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Shortcut in the Decomposition Algorithm
for Shortest Paths in a Network™

Abstract: The problem considered is that of finding the shortest path between the two nodes of every pair in a large n-node network. A
decomposition algorithm is proposed for use when the number of arcs is less than n(n — 1). The network is first decomposed into several
overlapping subnetworks. Next, with each subnetwork treated separately, conditional shortest paths are obtained using triple operations.
Finally, these conditional shortest paths are used to obtain the shortest paths between paired nodes in the original network by matrix
mini-summation. This decomposition algorithm requires less computer storage and fewer arithmetic operations than other known

algorithms.

Introduction

There are several shortest-path algorithms, all of which
require the same number of arithmetic operations, e.g.,
those of Dantzig," Floyd® and Murchland.’ These algo-
rithms treat the whole #n-node network as a unit and re-
quire n(n — 1)(n — 2) additions and the same number of
comparisons. In practice, most networks have far fewer
than n(n — 1) arcs (node connectors). In such cases de-
composition can be used to reduce the amount of compu-
tation as well as the computer storage requirement. The
first practical decomposition algorithm founded on matrix
methods for finding shortest paths, due to Land and
Stairs,* was based on the “cascade” algorithm and requires
roughly twice the number of arithmetic operations in the
decomposition algorithm of Hu.® The idea of the present
algorithm is essentially that of Ref. 5, but it involves stiil
fewer arithmetic operations.

We consider a network consisting of nodes N;
(G =1, .-, n) with arcs leading from N; to N,. Each arc
has associated with it a distance (or length) d;;. These
distances do not have to satisfy the triangular inequality,
d;; + d;i. > d;;, and they need not be symmetric, i.e.,
d;; ¥ d;; in general. Furthermore, these distances can be
negative provided that the sum of the arc lengths in any
cycle (closed path) remains non-negative. If there is no arc
leading from N, to N;, we define d;; = . Also, we define
d;; = 0 for all i. For an n-node network we construct an
n X n matrix with entries d;;; this matrix gives the com-
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plete description of the network. The distance of a path is
defined to be the sum of the arc lengths in the path. To
find the shortest path between the two nodes of every pair,
we perform the triple operation (the symbol <— means “is
replaced by””)

di — min (d,i, di; + di), (n

for a fixed j and all i, £k £ j. The value of j is first fixed
at 1, then 2, --- , n. The triple operations are completed
when j = #n and all i, kK % n. The final entry in the ith
row and kth column is the shortest distance from N;
to N, and is denoted by d%. There is also a calculationf
associated with (1) that keeps track of the intermediate
nodes in all the shortest paths. The number of additions
and comparisons required to complete the triple opera-
tions (1) on an n-node network is a(n — 1)(n — 2) each.
In a sense this number of operations is a minimum for a
complete network. If the network is large and its as-
sociated distance matrix has many entries equal to «, it
is advantageous to use the decomposition algorithm
described below to reduce both the amount of computation
and the storage requirement.

As in Ref, 5 we take a subset of nodes in the network and
identify it as the set 4. Let X be another subset of nodes.
The set X is called a cut set of 4 if X has the following
properties: (a) The deletion of X together with its inci-
dent arcs will make the network disconnected and (b)
all the nodes of 4 are in one component of the discon-
nected network and this component does not contain any

t See the Appendix.
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nodes not in 4. The set X is said to be a minimum cut set
if no proper subset of X has the properties (a) and (b).
Let the network N be the union of these disjoint sets of
nodes A4, X and B, where X is a cut set of 4. We use the
same symbol to denote a subset of nodes as well as the
subnetwork corresponding to the subset. The arcs of the
subnetwork are those that connect nodes in the subset.
We consider the network N as two overlapping networks,
one with nodes in 4 |J X, the other with nodes in B |J X.
We denote A|J X by 4and B|J X by B and the cardi-
nality of the sets 4, B and X by 4], |B| and | X|, respectively.

The distance matrix of the network A is D, 4. The dis-
tance matrix from 4 to Bis D,z = (d,,) where each entry
d,, is the distance from a node N, in A4 to another node
N, in B. In the present case, because X is a cut set of
A, D,y has all entries equal to «. The associated dis-
tance matrix of the network N is shown in Fig. 1, where
white blocks (D,z and Djp,) indicate infinite-distance
entries.

To construct a general distance matrix we proceed as
follows: Label any subset of nodes as 4 and its minimum
cut set as X,. Let B be a cut set (not necessarily a mini-
mum cut set) of 4 |J X, and X5 be the minimum cut set
of AU X, U B. (Note that the minimum cut set of B
is X, U Xz.) Let Cbeacutsetof AU X, U BU X
and X, be the minimum cut set of 4 U X, U B U

D4 Dyx Dyp
Dyy Dxx Dyp
Dp,y Dy Dgp

Figure 1 Distance matrix of two overlapping networks.

Figure 2 Distance matrix of four overlapping networks.
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Xz U C. Continue until decomposition is no longer
advantageous. (Note that the subsets A4, X,, B, Xj,
etc. need not be connected.) In Fig. 2 the original net-
work is decomposed into four overlapping networks,
A=AUX,B=X,UBUX:;,C=XUCU X,
and D = X, U D.

The matrix of shortest distances between nodes in 4 is
denoted by D% ,; similarly, we define D%, D%,, etc.
A conditional shortest path from N; to N; is a shortest
path subject to the restriction that nodes in the path be in
a certain subset of nodes of the network. The matrix of
conditional shortest distances between pairs of nodes in
A subject to the restriction that all nodes of the path be in
A is denoted by D% ,(A). Of course, we have D% ,(N) =
D%,

Now we state without proof the two theorems in Ref. 5:

o Theorem 1

Let N = 4 |J X U B, where the removal of X will make
the network disconnected. Then the shortest distances be-
tween nodes in the network B can be obtained by consider-
ing only the network B, provided that the conditional
shortest distances D%4(A) are known. (Note that 4 =
N — B)

o Theorem 2
Let N= A4 |J X U B, where again the removal of X will
make the network disconnected. Then

D%s(N) = min [DEx(N) + D¥s(N)] (2
and
D}4(N) = m)i(n [Di(N) + D¥A(N)]. (3)

The operation (2) or (3) is called a matrix mini-sum-
mation because

d¥ = m?n (d¥ + d%). (4

where i & A, j € X and k & B. The operation (4) is
analogous to ordinary matrix multiplication with -+
replacing X and min replacing summation. The number
of additions (and comparisons) needed in (4) is the product
|4] |X] |B|.

The algorithm

Consider now a network N that can be decomposed into m
overlapping networks 4, B, --- , HorN=4J x, U
BU Xz U --- GU X; U H, where X,, Xz, - - are
the minimum cut sets for 4, 4 J X, U B, --- , respec-
tively. The general decomposition algorithm involves the
following steps:

1. Perform the triple operation (1) on the m — 1 networks

A, B, --- , G successively; the conditional shortest dis-
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tances obtained in one network are used to replace the
original distances in the succeeding network; i.e., D%, v, (4)
replaces Dy,x, before we perform the triple operation
onB=X,U BU X;.

2. Perform the triple operation on the m networks H,
G, --- , A successively. The distances obtained in one
network replace the distances in the succeeding network;

i.e., D¥ ,xo(N) replaces D% ,x (N — H).

3. Find the shortest distances between nodes that are not
both in one of the sets 4, B, - - - , H by mini-summation (4).

This shortcut decomposition algorithm differs from the
method in Ref. 5 in the way that the mini-summations
(Step 3) are executed. We use the notation AP X, P B
to denote the matrix mini-summation with N; & A,
N; & X, and N, & B. Although both AP X, P B and
B® X, @ A4 must be calculated, we write only one of
them. The order in which the matrix mini-summations
should be executed is as follows:

AD x, ®BU X5,
AU x, UBD x;dCcU xc,
AU x,UBU X UCcD x. D DU Xxp,

AUXAU“'UF@XF@GU X¢ and
AUXAU"'UG@XG@H'

The D%, (N) obtained in the first matrix mini-summation
are used in the second mini-summation.

To prove that the decomposition algorithm works, we
use Theorems 1 and 2. In Step 1 of the algorithm, if we
consider the sets 4, AJ X, U B, - - - successively as the
set 4 in Theorem 1and BU Xz U --- U H, CU X¢
U -+ U H, - - - correspondingly as the set B in Theorem
1, we get the conditional shortest-distance matrices D% 3(A),
o, DES(AU BU --- U G) at the end of Step 1. In
Step 2 of the algorithm, using Theorem 1 again, we
obtain Dis(N), --- , Diz(N). In Step 3 of the algo-
rithm we consider the subnetworks 4 U X, U BU Xz,
AU X, UBU XU CU Xg, - - - with X4, Xp, - -+ as
the set X in Theorem 2. Then we get the shortest distances
between all pairs of nodes in the subnetworks. The last
subnetwork is the network N.

Discussion

To reveal the idea in Theorem 1 more clearly, we first
consider why the triple operation (1) works. (Various
proofs on triple operations are available; see, for example,
Refs. 1, 3, 5 and 6.) Basically, we create an arc between
every pair of nodes such that the length of this arc is
equal to the shortest distance between the nodes. To show
that this shortest-path arc also results from the decomposi-
tion algorithm, we consider a network decomposed into
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Figure 3 Development of a shortest-path arc in four over-
lapping networks.

four overlapping networks (Fig. 3) and show that, for a pair
of nodes such as N, and N, & B, an arc of length equal to
the shortest distance from N, to N, is created at the end
of Step 2 of the decomposition algorithm. The solid lines
arbitrarily represent this shortest path in Fig. 3. Because
any subpath of a shortest path is itself a shortest path,
the subpaths from N, to N,, N; to N, and N; to N, are
all shortest paths.

In Step 1 of the decomposition algorithm, after the
triple operation is performed on A, an arc (dashed line)
is created from N, to N, of length equal to that of the
subpath. Now there exists a new shortest path (containing
the newly created arc) from N, to N, which lies entirely
in N — A. In Step 2, after the triple operation is per-
formed on D = X |J D, an arc is created from N; to N,
of length equal to that of the subpath. Thus there exists a
new shortest path from N; to N, which lies entirely in
N — D. Then in Step 2, after the triple operation is per-
formed on C, an arc is created from N; to N, of length
equal to that of the shortest path from N; to N,. Now
there exists a shortest path from N, to N, which lies
entirely in N — 4 — (C U X, U D). Finally in Step 2,
after the triple operations are performed on B, an arc is
created from N, to N, of length equal to the shortest
distance from N, to N,.

To approximate the number of arithmetic operations
used in the decomposition algorithm, we assume that
|4 = |Bl = -+ = |H| = tand [Xs| = [Xg| = - =
| X! = 6. We calculate only the number of additions; the
number of comparisons needed is the same. In Step 1
the number of additions is ( + 8)° 4+ (m — 2)(z -+ 26)°;
in Step 2 the number of additions is 2( + 6)* + (m — 2)
X+ 25)°; in Step 3 the number of additions is

20+ @+ 8+ - + [(m — 2t + (m — 3)8l}
Xo(t + 8) + 2[(m — Dt + (m — 2)8]8t
= m(m — De*6 + 2(m — D(m — 2)28°
4+ (m — 2)(m — 3)&.
The total number of additions is therefore
Cm — D+ m® + 11lm — 15)7%
+ @2m® + 18m — 358" + (m” + 11m — 23)6°. (5)
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If we do not use the decomposition algorithm, but use
the triple operation on the entire matrix, the number of
additions is

{mt + (m — 1)ép. ©
For t > & and m > 2, the number of additions in (5) is
always less than that in (6). For large m the expression (5)
approaches m°8(r + 6)° and (6) approaches m*(t + 8)°.
Thus the ratio of (5) to (6) approaches [§/(t + 8)l/m
as m increases. In Ref. 5 the number of additions required
is
@m — D + (m* + 11m — 158

+ (m* + 21m — 37)¢6°

+ (m® — 3m® 4+ 19m — 28)8°, (7

which is always larger than the value of expression (5).

Although the networks discussed have been composed
of linearly overlapping sets as in Fig. 4a, the network
decomposition described can also be applied to arbi-
trarily overlapping sets such as those shown in Fig. 4b.
Using this figure as an example, we can decompose the
network linearly by first letting 4’ = E, B = 4 {J F,
C'=BUCU D, D = Gand E' = H. The network B’
can be decomposed further into two small networks
A and F and the network €’ into three small networks
B, C and D. It is possible to decompose the network in
Fig. 4b into the networks 4, B, --- , H directly, but the
number of operations needed is more than the number
necessary to decompose the network linearly.

If we are interested in finding the shortest paths between
some (but not all) pairs of nodes, we can simplify the
problem by constructing a smaller network that is dis-
tance-equivalent} to the original network with respect
to the pairs of nodes of interest.} Formulas similar to
Wye-delta transformations’ are used in conjunction with
the decomposition algorithm,

Appendix

To keep track of the arcs that make up the shortest paths,
we use the following bookkeeping: In a table whose
entries are calculated along with the triple operation (1),
let the entry in the ith row and kth column indicate the
first intermediate node on the shortest path from N; to

1 A p-node network is said to be distance-equivalent to an n-node network,
p < n, if the distances of p(p — 1) pairs of shortest paths in the two networks
are the same.

} The idea of constructing a smaller-network maximal-flow-equivalent to
the original network was developed by Akers.”
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(a)

(b)
Figure 4 Network decomposition: (a) linearly overlapping
sets and (b) nonlinearly overlapping sets.

N; and let k be the entry if there is no intermediate node.
At the start all entries in the (i, k) positions are set equal to
k. Then

remains the same

if dy > di; + djy or
if dy < di; + di.
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