

21. ColoradoSprings, Colo. 33. Portland, Oreg. 
22. Butte, Mont. 

Figure 8 Probable  optimal  tour for the  57-city  problem. 
AQ 
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Table 2 Summary of computational results. 

Solution  (arbitrary  distance  units)  Number OJ 

Problem  Number Auerage Number of optimal 
(number Known of computing unique solutions; 
of cities)  Best  Worst  Acerage  optimal solutions time (sec) solutions percent 

25 1,711  1,763  1,731  1,711 

42 699 728 702 699 
48 11,461 12,143 11,582 11,461 
51 12,955 13,908 13,150 12,955 

33 10,861  11,122 10,958 10,861 

Table 3 Cumulative  distribution of solutions. 

Percent of solutions within f p  percent 
Problem of the optimal solution 
(number 
of cities) p = I 2 3 4 5 6 7 8 

___ 

25 12.3 72.8 18.7 78.7 100 
33  69.3 98.0 100 
42 68.3 94.7  98.8  99.7 100 
48  69.9 86.3 97.8  99.8  99.9 100 
57 52.4 71.6 83.6 90.4  94.5 99.8 99.9 100 

~- -~ 

The average results of ten tours each reported for  the 
42-, 48- and 57-city problems are, respectively, 713,11,667 
and 13,176 units. Computing times on  an  IBM 7094 
Model  2 were 2.08,  2.80 and 5.05 sec per  solution, re- 
spectively. The average computing  time was approximately 
30n3  psec. 

The author’s  algorithm yields a slightly better average 
solution, but  the difference is not necessarily significant. 
Link algorithm yields slightly higher probabilities of 
optimal solutions, which may be significant for large 
problems. Running times are roughly  comparable when 
differences between the IBM System 360/65 and 7094/2 are 
considered. The minimum storage requirements for  the 
two  algorithms are also  comparable. 

Remarks 
Certain nodes in large problems, if included in the starting 
state, seem to produce many more optimal  solutions than 
other nodes. For example, Node 10 of the 57-city problem 
was in the starting state of eight of nine optimal solutions. 
Node  13 of the 48-city problem was involved in 31 of the 
46 optimal solutions. The reason  for  this consequence is 
not known. 

The  author learned  in  prior work that  the five-link- 
correction  procedure  produces only small average improve- 
ments, even though the improvements may produce an 
optimal solution. Approximately 0.3 and 0.7 sec per 
solution for  the 48- and 57-city problems, respectively, 

300 0.28 4 53; 17.7 
528 0.55 5 31; 5.9 
861 1.06 12 553; 64.3 

1,128 1.32 28 46; 4.1 
1,596 2.14 104 9 ;  0.056 

were used for this correction. Overall computing time has 
been reduced in  a  later version of the program (by im- 
plementing the three-link-exchange shortcut) to approxi- 
mately (4n3 + 150 n2 + 300n) psec for  an n-node problem, 
with observed average times per  solution of 0.163,  0.768 
and 1.25 sec for  the 25-,  48- and 57-city problems, re- 
spectively. 

Additionally, the  author considers that  the algorithm 
described and  the Karg-Thompson  algorithm are best 
suited to problems with geometric properties. Both, how- 
ever, can be applied to nonmetric problems and modified 
to solve nonsymmetric problems. 

Conclusions 
The algorithm described appears to be competitive with 
existing heuristic techniques. It would be naive to assume 
that  the best combination of decision rules and correction 
techniques has been found;  further experimentation may 
prove  fruitful. 

The method  does yield a high percentage of near- 
optimal solutions, with over 50% of the solutions for 
each problem within 1% of the optimum. Thus  one needs 
to  obtain only a small  number of solutions to be assured 
with a reasonable degree of confidence that  the best 
solution is close to optimum. 

The size of the problem does not determine the degree 
of difficulty of solving it. This conclusion is borne out 
by the large number of optimal solutions of the 42-city 
problem.  Large problems with nodes concentrated in  one 
or more  areas, however, prove difficult. For dense prob- 
lems, increased size results in more  unique  solutions and, 
in turn, a longer tail  on  the frequency distribution of 
solutions away from optimality. 
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