J.-F. Raimond

Minimaximal Paths in Disjunctive Graphs

by Direct Search

Abstract: The problem of finding a minimaximal path in a disjunctive network is stated in terms of both graph theory and linear
programming with mixed-integer variables. It is solved in both formulations using a “direct search” scheme with additional dynamic
features, which seems to be a more efficient algorithm than those based on other methods. Although it yields an optimal solution, the
algorithm can be used as such or with very few changes to find suboptimal solutions for larger problems. Computational experience

on the general machine scheduling problem is described.

Introduction

A number of practical problems can be formulated in
terms of graph theory by introducing disjunctive graphs,
for example, the g-machine scheduling problem, which
can be stated as follows:

The manufacturing of m items or m lots of items re-
quires that each item be processed on some of g machines.
The processing of one item by one machine is called an
operation. The sequence of operations related to an
item is fixed by the technological process. However, the
sequence of operations associated with a machine is not
fixed. The problem is to determine the g sequences of
operations so that the total time to process the m items
on the g machines is a minimum.

A node represents an operation and nodes 0 and »
represent the dummy operations of beginning and finishing
the process. Then an ordinary oriented arc relates two
nodes corresponding to two consecutive operations on
one item; a disjunctive arc joins any two nodes cor-
responding to operations occurring on the same machine.
Let us define these terms.

A “disjunctive arc” joining nodes i and & is an arc
which has, a priori, neither an orientation nor a length,
but is associated with two positive numbers d; and d;.
Such an arc is represented by the symbolism in Fig. 1.
If we choose orientation from i to 4, this arc becomes an
ordinary oriented arc of length d;; if we choose the
opposite orientation, the length is d,. We call “selection”
the choice of one orientation of a disjunctive arc.

The author is located at Compagnie IBM France, 47, rue de Villiers,
92-Neuilly-sur-Seine, France.

JULY 1969

Figure 1 Disjunctive arc.

A “disjunctive graph” G is a graph G(X, 4, B) in
which X is a set of nodes, 4 is a set of disjunctive arcs
and B is a set of ordinary oriented (or conjunctive) arcs.
Without loss of generality, we assume that all arcs leaving
node { have the same length and that there exist two nodes,
indexed 0 and », neither of which is an extremity of a
disjunctive arc. An example of a disjunctive graph is
shown in Fig. 2.

Let w be a complete set of selections over 4. We obtain
from the disjunctive graph in Fig. 2 an ordinary oriented
graph that we denote by G(w), Fig. 3. On G(w) two
situations are possible:

1. There is no loop. Then there exists at least one longest
or critical path joining node 0 to node n. Let 7, be
the length of a critical path in G(w).

2. There is at least one loop. Then there exists no critical
path of finite length in G(w). We denote by 7,/ the
length of one loop in G(w).

The problem we deal with in this paper consists of
finding a complete set of selections w* such that there
is no loop in G(w*) and the length 75, of a critical path
in G(w*) is a minimum over all possible complete sets of
selections. Such a path is therefore called a “minimaximal”
path in G.

391

MINIMAXIMAL PATHS

392

Figure 2 Disjunctive graph.

This problem has been studied by numerous authors' '

in connection with the machine scheduling problem.
Roy and Sussmann®'''"'? and Greenberg'® use a branch-
and-bound algorithm, while Balas"'®™ uses Benders’
partitioning algorithm."’

The purpose of this paper is to present a new method
of solving the problem using the “direct search” technique
of Lemke and Spielberg'®™"® for mixed-integer, zero-one
linear programming. The feasibility of this method was
demonstrated in a preliminary report.19 Let us briefly
review the method; the problem solved is the following:

min z = c¢"x + ¢"y,
<
MP Dx + Ey < b,
x > 0 and
y is a (0, 1) vector.t

All vectors are column vectors and the superscript T
indicates transposition. If we fix y at some value ", the
problem becomes

min Z = ¢"x,

LP{Dx < b — Ey* and
Lc > 0.

LP is a classical linear programming problem. Its dual is
Jmax ¢ = (By* — b)"u,

DP D"y > —¢ and

Ll > 0.

There is only a finite number of different y vectors.
The algorithm uses a search over the y’s, starting with
y°® = 0. The set of all possible values of y can be represented
by a graph Y in which each node R* represents one value
¥* of y and R* is a “successor” of R if and only if yk'
can be derived from y* by setting exactly one of the 0
components of y* to 1. A Y graph drawn for a four-

1 The value of each of the components of the vector y is either zero or one.

J.-F. RAIMOND

Figure 3 Complete set of selections from the disjunctive
graph in Fig. 2.

dimensional y vector is shown in Fig. 4. The search is
made by scanning this graph in such a way that one
never comes twice on a forward step to the same node.
(The procedure also has features that allow sets of nodes
to be eliminated from the search.) A forward step consists
of going from the currently scanned node to one of its
successors; a backward step is a move to the predecessor
node from which the currently scanned node was reached.

At each scanned node the dual problem is solved and
yields either an optimal solution u* or the direction
vector v* of an extreme ray of the cone associated with
the solution set. Let z* be an upper bound of the objective
function (practically, we take the best value of the objective
function found so far). Then the following constraints on y
are generated:

If LP is feasible,

(g+ E™u")y — u"b < 2% ¢))
If LP is not feasible,

v*T(Ey — b) < 0. 03]

Although these constraints are global (i.e., true for
every y), one uses only the constraints generated at the
current node to determine a preferred set of variables
(i.e., a subset of all possible branches emanating from
the current node, which exhausts the branches that
must be taken) and possibly a rule of choice among the
preferred variables. If the preferred set is empty, then a
backward step is initiated. These constraints can be
modified in their coefficients to yield local constraints,
i.e., constraints which are valid only for successors of
the current node. Because only the current constraint
is used, the same computations as for the global constraint
can be made on this local constraint, which is generally
stronger than the global one.

In succeeding sections we first formalize the problem
as a mixed-integer linear programming problem, then
we show how the search is made and finally we describe
the features used at each step of the algorithm.

IBM J. RES. DEVELOP.

Figure 4 Graph Y for a four-dimensional y vector.

Mixed-integer formulation

Let p = |A4|. Then we identify any complete set of selec-
tions w by a p-dimensional zero-one vector y” in the
following way: We index all the disjunctive arcs of G
in an arbitrary manner by j& 4 = {1,2, -- -, p}. Further-
more, we choose an arbitrary initial complete set of
selections , identified by »" such that y? =0, j&E A
Any complete set of selections w will be identified by y*
such that

¥ = 01if the selection on arc j is the same in w and inQ or
¥% = 1if the selections on arc j in w and in © are different.

This establishes a one-to-one correspondence between
the w’s and the y*’s.

For a given G(w) we call “normal” arcs those arcs for
which y = 0 and “inverse” arcs those arcs for which
¥ = 1. Throughout this paper the index { always stands
for the origin node of the normal arc j and % stands for
its endpoint; i and 4 are thus functions of j and arc (i, /)
is arc j.

Now we attach to any node of G(w) a continuous vari-
able 7, /| & X. For a given w the problem of finding the
length of a critical path in G(w) can be formulated as

min Z = t,; (3
(I, m) € B; (4)
h—t:2>2di, (i,) =j€AN{jly; =0} (5
=t 2>d, () =jCAN iy =1}. (6)

Let A; be an upper bound of |¢, — #;]| for every w and
let 8 = A; + d; and §; = A; + d,. Then constraints (3)
and (4) are equivalent to

tn — 8, 2 d,

h—t;—d; > — y98 and)
L—th—dy>— (1 —y)s, €A ®
JULY 1969

Constraints (7) and (8) can be established by noting that,
if ¥ = 0, then (7) is the same as (5) and (8) becomes

’h—ti+dh<Ai+dh'

However, (5) implies 7, — t; > 0; therefore |t, — t;| =
t, — t; and (8) is certainly verified. Similar reasoning
applies to the case y* = 1.

Now the mixed-integer formulation of the problem is

min Z = 1,; (3)
L — t, < —d, (1, m) &€ B; 9)
ti =t — 8y; X —d,, JE 45 (10)
ﬁ ho—ti+ &y X8 —di, JE 4 (11)
t;, >0, i € X; and (12)
yi=0 or 1, jE A. (13)

If we fix y at some value y“, we obtain a linear problem
which is a PERT (program evaluation review technique)
problem on the graph G(w) (with some redundant con-
straints). The following basic results should be remem-
bered:

1. The t;’s form a system of potentials on the graph.

2. The formulation of this problem with a conjunctive
system of constraints yields a linear program in terms
of the ¢,’s, the number of constraints equaling the
number of arcs in the graph, and the value of the
objective function at the optimum is the length of a
critical path.

3. In the dual problem each variable u; is attached to
an arc. If the network has no loop, an optimal solution
is given by u; = 1 if arc j lies on the critical path, or
by u; = 0 if not. If the network has loops, extreme
rays are given for each loop by #;, = 1 if arc j lies
on the loop, or by #; = 0 if not.

Organization of the search

Consider graph Y which has 2° nodes. We call “level k”
the subset of nodes of Y for which exactly £k — 1 com-
ponents of yare 1 (k = 1,2, --- , p+ 1). In Fig. 4 nodes
of a given level lie on the same horizontal line. All direct
successors of a node on level & lie on level & 4 1, while
the predecessors lie on level & — 1. At each iteration the
indices j of the components of y (or the variables y;) are
divided into three sets which effect a partition of A:

F is the set of free indices (or variables); free variables
are currently 0.

H® is the set of indices (or variables) such that y; is
fixed at 0.

H' is the set of indices (or variables) such that y; is
fixed at 1.

393

MINIMAXIMAL PATHS

394

An exhaustive search is realized by the following scheme:
Let k be the current level. A forward step consists of
branching to a free direct successor of the current node,
i.e., we transfer some index j, from F to H'. A backward
step consists of branching to the predecessor from which
the current node was reached and of forbidding access
to the current node. This is accomplished by transferring
from H' to H° the index j that was transferred earlier
to H' when branching to the current node. Further, all
indices brought into H° by backward steps between
levels £ + 1 and k or canceled (see Cancellation test)
at level k are freed (i.e., transferred from H° to F). Note
that all variables which have the value 1 at some node
R keep this value for all successors of R, i.e.,

SE T*R)= H) C H.

We also define 7' = H°|J F.

For any graph G(w) without loops, we denote by
Y. the subset of indices j & A4 such that the disjunctive
arc j kept in G(w) is an element of the critical path Z,.
Also, for a graph G(w) with loops, we call v, the subset
of indices j & A4 such that the disjunctive arc j kept in
G(w) is an element of a loop of length 7... From a com-
putational point of view the state of the search is described
by two p-dimensional vectors:

¢ is a sequence vector that contains in sequence the k&
indices j & H".
Y is a state vector defined as
Y, =02 jCF,
¥; = k< j has been fixed to 1 at level k or
¥; = —k < j has been fixed to 0 at level k.

Note that there are one-to-one correspondences among
a complete set of selections w, the particular value y*
of y and the corresponding node R” of Y, which allow
us to use any of these symbols (words) in place of the
others.

Basic elements of the algorithm

e Preferred set

At the current node in the search let w be the corresponding
complete set of selections and let Z, be a critical path
of G(w). For every complete set of selections that has
the same selections as w on v,,, the critical path cannot
be shorter than Z,, because the critical path is the longest
path between nodes 0 and » in G(w). Therefore, one
needs to select only branches that correspond to an
inversion of some disjunctive arc on Z,. The preferred
set is therefore

o= F) %Y. 14)

In the same way, if G(w) has a loop, then some disjunctive
arc on the loop must be reversed and therefore

J.-F. RAIMOND

I=F(}v..
If II = ¢ (the empty set), a backward step is taken.

o Derivation of inequalities

We now derive the inequalities (1) and (2) for this problem.
Note that in our case ¢ = 0. Therefore the inequalities
have the same coefficient on the left-hand side:

(Ey — B)™* < z* if feasible or
(Ey — ®™* < 0 if not feasible.

We describe only the computations related to the first
case. Computations for the second one differ only by
the right-hand side of the corresponding equations. Let

uT — (u2T’ MOT, ulT)’

where 1°, u* and 4' are the dual vectors associated with
constraints (9), (10) and (11), respectively; #° and i
are p-dimensional. Let R® be the current node and y*
the attached value of y.

The objective function of the dual problem is

¢ = (By° — by,
where
dy
Ey* — b = |d, — 8}
d, — 5;(1 -9

Let u & X be the origin of the ordinary arc corresponding
to the dual variable 1. Then

C= 2 dul + D (di — yul
lE€EB €A
+ 2 [dn — 81 — y)lul.
i€A

Let @ be an optimal solution. The dual problem maxi-
mizes {. Therefore, since u > 0, we have the following
implications:

FEH = =1=d, — &y’ <0=4a) = 0 and
JE M =y =0=d, — &(1 — %)
< 0=a = 0.

Therefore the problem is, equivalently, to maximize

g‘l = Zdﬂu? + E d,'u? —I_ Z dhu}.

1€B =g i€H?

However, this is the objective function of the dual PERT
problem on the conjunctive graph G(w). Moreover, the
remaining constraints

DTy > —c,

u>0,

IBM J. RES. DEVELOP.

u; = 0, jE H and

u} = 0) j EE Iia

are the constraints of the classical PERT problem on
G(w). The remaining components of # are 1 for those
arcs that are elements of a critical path Z, and 0 other-
wise. Specifically,

@; = 1 on purely conjunctive arcs & Z,,,
=1, j€E H N7, and
=1, jEHNYw

]
e -0

IS

The constraint generated at the current node is
(Ey — b)"a < z¥,
which can be written in expanded form as

> da + 2 (di — 8y)a]

lEB i€A

+ 2 [d — (1 — ypla; < z*.

i€A

Substituting the values of &} and @}, one gets

> da; + ; (d: — 8y
i€

lEB

+ Z [d,, - 5}(1 - J’f)] < z¥,

i€J

where J = A' (v, and J = H () v.,. Now, recalling
that the length 7, of the critical path Z,, is

Te = 2 dai + 2, di + 2 da,

leB i€J i€

one gets the final form of the global constraint:

-2, Oy — Z 51— y) < z* — .. (15)

€T

However, because this inequality will be used only
at the current node, we are more interested in the local
inequality, i.e., an inequality which is true for all suc-
cessors of the current node. For every value of » such that
the corresponding node is a successor of the current node,
we have the implications

JE H =y, =1and
JEH =y =0

Therefore (15) yields the following local constraint for
the feasible case:

— > 8y < z* — n,. (16)

jenl
If there are loops, the same computations yield

— 2 8y, < —nd, (17)

jen’

JULY 1969

where I’ = F(v,..

While it is possible to generate as many inequalities of
type (16) or (17) as there are critical paths or loops in
G(w), we consider only one inequality at each node.
Also, for simplicity, we let — £, generically represent
the right-hand side of (16) or (17) and deal with
— 2 8 < —4. (18)

jEN

Constraint (18) is used in two ways:

Ceiling test
The best way to satisfy (18) is to set every y;, j & II,
equal to 1. Therefore, if

> 8 <4, (19)

i€l

a backward step is taken.

Reduction of the inequality
By combining (18) with the inequalities

<1, jel, 20)

one can obtain the inequality

— 2 Oy < - (21)
FEMw®

Any further combination of (21) with (20) to reduce II.)

would yield a negative value of £2.

The search is continued by setting to 1 some variable y;,
where j & II.). When this set has been exhausted, it is
necessary to start again from (18) if (19) is currently
satisfied. Otherwise, a backward step is taken. For ex-
ample, using (18) one has —(y, + 2y, + 5y5) < —4,
02 = {3}. When y; is set to 0, the constraint becomes
(G -+ 2y2) > 4, which cannot be satisfied, and a backward
step is taken.

o Lower bound and further backtracking tests

We introduce now, for a node corresponding to w, the
partial set of selections ¢ defined as follows: ¢ contains
only selections for j & H° U H' and these are the same
selections as are in w. Also, we define as I'(s) the graph
which is derived from G(w) by making the selection o and
by deleting the disjunctive arcs that are not selected in o.
Such a graph is shown in Fig. 5.

In terms of I'(s), two situations are possible:

1. T'(¢) has loops; this means that G(w) has the same
loops. Therefore, there exists a set v, such that F (N
v, = @ and a backward step must be taken. [Note
that this test is necessary because the loop selected
in solving the PERT problem on G(w) may be different
from the loops of I'(s) and contain some index j & F.]

395

MINIMAXIMAL PATHS

396

Figure 5 Graph TI'(¢) derived from the graph in Fig. 3.

2. T'(s) has no loops; then the PERT problem on I'(s)
is feasible and yields a critical path Z, of length 7,.
Any graph G(») corresponding to a successor of the
current node is obtained by adding arcs to I'(s).
Therefore 1, < 7, and 7, is a lower bound of the

objective function for all successors of the current
node. If

n. > 2%, 22
a backward step is taken.

Case 2 contains the case in which, solving the PERT
problem on G(w), one would have selected a critical
path Z,, with F [v, 5 @, although there exists in G(w)
another critical path Z’/ with F () v/, = 0.

o Dynamic evaluation of upper bounds
The efficiency of the algorithm depends partly on finding
the lowest possible values of the upper bounds §,. We
compute local values of §; at each step of the algorithm.
Inequality (18) involves only §°. Considering constraints
(10) and (11), we see that the value of 6? has meaning
only when y; = 1, i.e., when one has selected the inverse
arc of pair j. The constraint to be enforced is then

t,—ty— dy 2> 0,

which implies ¢, — 1, > 0. We want condition (10) to be
satisfied automatically if (11) is satisfied. To ensure this,
it is sufficient to take

5?2 t,— ty+ d;,

ie.,tohave A; > ¢, — f,butnot A; > |1, — 4.

Let o (B87) be the length of the largest path joining
node 0 (i) to node i (n). Consider any value of » correspond-
ing to a successor of the current node such that G(») has no
loop. Because G(v) can be derived from I'(¢) by the addition
of some arcs, the following inequalities hold:

t, > o and

Ny — t:Z B:’

J.-F. RAIMOND

Therefore

v

=t < n — a — Bl

Furthermore, we are interested only in finding better
solutions. Therefore we can enforce the additional con-
straint 7, < z* and obtain

6 — 1 < z* —a; — B (23)

Inequality (23) is true for every successor of the current
node; its use yields a solution better than the best one found
so far. Therefore, in the local inequality (18) we use
values of 87 given by

8 =z —af — Bi + di. (24)

o Cancellation test
Combining inequalities (23) and (11) with y; = 1, one
gets the inequality

dy < z¥ — oy — B (25)

If this inequality is not satisfied, one will not get a better
solution by setting y; to 1. For any successor (v, 7) of
the current node corresponding to a complete set of
selections » and a partial set 7, one has

T

aj, 2 a‘l’u

B; > B and

% *

7,

IA

z
which can be combined as
F — oy — B L 2F — oy — BT (26)

Therefore if (25) is not satisfied at the current node, it
will not be satisfied at any successor node. Thus one has
the following cancellation test: If

2 < di + d, @7

cancel variable j, i.e., transfer j from F to H’. Note that
this is not a backtracking test; all indices such that (27)
is not verified remain free.

The flow diagram for the algorithm is shown in Fig. 6.

Additional features of the algorithm

o Choice of the initial complete set of selections
The origin of the search is fixed by the arbitrary choice
of the initial complete set of selections 2. However, if the
origin is a good solution one can expect that the optimal
solution will be obtained with a relatively small number
of iterations. These considerations led us to use a heuristic
procedure to derive the initial set of selections.

Let X be the empty set, i.e., I'(\) is the graph obtained
from G(w) by deleting all disjunctive arcs. Let r and s be
any two nodes related by a disjunctive arc. It is evident

IBM J. RES. DEVELOP.

that the greater the quantity (n, — 8 — o — d,) is, the
more likely it is that in the optimal graph the disjunctive
arc will be oriented from r to s. This observation leads
to the following rule for the construction of the initial
complete set of selections: If

m—B—a—d > =~ —d, e, if
Brtartd > +a+d,

choose the orientation from r to s; otherwise, choose the
orientation from s to r.

e Strategies

We call a strategy the set of rules used to determine which
element of the preferred set is to be selected for the next
branch after the preferred set has been reduced as much
as possible. A first strategy is to try to get good solutions
quickly; then one can stop the algorithm after some
fixed execution time. One has a set of good solutions,
but optimality is not proved. We call such a strategy,
in which we branch to the node that hopefully will give
the best value of the objective function, a “next-best”
strategy. However, when one has a good solution, he
may be interested in ascertaining optimality as quickly
as possible. To do that, he might do well to cut branches
after as few links as possible and so to use a “next-worst™
strategy.

Until now, the only data we have to evaluate the
quality of a step are inequalities (18) or (27). A next-best
choice will be one that maximally reduces infeasibility.
Therefore two strategies are possible:

1. From (18): Select k& such that
8, = max §°. (28)
jen
2. From (27): Select k such that
& — diey — dhy = max (8 —d.—d). (29

Next-worst strategies would minimize these quantities.

® Relocation of the origin

At some point in the search, either fixed a priori by some
maximum number of iterations or under the control of
the operator if some information is displayed visually,
stop the search, select as the initial Q the complete set
of selections w* yielding the best solution found so far
and restart the algorithm. This process, called relocation
of the origin,®'*°'*' can be handled without modifying
the algorithm because, in fact, there is no difference
between a normal arc and an inverse arc. One uses a
new vector y defined by

i =y if y5=20 or
y1=1—y1 if y#:=1.

JULY 1969

Level=1

Solve PERT on G (w);
if no loop,

Z¥=min(z*, v,,)

nm=Frny,
H=g Yes
No
Solve PERT on T (o)
Loops in Yes

T'{o)

Backward updating

l of HO. H' F

Cancel jif 8= d+d;;
update 1T, F, H?

Generate S?

Level®Level -1

N o
Reduce —24 50 y, =&
jenn /i

1

Choose next node
according to strategy

!

Forward updating
of ' and F

!

Level-» Level + 1

L]

Figure 6 Flow diagram for the algorithm.

This means that the new initial complete set of selections is
obtained from the old one by reverting the arcs cor-
responding to y* = 1. In other words, the only change
is to define new values i and i by

397

MINIMAXIMAL PATHS

398

Table 1 Summary of computational experience with the machine scheduling problem.

Number Initial First Best
Number Number of of disjunctive choice Number of Number of solution solution Optimality

Run of items machines arcs of w? iterations solutions value value proved?

1 2 3 3 yes 1 1 13 13 yes

2 3 2 6 yes 3 2 10 8 yes

3 3 2 6 no 5 2 34 31 yes

4 5 4 15 no 34 9 24 13 yes

5 5 4 15 yes 13 3 15 13 yes

6 5 5 28 yes 15 3 73 66 yes

7 7 4 66 no 36 9 153 98 yes

8 7 4 66 yes 1 1 98 98 yes

9 10 4 153 no 10,000 19 328 159 no
10 10 4 153 yes 9,600 8 168 153 no

i=1i h=h if y(=0 or

i=h h=i if yt=1

Then the algorithm is restarted using the new values i
and A.

o Heuristics

If one is interested only in getting good solutions, or if
the problem is too large, one can use heuristic procedures
to reduce computation time. Two techniques are partic-
ularly easy to implement, but they are by no means the
only ones that could be used:

1. Fix, a priori, some selections. Choose £ so that it is
compatible with these selections and start the algorithm
with H® = @.

2. Use a tolerance T in all tests involving z* replace
z* by z* — T. In general this is very efficient, but the
value of the objective function for the best solution
found differs from the optimal value by a quantity
not larger than 7.

Summary and computational experience
We have applied the direct search scheme to the problem
of finding a minimaximal path in a disjunctive PERT
network. The structure of the problem and its formulation
as a mixed-integer linear program proved to be particularly
relevant to this technique.

From a theoretical viewpoint, the main advantages
of the method are the following:

1. Using specialized Benders’ constraints'® we obtain a
backtracking test that can be used with lower and
upper bounds.

2. These constraints also allow canceling some variables
at each step.

J.~F. RAIMOND

3. Introducing the partial conjunctive graphs, we obtain
dynamic evaluation of the upper bounds used in the
mixed-integer formulation.

From a practical viewpoint, the use of the direct search
has the following advantages:

1. It is the implicit enumerative scheme that requires
the least storage for intermediate results.

2. No difficult problem has to be solved at each step, in
contrast with methods based on Benders® partitioning
algorithm.15

3. Itis a primal feasible algorithm, i.e., it yields a sequence
of feasible solutions. In practice, it is often more
interesting to have several good solutions than only
one optimal solution.

4. As a consequence of Point 3 we can set, a priori,
a maximum processing time and use the best solution
found.

A FORTRAN 1v program implementing these ideas in
terms of the machine scheduling problem was written
for the IBM 360/40. The most significant results are
summarized in Table 1. Runs 1 and 2 are related to
sample problems 3 and 4 of Ref. 10. No comparison is
possible because Greenberg does not give a result for
the make-span problem. Runs 3, 4 and 5 are related to
two examples of Balas." Benders’ partitioning scheme for
these examples uses 11 and 40 iterations, respectively, each
of which is longer than one iteration of our algorithm.
The other runs are related to randomly generated problems.
For large problems, use of the heuristic procedure for the
initial choice of origin seems to be equivalent to relocating
the origin after 100 iterations; that is, the best solution
found in the first 100 iterations without benefit of the
heuristically chosen origin is generally the one obtained
by using the initial heuristic choice of origin. Use of a

IBM J. RES. DEVELOP.

tolerance also decreases the number of iterations needed
to find the best solution. Runs 9 and 10, for which opti-
mality was not proved, were stopped after nine minutes
on an IBM 360/75.

Acknowledgments

I am very grateful to Kurt Spielberg for his continuous
interest and valuable comments during the development
of the algorithm and to Egon Balas for introducing me
to the machine scheduling problem and for later dis-
cussions of various points of interest.

References

1. E. Balas, “Finding a Minimaximal Path in a Disjunc-
tive PERT Network,” Théorie des Graphes, Journées
Internationales d’Etudes, Rome, 1966, Dunod, Paris
1967.

2. R. J. Giglio and H. M. Wagner, “Approximate Solu-
tion to the Three-Machine Scheduling Problem,” Opera-
tions Res. 16, 305, (1964).

3. E. Ignall and L. Schrage, “Application of the Branch-
and-Bound Technique to Some Flow-Shop Scheduling
Problems,” Operations Res. 13, 400 (1965).

4. S. Johnson, “Optimal Two- and Three-Stage Produc-
tion Schedules with Setup Times Included,” Naval Res.
Log. Quart. 1, 61 (1954).

5. Z. A. Lomnicki, “A Branch-and-Bound Algorithm for
the Exact Solution of the Three-Machine Scheduling
Problem,” Operational Res. Quart. 16, 89 (1965).

6. G. B. McMahon and P. G. Burton, “Flow-Shop Sched-
uling with the Branch-and-Bound Method,” Operations
Res. 15, 473 (1967).

7. D. S. Palmer, “Sequencing Jobs Through a Multi-Stage
Process in the Minimum Total Time—A Quick Method
of Obtaining Near Optimum,” Operational Res. Quart.
16, 101 (1965).

8. B. Roy and B. Sussmann, “Les Problémes d’Ordon-
nancement avec Contraintes Disjonctives,” Rapport de
Recherches No. 9, Société d’Economie et de Mathé-
matiques Appliquées, Paris 1964.

JULY 1969

10.

11.

12,

13.

14.

15.

16.

17.

18.

19.

20.

21.

. H. M. Wagner, “An Integer Linear Programming Model

for Machine Scheduling,” Naval Res. Log. Quart. 6,
131 (1959).

H. H. Greenberg, “A Branch-and-Bound Solution to
the General Scheduling Problem,” Operations Res. 16,
353 (1968).

B. Roy, “Cheminement et Connexité dans les Graphes;
Applications aux Problémes d’Ordonnancement,”
METRA Série Spéciale No. 1, METRA International,
Paris 1962.

P. Bertier and B. Roy, “Procédure de Résolution pour
une Classe de Problémes pouvant avoir un Caractére
Combinatoire,” Cahiers du Centre d’Etudes de Rech-
erche Opérationnelle (Bruxelles) 6, 202 (1964).

E. Balas, “An Additive Algorithm for Solving Linear
Programs with Zero-One Variables,” Operations Res. 13,
517 (1965).

E. Balas, “Discrete Programming by the Filter Method,”
Operations Res. 15, 915 (1967).

J. F. Benders, “Partitioning Procedures for Solving
Mixed-Variable Programming Problems,” Numerische
Mathematik 4, 238 (1962).

C. E. Lemke and K. Spielberg, “Direct Search Zero-
One and Mixed-Integer Programming,” /BM New York
Scientific Center Report 320-2911, 1966.

C. E. Lemke and K. Spielberg, “Direct Search Algo-
rithm for Zero-One and Mixed-Integer Programming,”
Operations Res. 15, 892 (1967).

K. Spielberg, “An Algorithm for the Simple Plant Lo-
cation Problem with Some Side Conditions,” IBM New
York Scientific Center Report 320-2900, 1967.

J-F. Raimond, “An Algorithm for the Exact Solution
of a Machine Scheduling Problem,” IBM New York
Scientific Center Report 320-2930, 1968.

K. Spielberg, “Plant Location with Generalized Search
Origin,” IBM New York Scientific Center Report 320-
2929, 1967.

H. M. Salkin and K. Spielberg, “Adaptive Binary Pro-
gramming,” IBM New York Scientific Center Report
320-2951, 1968.

Received January 27, 1969

399

MINIMAXIMAL PATHS

