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Shortcut  in  the  Decomposition  Algorithm 
for  Shortest  Paths  in  a  Network* 

Abstract: The  problem  considered  is that of  finding the  shortest  path between the two  nodes  of  every  pair in a large  n-node  network. A 
decomposition  algorithm is  proposed  for  use  when the number of arcs  is  less than n(n - 1). The  network  is first decomposed into several 
overlapping  subnetworks.  Next,  with  each  subnetwork  treated  separately,  conditional  shortest  paths are obtained using triple  operations. 
Finally, these conditional  shortest  paths  are used to obtain  the  shortest  paths between  paired  nodes  in the original  network by matrix 
mini-summation.  This  decomposition  algorithm  requires  less  computer  storage  and  fewer  arithmetic  operations than other known 
algorithms. 

Introduction 
There are several shortest-path  algorithms, all of which 
require the same  number of arithmetic  operations, e.g., 
those of Dantzig,’ Floyd’ and M~rch land .~  These algo- 
rithms  treat  the whole n-node network  as a unit and re- 
quire n(n - l)(n - 2 )  additions and  the same number of 
comparisons. In practice, most networks have far fewer 
than n(n - 1) arcs (node connectors). In such cases de- 
composition can be used to reduce the  amount of compu- 
tation as well as  the computer  storage requirement. The 
first practical decomposition algorithm  founded on matrix 
methods for finding shortest  paths, due to Land  and 
 stair^,^ was based on  the “cascade” algorithm and requires 
roughly twice the number of arithmetic  operations in  the 
decomposition  algorithm of H u . ~  The idea of the present 
algorithm is essentially that of Ref. 5, but it involves still 
fewer arithmetic  operations. 

We consider a network consisting of nodes Ni 
( j  = 1, . , n) with arcs leading from Ni to Ni. Each arc 
has associated with it a distance (or length) dij. These 
distances do  not have to satisfy the triangular  inequality, 
dii + dik 2 dtk,  and they need not be symmetric, Le., 
dai # dii in general. Furthermore, these distances can be 
negative provided that  the sum of the  arc lengths in any 
cycle (closed path) remains non-negative. If there is no  arc 
leading from Ni to Ni, we define dii = CO. Also, we define 
dii = 0 for all i. For  an n-node network we construct an 
n X n matrix with entries dij ; this matrix gives the com- 
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plete description of the network. The distance of a path  is 
defined to be the  sum of the  arc lengths in  the  path. To 
find the shortest path between the two nodes of every pair, 
we perform the triple operation (the symbol +- means “is 
replaced by”) 

d i k  +- min (dik,  dii + d i k ) ,  (1) 

for a fixed j and all i, k # j .  The value of j is first fixed 
at 1, then 2, . . . , n. The triple  operations are completed 
when j = n and all i, k # n. The final entry in  the ith 
row and kth  column is the shortest  distance from Ni 
to Nk and is denoted by d;. There is also a calculationt 
associated with (1) that keeps track of the intermediate 
nodes in all the shortest  paths. The number of additions 
and comparisons required to complete the triple  opera- 
tions (1) on  an n-node network is n(n - l)(n - 2) each. 
In a sense this  number of operations is a minimum for a 
complete network. If the network is large and its as- 
sociated distance matrix has many entries equal to a ,  it 
is advantageous to use the decomposition  algorithm 
described below to reduce both the  amount of computation 
and  the storage requirement. 

As in Ref. 5 we take a subset of nodes in the network and 
identify it as the set A.  Let X be another subset of nodes. 
The set X is called a cut  set of A if X has  the following 
properties: (a) The deletion of X together with its inci- 
dent  arcs will make the network disconnected and (b) 
all the nodes of A are  in  one component of the discon- 
nected network and -this component does not contain any 

t See the Appendix. 387 
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nodes not in A .  The set X is said to be a minimum cut set 
if no  proper subset of X has  the properties (a) and (b). 
Let the network N be the union of these disjoint sets of 
nodes A ,  X and B, where X is a cut set of A.  We  use the 
same symbol to denote a subset of nodes as well as the 
subnetwork corresponding to  the subset. The arcs of the 
subnetwork are those that connect nodes in  the subset. 
We consider the network N as two overlapping networks, 
one with nodes in A u X, the other with nodes in B u X. 
We denote A u X by A and B u X by B and the cardi- 
nalityofthesetsA,BandXby IA[, IBI and [XI,respectively. 

The distance matrix of the network A is DAA. The dis- 
tance matrix from A to B is D A B  = (dab) where each entry 
dab is the distance from a  node N, in A to another  node 
Nb in B. In the present case, because X is a cut set of 
A, DAB has  all entries equal to 00. The associated dis- 
tance matrix of the network N is shown in Fig. 1, where 
white blocks (DAB and D B A )  indicate infinite-distance 
entries. 

To construct a general distance matrix we proceed as 
follows: Label any subset of nodes as A and its minimum 
cut set as X,. Let B be a cut set (not necessarily a mini- 
mum  cut set) of A u X ,  and X, be the minimum cut set 
of A u X ,  u B. (Note that the minimum cut set of B 
is X, u X,.) Let C be a cut set of A u X, u B u X, 
and X ,  be the minimum cut set of A u X, u B u 

Figure 1 Distance  matrix of two overlapping  networks. 

Figure 2 Distance  matrix of four overlapping  networks. 

X, u C. Continue until decomposition is no longer 
advantageous. (Note  that  the subsets A ,  X,, B, X,, 
etc. need not be connected.) In Fig. 2 the original net- 
work is decomposed into four overlapping networks, 

and fi = X c  u D. 
The matrix of shortest distances between nodes in A is 

denoted by D;, ; similarly, we define DXB, DgA, etc. 
A conditional  shortest  path from Ni to Ni is a shortest 
path subject to  the restriction that nodes in  the  path be in 
a  certain subset of nodes of the network. The matrix of 
conditional shortest distances between pairs of nodes in 
A subject to the restriction that all nodes of the  path be in 
A is denoted by DZ,(A). Of course, we have D%,(N) = 

Now we state without proof the two theorems in Ref. 5: 

6 = A U X , , B = X , U B U X B , C = X , U C U X ,  

D L .  

*Theorem I 
Let N = A u X u B, where the removal of X will make 
the network disconnected. Then  the shortest distances be- 
tween nodes in the network can be obtained by consider- 
ing only the network B, provided that the conditional 
shortest distances Dpx(A) are known. (Note  that A = 
N - B.) 

Theorem 2 
Let N = A u X u B, where again the removal of X will 
make the network disconnected. Then 

D ~ , ( N )  = min 

and 

D;, (N)  = min 

X 

X 

The  operation (2) or (3) is called a matrix mini-sum- 
mation because 

d f k  = min (d?, + d$) , (4) 

where i E A, j E X and k E B. The  operation (4) is 
analogous to ordinary matrix multiplication with + 
replacing X and min replacing summation. The number 
of additions  (and comparisons) needed in (4) is the  product 

I 

IA l  1x1 IBI. 

The algorithm 
Consider now a network N that can be decomposed into m 
overlapping networks 6, B, . . * , or N = A u X, u 
B u X ,  u . . . G u X G  u H ,  where X,, X,,  . . . are 
the minimum cut sets for A ,  A u X, u B, . . . , respec- 
tively. The general decomposition algorithm involves the 
following steps: 

1. Perform  the  triple  operation (1) on  the m - 1 networks 
A, B, . . . , G successively; the conditional shortest dis- 
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tances obtained in  one network are used to replace the 
original distances in  the succeeding network; i.e., D%,,,(a) 
replaces D,,,, before we perform the triple  operation 
o n B =   X A U  B U X , .  

2 .  Perform the triple  operation on  the m networks B, 

network replace the distances in  the succeeding network; 
i.e., D$Qxe(N)  replaces D$,,,(N - H). 
3. Find  the shortest distances between nodes that  are not 
both in one of the sets 2, B, . . . , R by mini-summation (4). 

This shortcut decomposition  algorithm differs from  the 
method  in Ref. 5 in  the way that  the mini-summations 
(Step 3) are executed. We use the notation A @ X ,  @ B 
to denote the matrix mini-summation with N ,  E A ,  
Ni E X ,  and Nk E B. Although both A @ XA @ B and 
B @ X ,  @ A must be calculated, we write only one of 
them. The  order  in which the matrix mini-summations 
should be executed is as follows: 

G, . . .  , A successively. The distances obtained  in one 

A @  x , @ B U  X,, 
A u X A  u B @   X s @ c U  x c ,  

A U   X A U B U  X B U C @ X C @ D U  x,, 

A U X , U . . . U F @ X , @ G U X , a n d  

A u X A  u ' . *  u G@ x , @  ff. 
The DZ,,(N) obtained  in  the first matrix mini-summation 
are used in the second mini-summation. 

To prove that  the decomposition algorithm  works, we 
use Theorems 1 and 2. In Step 1 of the algorithm, if  we 
consider the sets A ,  A u X ,  u B, . . . successively as the 
set A in Theorem 1 and B u X ,  u . . . u H ,  C u X ,  
u . . . u H ,  . . . correspondingly as the set B in  Theorem 
1 ,  we get the  conditional  shortest-distance matrices DXa(A), 
. . .  , Dgc(J  u u . . .  u G) at  the end of Step 1. In 
Step 2 of the  algorithm, using Theorem 1 again, we 
obtain D&(N), . . . , Dx,-(N). In Step 3 of the algo- 
rithm we consider the subnetworks A u X ,  u B u X,, 
A U X , U B U X , U C U X , ; . . w i t h X , , X , , . . . a s  
the set X in Theorem 2.  Then we get the shortest distances 
between all pairs of nodes in  the subnetworks. The last 
subnetwork is the network N .  

Discussion 
To reveal the idea in  Theorem 1 more clearly, we first 
consider why the triple  operation (1) works. (Various 
proofs on triple  operations are available; see, for example, 
Refs. 1, 3, 5 and 6.) Basically, we create an  arc between 
every pair of nodes such that  the length of this arc is 
equal  to  the shortest  distance between the nodes. To show 
that this  shortest-path arc also results from  the decomposi- 
tion  algorithm, we consider a network decomposed into 
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Figure 3 Development of a shortest-path arc in four over. 
lapping  networks. 

four overlapping networks (Fig. 3) and show that,  for a pair 
of nodes such as N, and N ,  E B, an  arc of length equal to 
the shortest distance from N ,  to N ,  is created at  the  end 
of Step 2 of the decomposition  algorithm. The solid lines 
arbitrarily represent this  shortest  path in Fig. 3. Because 
any  subpath of a  shortest path is itself a  shortest path, 
the subpaths from N ,  to N z ,   N ,  to N 4  and N5 to N6 are 
all  shortest  paths. 

In Step 1 of the decomposition algorithm, after  the 
triple  operation is performed on A, an  arc (dashed line) 
is created from N ,  to N ,  of length equal  to  that of the 
subpath.  Now  there exists a new shortest  path  (containing 
the newly created arc) from N ,  to N ,  which lies entirely 
in N - A.  In Step 2, after the triple  operation is per- 
formed on = X c  u D, an  arc is created from N5 to N6 
of length equal to  that of the subpath. Thus there exists a 
new shortest  path from N ,  to N 4  which lies entirely in 
N - D .  Then in  Step 2, after the triple  operation is per- 
formed on c, an  arc is created from N ,  to N 4  of length 
equal  to  that of the  shortest path  from N 3  to N 4 .  Now 
there exists a  shortest path  from N ,  to N ,  which lies 
entirely in N - A -- (C u X c  u 0 ) .  Finally in Step 2 ,  
after the triple  operations are performed on B, an  arc  is 
created from N ,  to N ,  of length equal  to  the shortest 
distance from N ,  to N,.  

To approximate the number of arithmetic  operations 
used in  the decomposition algorithm, we assume that 

IXG[ = 6. We calculate only the number of additions;  the 
number of comparisons needed is the same. In Step 1 
the number of additions is ( t  + 6)3 + (m - 2)(t + 
in  Step 2 the number of additions is 2(t + 6)3 + (m - 2)  
X ( t  + 26)3;  in  Step 3 the number of additions is 

1 IBI = . . .  zz IH[ = t and IX,l = IX,l = . . .  = 

2 j t  + (2t  + 6) + + [ ( m  - 2) t  + ( m  - 3 ) 6 ] )  

X 6 ( t  + 6) + 2 [ ( m  - 1) t  + ( m  - 2)6]6t  

+ ( m  - 2 ) ( m  - 3 ) 6 3 .  

= m ( m  - l ) t 2 6  + 2(m - l ) ( m  - 2 ) t f  

The  total number of additions is therefore 

(2m - l)t3 + (m2 + llrn - 15)t26 

+ (2m2 + 18m -. 35)t6' + (m2 + llrn - 23)a3. ( 5 )  389 
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If we do not use the decomposition algorithm, but use 
the triple operation on  the entire matrix, the number of 
additions is 

[rnt + (rn - 1)613. (6) 

For t 2 6 and rn 2 2, the number of additions in (5) is 
always  less than  that in (6). For large rn the expression (5) 
approaches rn26(t 4- and (6) approaches m3(t -I- Q3. 

Thus the ratio of (5) to (6) approaches [li/(t + 6)]/rn 
as m increases. In Ref. 5 the number of additions required 
is 

( 2 m  - l ) t3  + ( m 2  + l l m  - 15)t26 

+ ( m 2  + 21m - 37)ts2 

+ ( m 3  - 3m2 + 19m - 2 8 ) 6 3 ,  ( 7 )  

which is always  larger than the value of expression (5). 
Although the networks  discussed  have  been  composed 

of linearly  overlapping  sets as in Fig.  4a, the network 
decomposition  described can also  be  applied to arbi- 
trarily  overlapping  sets  such as those  shown in Fig. 4b. 
Using this figure as an example, we can decompose the 
network  linearly by first letting A’ = E, B’ = d u p,  
%‘ = B u c u fi, B’ = G and E’ = H. The network B’ 
can be  decomposed further into two  small  networks 
d and P and the network into three small  networks 
B, c and fi. It is  possible to decompose the network in 
Fig.  4b into the networks A, B, . . , directly, but the 
number of operations needed  is  more than the number 
necessary to decompose the network  linearly. 

If we are interested in finding the shortest paths between 
some (but not all) pairs of  nodes, we can  simplify the 
problem by constructing a smaller  network that is dis- 
tance-equivalentt to the original network  with  respect 
to the pairs of  nodes  of interest.$ Formulas similar to 
Wye-delta transformations7 are used in conjunction with 
the decomposition  algorithm. 

Appendix 
To keep track of the arcs that make up the shortest paths, 
we use the following  bookkeeping: In a table whose 
entries are calculated  along with the triple operation (1)) 
let the entry in the ith  row and kth column  indicate the 
first  intermediate  node on the shortest path from Ni to 

t A p-node network is said to  be distance-equivalent to  an n-node network, 
p 5 n, if the distances of p 0 ,  - 1) pairs of shortest paths in the twonetworks 
are the same. 

the original network was developed by Akers.’ 
$ The idea of constructing a smaller-network maximal-flow-equivalent to 

n 

Figure 4 Network decomposition: (a) linearly overlapping 
sets and (b) nonlinearly overlapping sets. 

Nk and let k be the entry if there is no intermediate  node. 
At the start all entries in the (i, k)  positions are set equal to 
k. Then 

(i, k) i = ( i .  i) if dzk  > dii  + d jk  or 

remains the same if dik  5 d i i  + d f k  . 
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