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Minimaximal  Paths  in  Disjunctive  Graphs 
by Direct  Search 

Abstract: The  problem of  finding a minimaximal path in a disjunctive  network  is  stated  in  terms of both  graph  theory and linear 
programming  with  mixed-integer  variables. It is  solved  in both  formulations using a “direct  search”  scheme  with  additional  dynamic 
features,  which  seems to be a more  efficient  algorithm than those  based on  other  methods.  Although it yields an optimal  solution,  the 
algorithm  can  be  used as such or with  very  few  changes to find suboptimal  solutions  for  larger  problems.  Computational  experience 
on  the  general  machine  scheduling  problem  is  described. 

Introduction 
A number of practical problems can be formulated in 
terms of graph  theory by introducing disjunctive graphs, 
for example, the q-machine scheduling problem, which 
can be stated as follows: 

The manufacturing of m items or m lots of items re- 
quires that each item be processed on some of q machines. 
The processing of one item by one machine is called an 
operation. The sequence of operations  related to  an 
item is fixed by the technological process. However, the 
sequence of operations associated with a machine is not 
fixed. The problem is to determine the q sequences of 
operations so that  the  total time to process the m items 
on  the q machines is a minimum. 

A node represents an operation and nodes 0 and n 
represent the dummy  operations of beginning and finishing 
the process. Then  an ordinary  oriented arc relates two 
nodes corresponding to two consecutive operations on 
one  item; a disjunctive arc joins  any  two  nodes cor- 
responding to operations occurring on  the same machine. 
Let us define these terms. 

A “disjunctive arc”  joining nodes i and h is  an  arc 
which has, a priori,  neither an orientation nor a length, 
but is associated with two positive numbers di and dh. 
Such an  arc  is represented by the symbolism in Fig. 1. 
If we choose orientation from i to h, this arc becomes an 
ordinary  oriented arc of length di ; if we choose the 
opposite  orientation, the length is d,,. We call “selection” 
the choice of one orientation of a disjunctive arc. 
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Figure 1 Disjunctive  arc. 

A “disjunctive graph” G is a graph G(X, A ,  B)  in 
which X is a set of nodes, A is a set of disjunctive arcs 
and B is a set of ordinary  oriented (or conjunctive) arcs. 
Without loss of generality, we assume that all arcs leaving 
node i have the same length and  that there exist two nodes, 
indexed 0 and n, neither of which is an extremity of a 
disjunctive arc. An example of a disjunctive graph is 
shown in Fig. 2. 

Let w be a complete set of selections over A .  We obtain 
from  the disjunctive graph in Fig. 2 an ordinary  oriented 
graph that we denote by G(w), Fig. 3. On G(w) two 
situations are possible: 

1. There is no loop. Then  there exists at least one longest 
or critical path joining  node 0 to node n. Let q,,, be 
the length of a critical path  in G(w). 

2. There is  at least one loop. Then there exists no critical 
path of finite length in G(w). We denote by q,’ the 
length of one loop in G(w). 

The problem we deal with in this  paper consists of 
finding a complete set of selections w* such that there 
is no  loop  in G(w*) and  the length q w  of a critical path 
in G(w*) is a minimum over all possible complete sets of 
selections. Such a path is therefore called a “minimaximal” 
path in G. 391 
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Figure 2 Disjunctive  graph. 

This problem has been studied by numerous authors1-l0 
in connection with the machine scheduling problem. 
Roy  and Sussmann’ s l 2  and Greenberg” use a branch- 
and-bound algorithm, while  Balas’ ‘13’14 uses  Benders’ 
partitioning a1g0rithm.l~ 

The purpose of this paper is to present a new method 
of solving the problem using the “direct search” technique 
of Lemke and Spielberg’6”’ for mixed-integer, zero-one 
linear programming. The feasibility of this method was 
demonstrated in a preliminary report.”  Let us briefly 
review the method; the problem solved  is the following: 

min z = cTx + qTy, 
DX + EY I b ,  

x 2 0 and 

y is a (0, 1) vector.? 111 
All vectors are column vectors and the superscript T 
indicates transposition. If we  fix y at some value y k ,  the 
problem becomes 

jmin z = cTx, 
I 

L P  DX 5 b - Eyk and lx 2 0. 
LP is a classical linear programming problem. Its  dual is 

[max { = ( E y k  - b)Tu ,  
I 

D P  D T u  2 “c and 1 u 2 0. 
There is only a finite number of different y vectors. 

The algorithm uses a search over the y’s, starting with 
y o  = 0. The set of all possible values of y can be represented 
by a graph Y in which each node Rk represents one value 
y k  of y and Rk’ is a “successor” of Rk if and only if yk‘  
can be derived from y k  by setting exactly one of the 0 
components of y k  to 1. A Y graph drawn for a four- 

392 t The value of each of the components of the vector y is either zero or one. 

Figure 3 Complete set of selections from the disjunctive 
graph in Fig. 2. 

dimensional y vector is shown in Fig. 4. The search is 
made by scanning this graph in such a way that one 
never comes twice on a forward  step to  the same node. 
(The procedure  also  has features that allow sets of nodes 
to be eliminated from  the search.) A forward  step consists 
of going from  the currently scanned node to one of its 
successors; a backward step is a move to  the predecessor 
node from which the currently scanned node was reached. 

At each scanned node the  dual problem is solved and 
yields either an optimal  solution uk or  the direction 
vector vk of an extreme ray of the cone associated with 
the solution set. Let z* be an upper bound of the objective 
function (practically, we take the best value of the objective 
function found so far). Then the following constraints on y 
are generated : 

If LP is feasible, 

If LP is not feasible, 

Although these constraints are global (i.e., true  for 
every y ) ,  one uses only the constraints generated at the 
current  node to determine a preferred set of variables 
(i.e., a subset of all possible branches emanating from 
the current node, which exhausts the branches that 
must be taken) and possibly a rule of choice among the 
preferred variables. If the preferred set is empty, then a 
backward step is initiated. These constraints can be 
modified in their coefficients to yield local constraints, 
i.e., constraints which are valid only for successors of 
the current node. Because only the current constraint 
is used, the same computations as  for the global constraint 
can be made on this local constraint, which is generally 
stronger than the  global one. 

In succeeding sections we first formalize the problem 
as a mixed-integer linear programming problem, then 
we show how the search is made and finally we describe 
the features used at each step of the algorithm. 
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Figure 4 Graph Y for a four-dimensional y vector. 

Mixed-integer formulation 
Let p = (AI. Then we identify any complete set of  selec- 
tions w by a g-dimensional  zero-one vector y w  in  the 
following way: We index all the disjunctive arcs of G 
in  an  arbitrary  manner by j E A = { 1,2,  . . . , p }  . Further- 
more, we choose an arbitrary  initial complete set of 
selections a, identified by yn such that yy = 0, j E A. 
Any complete set of selections w will be identified by y w  
such that 

yg  = 0 if the selection on  arc j is the same in w and  in C2 or 

y; = 1 if the selections on  arc j in w and in C2 are different. 

This establishes a one-to-one correspondence between 
the w’s and  the y”’s. 

For a given G(w) we call “normal”  arcs  those  arcs for 
which y;  = 0 and “inverse” arcs  those  arcs for which 
y ;  = 1. Throughout this  paper the index i always stands 
for  the origin node of the  normal  arc J and h stands  for 
its endpoint; i and h are  thus functions of j and  arc (i, h)  
is arc j .  

Now we attach to any node of G(w) a continuous vari- 
able tl, 1 E X .  For a given w the problem of finding the 
length of a critical path in G(w) can  be  formulated  as 

I min Z = t,; (3) 

t, - tl L d , ,  ( I ,  4 E B; (4) 

t h  - ti 2 d i ,  ( i ,  h) = j E A  n { j  I Y :  = 0 ) ;  ( 5 )  

I; - t h  2 d h ,  (i. h) = j E A ( j  1 J’y = 1 ) .  (6) 

Let Ai be an upper  bound of [th - t i (  for every w and 
let 6; = Aj + di and 6: = Ai + dh. Then constraints (3) 
and (4) are equivalent to 

f h  - t i  - d i  2 - y;6; and (7) 

t i  - f h  - d h  2 - (1 - yy)6: ,  i E A. (8) 

Constraints (7) and (8) can  be established by noting that, 
if y;  = 0, then (7) is  the same as (5) and (8) becomes 

t h  - ti + d h  5 Ai + d h .  

However, (5) implies t,, - ti > 0; therefore Ith - til  = 
f h  - ti and (8) is certainly verified. Similar reasoning 
applies to the case y ;  = 1. 

Now  the mixed-integer formulation of the problem is 

’ min z = t,; ( 3) 

t z  - tm I - - d l ,  ( I ,  4 E B ;  (9) 

ti - t h  - 6;J’j 5 “ d i ,  j E A ;  (1 0) 

t h  - t i  + 6:Yi 52 6: - d h ,  j E A ;  (1  1) 

t i  2 0 ,  i E X; and (12) 

~ y i  = 0 or 1 ,  j E  A .  (1 3) 

If we fix y at some value y ” ,  we obtain a linear  problem 
which is a PERT (program  evaluation review technique) 
problem on  the graph G(w) (with some redundant con- 
straints). The following basic results should be remem- 
bered: 

1. The ti’s form a system of potentials on  the graph. 
2. The formulation of this  problem with a conjunctive 

system of constraints yields a linear  program in terms 
of the ti’s, the number of constraints equaling the 
number of arcs in  the graph, and  the value of the 
objective function at  the optimum is the length of a 
critical path. 

3. In  the  dual problem  each variable ui is attached to 
an arc.  If the network has  no loop, an optimal  solution 
is given  by ui = 1 if arc j lies on  the critical path,  or 
by ui = 0 if not. If the network has loops, extreme 
rays are given for each loop by ui = 1 if arc j lies 
on  the loop, or by ui = 0 if not. 

Organization of the search 
Consider graph Y which has 2’ nodes. We call “level k” 
the subset of nodes of Y for which exactly k - 1 com- 
ponents of y are 1 ( k  = 1, 2, . . . , p + 1). In Fig. 4 nodes 
of a given level lie on  the same horizontal line. AU direct 
successors of a node on level k lie on level k + 1,  while 
the predecessors lie on level k - 1. At each iteration the 
indices j of the components of y (or  the variables yi) are 
divided into three sets which effect a partition of A :  

F is the set of free indices (or variables); free variables 

Ho is the set of indices (or variables) such that y ;  is 

H’ is the set of indices (or variables) such that yi is 

are currently 0. 

fixed at 0. 

fixed at 1. 393 
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An exhaustive  search is realized by the following  scheme: 
Let k be the current level. A forward step consists of 
branching to a free  direct  successor of the current node, 
i.e., we transfer some  index jo from F to H'. A backward 
step  consists of branching to the predecessor from which 
the current node was reached and of forbidding access 
to the current node.  This  is  accomplished by transferring 
from H' to H o  the index j that was transferred earlier 
to H' when branching to the current node. Further, all 
indices brought into H" by backward steps between 
levels k -I- 1 and k or canceled  (see Cancellation test) 
at level k are freed (i.e., transferred from H" to F). Note 
that all variables which have the value 1 at some  node 
R keep  this  value for all successors of R,  i.e., 

S E  I'*(R)* HA C H i .  

We also  define 8' = H" u F. 
For any  graph G(w) without  loops, we denote by 

ym the subset of indices j E A such that  the disjunctive 
arc j kept in G(w) is an element of the critical path 2,. 
Also, for a graph G(w) with loops, we call y i  the subset 
of  indices j E A such that the disjunctive arc j kept in 
G(w) is an element of a loop of length v i .  From a com- 
putational point of  view the state of the search  is  described 
by  two p-dimensional  vectors : 

'p is a sequence  vector that contains in  sequence the k 

# is a state vector  defined as 
indices j E H'. 

#, = O H  j E  F, 
#i = k * j has been  fixed to 1 at level k or 
#j = - k * j has been  fixed to 0 at level k .  

Note that there are one-to-one  correspondences  among 
a complete  set  of  selections w, the particular value y" 
of y and  the corresponding node R" of Y ,  which  allow 
us to use any of these  symbols  (words)  in  place of the 
others. 

Basic elements of the  algorithm 

Preferred set 
At the current  node in the search  let w be the corresponding 
complete  set of selections and let 2, be a critical path 
of G(w). For every complete set of selections that has 
the same  selections as w on y w ,  the critical path cannot 
be shorter than 2, because the critical path is the longest 
path between  nodes 0 and n in G(w). Therefore,  one 
needs to select  only  branches that correspond to an 
inversion of some  disjunctive arc on 2,. The preferred 
set  is  therefore 

II = Fnyw. (14) 

In the same way, if G(w) has a loop, then some  disjunctive 
arc on the loop must  be  reversed and therefore 

r~ = FnY;. 
If II = 91 (the  empty  set), a backward step is taken. 

Deriuation of inequalities 
We now  derive the inequalities (1) and (2) for this problem. 
Note that in our case q = 0. Therefore the inequalities 
have the same  coefficient on the left-hand  side: 

(Ey - b)Tu'" 5 z* if feasible or 

(Ey - b)Tuk 5 0 if not feasible. 

We describe  only the computations  related to the first 
case. Computations for the second  one  differ  only by 
the right-hand side of the corresponding  equations.  Let 

UT = ( U 2 T ,  UOT, UIT), 

where u2, uo and u' are the dual vectors  associated  with 
constraints (9), (10) and ( l l ) ,  respectively; uo and u' 

are p-dimensional.  Let R" be the current node and y" 
the attached value of y. 

The objective  function of the dual problem  is 

b = (Ey" - b)TU, 

where 

Ey" - b = 

Let p E X be the origin of the ordinary arc corresponding 
to the dual variable u:. Then 

( = d,uT i- (di - 6 :y : )~ :  
ZEB ; € A  

+ [dh - 6)(1 - y: ) ]U: .  
i E A  

Let ij be an optimal solution. The dual problem  maxi- 
mizes r. Therefore,  since u 2 0, we have the following 
implications : 

j E H' + y ;  = 1 * di  - Gqyq < 0 + = 0 and 

j E i?' =+ y ;  = 0 =+ dh - 6:(1 - yq) 

< o=I.ii: = 0.  

Therefore the problem  is,  equivalently, to maximize 

[' = d,uT + diu: i- dhu:. 
1 € E  i € H I  i E H '  

However, this is the objective function of the dual PERT 
problem on the conjunctive  graph G(w). Moreover, the 
remaining  constraints 

DTu 2 -c, 

24 2 0 ,  
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uy = 0 ,  j E H' and 

u: = 0 ,  j E R 1 ,  
are the  constraints of the classical PERT problem on 
G(w). The remaining components of are 1 for those 
arcs that  are elements of a critical path 2, and 0 other- 
wise. Specifically, 

= 1 on purely conjunctive arcs E Z,,  

a: = 1, j E  8' nyw and 

a: = 1, j E H' n 7,. 
The constraint generated at  the current node is 

(Ey - b)Ta 5 z*, 

which can be written in expanded form  as 

where 9 = R' n y, and J = H' y,. Now, recalling 
that the length vlW of the critical path Z ,  is 

one gets the final form of the global constraint: 

- spyi - 6:(1 - y;) < z* - 7,. 
i t 7  i E J  

However, because this inequality will  be used only 
at the  current node, we are more interested in  the local 
inequality, i.e., an inequality which is true  for all suc- 
cessors of the current node. For every value of v such that 
the corresponding node  is a successor of the current node, 
we have the implications 

j E H' + y i  = 1 and 

j E  H" +yr = 0. 

Therefore (15) yields the following local constraint for 
the feasible case: 

If there are loops, the same computations yield 

where 11' = F n  7:. 
While it is possible to generate as many inequalities of 

type (16) or (17) as there are critical paths  or loops in 
G(w), we consider only one inequality at each node. 
Also, for simplicity, we let - E,,, generically represent 
the right-hand side of  (16) or (17) and deal with 

Constraint (18) is used in two ways: 

Ceiling test 
The best way to satisfy (18) is to set every y i ,  j E II, 
equal to 1. Therefore, if 

a backward step is taken. 

Reduction of the inequality 
By combining (18)  with the inequalities 

Y i  5 1, j €  n, 
one can  obtain  the inequality 

Any further combination of  (21)  with (20) to reduce II," 
would yield a negative value of E,". 

The search is continued by setting to 1 some variable yi, 
where j E II,". When  this set has been exhausted, it is 
necessary to  start again from (18)  if  (19) is currently 
satisfied. Otherwise, a backward step is taken. For ex- 
ample, using (18) one has -(yl + 2y2 + 5yJ < -4, II: = { 3 ) .  When y 3  is set to 0, the constraint becomes 
(yl + 2yJ 2 4, which cannot be satisfied, and a backward 
step is taken. 

Lower bound and .further backtracking  tests 
We introduce now, for a node corresponding to w, the 
partial set of selections u defined as follows: u contains 
only selections for j E H o  u H' and these are  the same 
selections as.are  in w. Also, we define as r(u) the graph 
which is derived from G(w) by making the selection u and 
by deleting the disjunctive arcs that  are  not selected in u. 
Such a graph is shown in Fig. 5. 

In terms of r(u), two situations are possible: 

1. r(a) has loops; this means that G(w) has  the same 
loops. Therefore, there exists a set y: such that F n 
y: = 0 and a backward step  must be taken. Mote 
that this test is necessary because the loop selected 
in solving the PERT problem on G(w) may  be different 
from the  loops of r(u) and contain some index j E F.] 
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Figure 5 Graph r(o) derived from the graph in Fig. 3. 
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2. r(u) has  no  loops;  then  the  PERT problem on F(u) 
is feasible and yields a critical path Z ,  of length q,,. 
Any graph G(v) corresponding to a successor of the 
current  node is obtained by adding arcs  to r(u). 
Therefore 17, 5 11 and 17. is a lower bound of the 
objective function for all successors of the current 
node. If 

17. 2. z*, (22) 

a backward step is taken. 

Case 2 contains the case in which, solving the  PERT 
problem on G(w), one would have selected a critical 
path 2, with F n y w  # 0, although  there exists in G(w) 
another critical path 2'; with F n y'; = 0. 

8 Dynamic evaluation of upper  bounds 
The efficiency of the algorithm  depends  partly on finding 
the lowest possible values of the upper bounds 6;. We 
compute  local values of 6i at each  step of the algorithm. 

Inequality (18) involves only 6;. Considering constraints 
(10) and (ll), we see that  the value of 6; has meaning 
only when yi = 1, i.e., when one  has selected the inverse 
arc of pair j .  The constraint to be enforced is then 

ti - th - dh 2 0, 

which implies ti - th > 0. We want  condition (10) to be 
satisfied automatically if (11) is satisfied. To ensure  this, 
it is sufficient to take 

6: 2. ti - th + di, 

i.e., to have Aj 2 ti - th but  not Ai 2 /ti - thj .  

Let a; 0;) be the length of the largest path joining 
node 0 (i)  to node i (n). Consider  any value of v correspond- 
ing to a successor of the current node such that G(v) has  no 
loop. Because G(v) can be derived from r(u) by the addition 
of some  arcs, the following inequalities hold: 

t; 2. ai and 

7 "  - t; 2 p:. 

Therefore 

t: - t; 5 q. - a; - p:. 

Furthermore, we are interested only in finding better 
solutions. Therefore we can enforce the additional con- 
straint < z* and  obtain 

t :  - t; < z* - a; - 8:. (23) 

Inequality (23) is true  for every successor of the current 
node; its use yields a solution  better than  the best one  found 
so far.  Therefore,  in the local inequality (18) we use 
values of 6; given  by 

6; = Z* - 01; - 8; + d,. (24) 

8 Cancellation test 
Combining inequalities (23) and (1 1) with y,  = 1 ,  one 
gets the inequality 

dh < Z* - CY; - 04. (25) 

If this inequality is not satisfied, one will not get a better 
solution by setting yi to 1. For any successor (v, 7) of 
the current  node  corresponding to a complete set of 
selections v and a partial set 7, one  has 

ff; 2 a;, 

2 fl; and 

2" 5 z* ,  

which can be combined as 

zf* - ff; - p: 5 z* - a; - p:. (26).  

Therefore if (25) is not satisfied at  the current node, it 
will not be satisfied at any successor node. Thus one  has 
the following cancellation test: If 

6; 5 d; + dh, (27) 

cancel variable j ,  Le., transfer j from F to H". Note  that 
this is not a backtracking  test;  all indices such that (27) 
is not verified remain free. 

The flow diagram for  the algorithm is shown in Fig. 6. 

Additional  features of  the algorithm 

Choice of the initial complete set of selections 
The origin of the search is fixed  by the  arbitrary choice 
of the initial complete set of selections a. However, if the 
origin is a good  solution  one  can expect that  the  optimal 
solution will be obtained with a relatively small number 
of iterations. These considerations led us to use a heuristic 
procedure to derive the initial set of selections. 

Let X be the empty set, i.e., r ( X )  is the graph obtained 
from G(w) by deleting all disjunctive arcs. Let r and s be 
any  two nodes related by a disjunctive arc. It is evident 
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that the greater the  quantity (vx - - a: - d,) is,  the 
more likely it is that  in the  optimal  graph the disjunctive 
arc will be oriented from r to s. This  observation leads 
to  the following rule for  the construction of the initial 
complete set of selections: If 

q h  - /3: - a: - d, > qx - & - at - d,, i.e.,  if 

P ~ + & + d . > P ~ + a ? + d , ,  

choose the orientation from r to s; otherwise, choose the 
orientation from s to r.  

Strategies 
We call a strategy the set of rules used to determine which 
element of the preferred set is to be selected for  the next 
branch after  the preferred set has been reduced as much 
as possible. A first strategy is to try to get good solutions 
quickly; then one can stop  the algorithm  after some 
fixed execution time. One  has a set of good  solutions, 
but optimality is not proved. We call such a strategy, 
in which we branch to the node that hopefully will  give 
the best value of the objective function, a "next-best" 
strategy. However, when one has a good  solution, he 
may be interested in ascertaining optimality as quickly 
as possible. To do  that,  he might do well to cut  branches 
after as few links  as possible and so to use a "next-worst" 
strategy. 

Until now, the only data we have to evaluate the 
quality of a step are inequalities (18) or (27). A next-best 
choice will be one  that maximally reduces infeasibility. 
Therefore  two strategies are possible: 

1 .  From (18): Select k such that 

6;  = max 67. (28) 
i cn  

2. From (27): Select k such that 

6: - di(k) - d h ( k )  = max (69  - d, - d h ) .  (29) 
;En 

Next-worst strategies would minimize these quantities. 

Relocation of the origin 
At some point in  the search,  either fixed a priori by some 
maximum number of iterations or under  the  control of 
the  operator if some  information is displayed visually, 
stop  the search, select as the initial D the complete set 
of selections w* yielding the best solution  found so far 
and restart the algorithm. This process, called relocation 
of the  origin,1s*z0'21 can be handled  without modifying 
the algorithm because, in fact, there is no difference 
between a normal arc  and  an inverse arc. One uses a 
new vector j defined  by 

Yi  = Y ;  if .y: = 0 or 

J i  = 1 - y i  if y :  = 1 .  
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Figure 6 Flow  diagram for the algorithm. 

t 
Stop 

This means that  the new initial complete set of selections is 
obtained from  the old one by reverting the arcs  cor- 
responding to y:  = 1. In  other words, the only change 
is to define  new values i and h by 397 
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Table 1 Summary of computational  experience  with the machine  scheduling  problem. 

Number Initial First Best 
Number Number of of disjunctive choice Number of Number of solution solution Optimality 

Run of items machines a m  of w ? iterations solutions value value proved ? 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

2 
3 
3 
5 
5 
5 
7 
7 

10 
10 

3 
2 
2 
4 
4 
5 
4 
4 
4 
4 

3 
6 
6 

15 
15 
28 
66 
66 

153 
153 

1 
3 
5 

34 
13 
15 
36 
1 

10,000 
9,600 

1 
2 
2 
9 
3 
3 
9 
1 

19 
8 

13 
10 
34 
24 
15 
73 

153 
98 

328 
168 

13 
8 

31 
13 
13 
66 
98 
98 

159 
153 

Heuristics 
If one  is  interested  only in getting  good  solutions, or if 
the problem is too large,  one  can use heuristic  procedures 
to reduce computation time.  Two  techniques are partic- 
ularly easy to implement,  but  they are by no means the 
only  ones that could  be  used: 

1. Fix, a priori, some  selections.  Choose D so that  it is 
compatible with these  selections and start the algorithm 
with H" # 0. 

2. Use a tolerance T; in all tests  involving z* replace 
z* by z* - T. In general  this is very  efficient, but the 
value  of the objective function for the best  solution 
found  differs from the optimal value by a quantity 
not  larger than T. 

Summary  and  computational experience 
We have  applied the direct  search scheme to the problem 
of finding a minimaximal path in a disjunctive PERT 
network. The structure of the problem and its formulation 
as a mixed-integer  linear  program  proved to be  particularly 
relevant to this technique. 

From a theoretical  viewpoint, the main  advantages 
of the method are the following: 

1. Using  specialized  Benders' constraint~~~ we obtain a 
backtracking test that can be used  with  lower and 
upper  bounds. 

2. These constraints also  allow  canceling  some  variables 
398 at each  step. 
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3. Introducing the partial conjunctive  graphs, we obtain 
dynamic  evaluation of the upper bounds used in the 
mixed-integer  formulation. 

From a practical viewpoint, the use of the direct  search 
has the following  advantages: 

1.  It is the implicit  enumerative scheme that requires 
the least  storage for intermediate  results. 

2. No difficult  problem has to be  solved at each  step, in 
contrast with  methods  based on Benders' partitioning 
a1g0rithm.l~ 

3. It is a primal  feasible algorithm, i.e., it yields a sequence 
of feasible  solutions. In practice, it is often more 
interesting to have  several  good  solutions than only 
one optimal solution. 

4. As a consequence  of Point 3 we can  set, a priori, 
a maximum  processing  time and use the best  solution 
found. 

A FORTRAN IV program implementing  these  ideas in 
terms of the machine  scheduling  problem  was  written 
for the IBM 360/40. The most  significant  results are 
summarized in Table 1.  Runs 1 and 2 are related to 
sample  problems 3 and 4 of Ref. 10. No comparison  is 
possible  because  Greenberg  does not give a result for 
the make-span  problem. Runs 3, 4 and 5 are related to 
two  examples of  Balas.'  Benders' partitioning scheme for 
these  examples  uses 11 and 40 iterations, respectively,  each 
of  which is longer than one iteration of our algorithm. 
The other runs are related to randomly  generated  problems. 
For large  problems, use  of the heuristic procedure for the 
initial choice of origin seems to be  equivalent to relocating 
the origin after 100 iterations; that is, the best solution 
found in the first 100 iterations without benefit  of the 
heuristically  chosen  origin  is  generally the one  obtained 
by using the initial heuristic  choice of origin.  Use of a 
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tolerance  also  decreases  the  number of iterations  needed 
to find the best  solution.  Runs 9 and 10, for  which  opti- 
mality was not  proved,  were  stopped  after  nine  minutes 
on an IBM 360/75. 
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