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Algorithm  and  Average-value  Bounds  for 
Assignment  Problems 

Abstract: A new suboptimal  intermediate-speed  algorithm  which  uses n2 In n steps is developed for  the assignment  problem.  Upper  and 
lower  bounds  are  derived,  using  this  algorithm  and  other  methods,  for  the  average  values of three classes  of n X n assignment  problems : 

1. When the elements of the matrix  are  random  numbers  uniformly  distributed  over  the  range 0 to 1, the  average  optimal  value  is 
smaller than 2.37 and  larger than 1 for problems  with  large n. Experimentally  the  value is about 1.6. 
2. When the  elements of the matrix  are  random  numbers  such that the  probability of being  less than x is .xk+l(k # 0), asymptotic 
expressions  for the upper and lower  bounds of the average optimal value are CJ&'(~+') and Ck[(k+l)/k]nk'("+'), respectively. 
3. When  each  column  of the matrix  is a random  permutation of the  integers 1 to n, asymptotic  upper  and  lower  bounds  are 2.37,~ 
and 1.54 n, respectively.  Experimentally  the  value  is  about 1.8 n. 

Introduction 
The assignment problem  can be defined as follows: Given 
an n X n matrix ai?, find the permutation pi on n numbers 
such that  the value or "cost" 

is a minimum. As a simple example of such a problem, 
consider the case of n men being assigned to n different 
jobs, where the cost of training each man  for each job is 
different. We want to find the man-to-job assignment 
such that  the  total training cost is a minimum. If  we let 
each  man be identified by the index i and each job by j 
and denote the training cost as aii, the problem is exactly 
in  the  form of Eq. (1). Because of its wide range of appli- 
cation,  this  problem has been studied from various points 
of  view  by a number of  authors."" 

Algorithms exist1-' that  are guaranteed to find the 
optimal solution and much of the past work is concerned 
with finding solution  methods. It is known that such 
methods exist and  that  it is possible to find an optimal 
solution within n3 ~ t e p s . ~ , ~  However, it is also of con- 
siderable interest to know the expected average minimal 
value of the solution to  any given set of problems or, alter- 
natively, what  bounds exist for  the average optimal cost. 
Kurtzberg" studied  this  question  (in connection with 
the development of suboptimal algorithms) for  the case 
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in which the ai are random numbers uniformly distributed 
in  the range 0 to 1 and found  bounds n(n + 1) and In n 
for this problem. 

We derive a new upper bound of 2.37 for the average 
result of this  problem using a new method of proof. Our 
experimental results indicate that  the average optimal 
value is about 1.6. We also extend Kurtzberg's method 
to  the case in which the elements of the matrix have a 
probability distribution p(x) with values 

r". 
10, x > 0 .  

x < 0 ;  

p ( x )  = (k + l ) x k ,  o 5 x 5 I ;  or ( 2 )  

In addition, we consider the case in which the columns 
of each matrix are  random permutations of the integers 
1 to n. Our methods give lower and upper  bounds of 
1.54n and 2.37 n for large n, while experimentally the 
result is found  to be about 1.8 n. 

In  the first section we describe the new algorithm and 
derive a theorem that gives an upper bound of the average 
cost for n X n matrices whose columns are  random per- 
mutations of the integers 1 to n. Then we prove a lemma 
that allows us to derive the corresponding result for n X n 
matrices whose elements are  random  and uniformly distrib- 
uted over the range 0 to 1. The derivation of upper 
and lower bounds for  the nonuniform-distribution case 
is described in  the next section. The results are based 
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on  the column-scan method  already applied by Kurtz- 
berg to the uniform-distribution case. Finally we derive a 
lower bound for  the random-permutation matrices. Here 
an enumeration  method is used to  obtain  the result. 

Multiple-column-scan  algorithm  and derived bounds 
The algorithm will generate suboptimal  results; i.e., it 
will not solve Eq. (1) exactly, but will  yield an approxi- 
mate solution. It could perhaps be described as an abbre- 
viated version of the optimal  method developed by Karp5 
and by Edmonds‘ or as an expanded version of the column 
scanning procedure used by Kurtzberg.lo In  the column- 
scan method each column is searched in  turn  for  the 
lowest-valued element (LVE) among those that  are  in 
“free” rows. Initially all rows are free, so the search of the 
first column necessarily yields the minimal entry. The row 
in which the LVE is found is assigned to  the column being 
searched. All elements in an assigned row are exempt 
from examination  during  the search of subsequent columns. 

In  the multiple-column-scan method we again consider 
each column in  turn, searching for  the LVE, but exempt- 
ing no element from examination. If the LVE is in a free 
row, that row is assigned to  the column being scanned. 
If, however, the  LVE found  during the scan of column i 
is in a  row that  has previously been assigned to  another 
column, say k,,  a secondary scanning procedure is begun. 

We call column i the primary scanning column and k ,  
the first secondary scanning column. The secondary scan- 
ning procedure  can  lead to a reassignment of rows, so we 
institute  a current-assignment list and update it at each 
step. After the first scan of column i, in which the conflict 
of row requests was discovered, columns i and k ,  both 
have the same row assignment in the list. 

Now, for both of the scanning columns, we look  for 
the next-LVE in  the column, i.e., the next-larger entry 
compared with the  one in the current-assignment list. 
If the next-LVE is found in a free row for one of the scan- 
ning columns, the scan for column i is terminated and new 
assignments are generated as follows: If the free row has 
been found  for column i, that row is assigned to column i 
and  the assignment of the secondary column is left un- 
changed. Should the free row have been found  for  the 
secondary column k l ,  however, this assignment is made 
and column i is given the row assignment that neces- 
sitated the secondary scanning step, i.e., its  entry  in the 
current-assignment list. 

When it happens that neither of the next-LVE’s is 
found  in a free row, we temporarily  make the assignments 
indicated by the next-LVE’s and update the current- 
assignment list. Then we add  to  the list another secondary 
scanning column k ,  which is the column previously as- 
signed to  the row now in conflict with the current assign- 
ment of the primary scanning column. Next we scan 
columns i, k ,  and k, for the next-LVE in each relative to 

the value of the entry for each in the current-assignment 
list. 

The assignment procedure for three (or more) columns 
scanned jointly is a simple extension of the two-column 
procedure. If a free row is found, it is assigned to  the 
corresponding column. If this latter column was a secon- 
dary scanning column, the primary  column is given the 
row assignment that  the secondary column had  at  the 
termination of scanning for primary  column i - 1 and 
all other columns retain the assignments which existed 
at  that time. If free rows are  found during any scanning 
step for more than  one column  (primary or secondary), 
the choice of which column to reassign is arbitrary. 

Again, should no column  have  a free row  as  its  current 
assignment, we add  another column to  the set of secon- 
dary scanning columns and repeat the multiple-scan pro- 
cedure. The column to be  added is always that  one 
whose previously assigned row is in conflict with the new 
current assignment of the primary column. (Whenever 
the scan of the primary  column results in a previously 
assigned row, that row will have been assigned to a  column 
which is not in the set of secondary scanning columns at 
the current stage.) Note  that  on  the  sth scanning of  the 
primary  column i there exist s scanning columns and 
that by the ith scanning of the primary column there 
certainly exists a free row. 

Let us denote by 4;. the probability that, after the  sth 
scanning step, the scanning process has not terminated 
for the ith column. We can see that 

qio = 1, 

qi2  5 ( i  __- ; l)(; :I 1)’ . 
[One factor (i - 2 ) / ( n  - 1) corresponds to  the proba- 
bility that  the secondary scanning column does not find 
a free row. Should  this  column not be assigned to  the 
row containing the column’s minimal element, this  factor 
would be smaller because at least one assigned row would 
be excluded from  the scan for this secondary column.] 
Continuing  the sequence we have 

( i  ; I ) (  i - 2)3(  i - 3)’ 
q i 3  5 __- -__ ___ 

n - 1  n - 2  ’ 

We can also see that 
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because 

We can now make use of the algorithm to prove the first 
theorem. 

Theorem I 
Consider the set of all n X n matrices such that each col- 
umn is a  permutation of the integers 1 to n. The average 
cost c for assignment problems of this class is less than 
2 . 3 7 ~  

Proof 
If we apply the above  algorithm to this  problem, the 
incremental cost of assigning a  column on  the  sth step 
(each step is the finding of the next-LVE for all scan- 
ning columns) to some  column i is just s, independent of 
whether the column is a primary or a secondary scanning 
column. The probability of terminating on the  sth step 
is given  by 

9i.g-1 - q i s ,  ( 5 )  

so that  the average cost c is bounded: 
n i  

c 5 c s(qi,*-l - q t J  
1 = 1  s = l  

n n l  

< (2rn/d?)  tanh (~ . \ / 7 /2 )  

< (2.3722 . . .)n. (7) 

We can also compute an upper  bound of the average 
computing time. In solving an assignment problem it is 
advantageous to initially apply a sorting  procedure to each 
column to facilitate finding the entries in order (i.e., to 
generate a ranking matrix). The  sort requires a  number of 
computing steps of the  order of n2 In n. At  the  sth scanning 
step of our procedure we require s computing  steps, so  the 
average computing  time required is 

n i  

z = 1  a = l  L 

< 2 ns[l + s(s + 1)/2]" 
*=l  

< 2n In n .  (9) 

We can see that for large n the computing  time is domi- 
nated by the initial  sorting process. The  permutation 
matrices just considered for the integers 1 to n, however, 
are equivalent to  the ranking matrices and the initial sort 
is not necessary. 

Uniform distributions 
We are interested in  the relation between permutation 
matrices and matrices in which the elements are  random 
variables. Let us denote the set of all matrices in which 
each of the n columns is a  permutation of n integers by 
R,. We now consider the set of problems A,, where A E A,  
is an n X n matrix whose elements are  random variables 
identically but independently distributed. We also consider 
the ranking matrix M(A), where each element of A is 
replaced by its  column  ranking. That is, if aii is the  sth- 
LVE  in column j ,  it is replaced by s: a i j  "f s. We note 
that,  for some X E R, and some A E A,, the probability 
that M(A) = X is just IR,l-l. We now prove the follow- 
ing lemma. 

Lemma 
If the distribution of the  random variable used in generat- 
ing A,  is such that  the expected value Ei(zl, . . . , z,) of 
the ith lowest number of n numbers zl, . . . , z, satisfies 

Ei(zl, . . . , z,) I b (10) 

for some 01, and if there exist assignments for every 
X €  R, having a cost C ( X )  such that 

for some P, then there exist assignments for all A E A ,  
having costs C(A) such that 

Proof 
Given X E R,, consider all Y E A,  such that M(Y)  = X .  
We consider the cost C ( X )  that enters Eq. (ll), i.e., which 
must exist to give an expectation less than 0. Assume that 
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Table 1 Summary of computed (experimental) average 
optimal costs. 

Acerage  optimal cost 

Uniformly 
distributed 

random Integer 

matrices matrices 
Number  cariable  permutation 

of 
n matrices (0 (C/n)  

10  25 1.474 1.624 
20  25 1.374 
30 

1.750 
25 

40 
1.561 1.738 

25 1.628 1.767 
50  25 1.516 1.781 
75 10 1.541 

100 
1.841 

10 1.626 1.800 

the ranking  matrix assigns the columns to  their r,th, 
r2th, . . ' , r,th rows so that 

C ( X )  = r1 + r, + . . . +r,. (13) 

The expectation E(C[( Y : M ( Y )  = X } ] )  is related to C ( X )  
bY 

E(C[{ Y : M ( Y )  = X ) ] )  i E,,(z1, ~ 2 ,  . . . , z,) 

- < a C r i  

I ffC(X), (14) 

because the columns are mutually independent and,  for 
each individual  column, we have the set of all sequences 
of n random numbers in a specified order. The number of 
elements in { Y : M(Y)  = X }  is independent of Y and  it 
follows that 

ECC(AJ1 = c E(C[( y : M (  y)  = Xll) p n r l  
S € R n  

5 ff C ( X )  1 R - l  

I f f P .  (1  5 )  

X t R n  

We can now easily prove the final theorem of this 
section : 

Theorem 2 
It is given that A ,  is a set of matrices whose elements are 
random numbers uniformly distributed  in the range 0 to 
1. Then 

E[C(A,)] < 2.37n/(n + 1). (16) 

Proof 
For n random numbers uniformly distributed in  the range 
0 to 1, the average value of the ith lowest number is 

Ei(zl, . . . , z,) = i / ( n  + I), (17) 
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so that a of the preceding lemma is just (n + 1)". Theorem 
1 specifies p < 2.37n and by substituting these values in 
Eq. (12) we obtain Eq. (16). 

The upper  bound of the average value of A, is thus 2.37. 
Previous upper and lower bounds of A,  with uniform 
distribution were due to Kurtzberg'o and  are (asymptoti- 
cally) In n and 1, respectively. To estimate the actual 
average optimal cost, random-number matrices were 
generated on a computer and  the  optimal cost was de- 
termined using the  Hungarian methodP The results are 
listed in Table  1 ; it appears that  the average optimal  cost 
for large n is about 1.6. We also computed the upper 
bound of the average optimal cost as a  function of n 
using Eqs. (3) and (6), the Lemma and Theorem 2. These 
values are given in Table 2. 

Nonuniform  distributions 
One may encounter assignment problems generated in a 
two-, three- or higher-dimensional environment and  it is 
often adequate to approximate the resulting cost matrices 
by independent random variables with linear, quadratic 
or higher-dimensional distribution functions. We now 
study the case in which the probability p(x)dx that a given 
random number is in  the range [x, x + dx] is 

p(x)dx = ( k  + l)xkdx, 0 5 x 5 1. (18) 

We use the methods Kurtzberz developed for  the 
uniform  distribution, i.e., for  the lower bound of A,, we 
assume that every column is assigned to  its LVE and  for 
the upper  bound we let column 1 be assigned to its LVE, 
column  2 to the  LVE of the n - 1 remaining rows, column 
3 to the LVE of the n - 2 remaining rows, etc. Let ekn 
be the expectation value of the lowest of n random variables 
with the distribution Eq. (18). Then 

eLn = l' [ 1 - [ p(x')  dx'],,-lxy(x) dx (1 9) 

and, if 

P ( x )  = [ p(x' )  dx',  

then 

ekn = n x [ 1  - P(x)l"-l dP(x)  
0 

= i' P(x)l'(k+l)[l - P(X)]""dP(X). 

This latter expression is recognized as a  beta function" 
and can also be written as 

ek, = /zr(n)r[k/(k  -1 l>l/r[n + k / ( k  + 111 

= J[J - l / ( k  + 1)l-I. f i . .  
(20) 

i = l  



Table 2 Computed (experimental) upper  bounds of the average  optimal cost for uniformly  distributed  random  variable 
matrices. 

I 

n 3 4 5 10 

Upper bound 1.0417 1.1889 1.3003 1.6103 

n m  

= - [j(k + l)l-z/z 
i = 1  1 = 1  

= - 2 5 [j(k + l)]-'/Z 

= -(k + I)-' I n n  + 0(1), 
z=1 j = l  

so that 

ekn = Ckn - l / ( k + l j  

To obtain L, the asymptotic lower bound of the average 
result, we set (the  method of Kurtzberd') 

L = nekn 

= Ckn & / ( ! = + I )  

The asymptotic  upper  bound U is similarly given by 

The following values of C, were computed: C, = 
0.7535, C, = 0.8953, C, = 0.9474, C4 = 0.9602 and 
C, = 0.9742. Note that the ratio U/L  is (k f l)/k. 

Lower bound of permutation matrices 
Kurtzberg's  method  in the case of permutation matrices 
leads to  the result that L (the lower bound) is n. We  use 
an enumeration technique to give a somewhat larger 
(i.e., better) bound. The number W, of distinct problems 
(wherein each  column of the assignment matrix is a 
random permutation of the integers 1 to n) is W, = (n!)". 

Let Wk be the number of feasible solutions with cost k. 
We use the method of generating functions to derive a 
formula for W,, i.e., set 

m 

384 
w,(x) = WkXk. 

k =n 
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20 30 40 50 75 100 

1.8474 1.9530 2.0153 2.0572 2.1211 2.1583 

Before solving the assignment problem  there  can be n! 
column-to-row assignments and  for each column the 
assigned row  can be ordered 1, 2, . , n, while the  other 
rows can have their elements arranged in (n - l)! ways. 
To enumerate all possibilities we write the generating 
function Wn(x) as 

wn(x) = n ! [ ( n  - 1)!(x + x' + x3 + . . . + x")]" 

= n![(n - l)!x(l - X")/(l - x)]'&. ( 2 5 )  

The essential step in  the further development here is that 
we look for the smallest value of k ,  say K, such that 

W, 2 W, = (.!In, (26) 

which gives the best possible set of feasible solutions to 
this set of problems. 

We assume that K is in the range n 5 K < 2n. Then 
the Wk of interest are  not affected if  we simplify W,(x) to 

k < K  

W,(x) = n![ (n  - I)! x/(I - x)]". 

For this range of values we  see that 

and 

k < K  Wk = ( ;)n!(n - l)!n 

The optimal K is related to ~t by the inequality 

We  use Stirling's approximation for large K,  
K!  ~ (2T) iKk+$ - li e ,  

and therefore have to solve 

( K  + 3) In K - ( K  - n - $) In ( K  - n) = n In n. (30) 

For large n we find 

K = (1.5422. .)n (31) 

and we  see that K is indeed less than 2n as we previously 
assumed. 

The average cost c of this best possible set of feasible 
solutions, 
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Table 3 Summary of asymptotic  bounds of average  optimal Table 4 Comparison of algorithms for  the assignment 
solutions of the assignment problem.  problem. 

-~ 

Bound Method 
Class 

(n X n matrix)  Lower  Upper 
- 

Multiple- 
Row- column- Hungarian 

Uniformly  distributed 1 .oo 2.37. .  . Average scan scan (or dual) 

random variables 

Nonuniformly distributed 
Optimal value (for In tt 2 . 2  1.6 

random variables,  Cknk/ @+I) Ck(  ‘+)Hk/<k+I) 

P ( X )  = ( k  + l ) x k  

uniformly distributed 
random variables) 

Random  permutations 
Computing time 

(1.54. . . )a  (2.37. . .)n n 2  nz In n or 5 n3 

of inteners 
(proportionality) n In n t  

. -  
_ _ ~ _ _ _ _ . ~  - - t The lower  value  applies  when the ranking  matrix  is  available. 

is evaluated by considering 

xa w ( x ) / a x  = kxk wk 
k 2 n  

= nn![(n - I)!]“ 

X[x”(l - x)-” + xn+l ( l  - x)-”- ’ ] ,  (33) 

which gives us a generating function for k W k .  Summing 
the first term  in  Eq. (33) over k 5 K ,  we obtain a  contribu- 

tion n ( f) to  the numerator  in Eq. (32), while the con- 

classes of assignment problems. These bounds are sum- 
marized in  Table 3. The algorithms now available for this 
type of problem are compared  in  Table 4. The multiple- 
column-scan method developed here is intermediate in 
speed between the row-scan method and  the  Hungarian 
method and is also intermediate in value of the average 
optimal result. If, however, the ranking  matrix is already 
known, the new algorithm is faster than  the  other two 
methods. In this case the multiple-column-scan method is 
a good candidate for solving the traveling-salesman 
problem when used  with a  dynamic  programming 
appr~ach.‘~ 

tribution from  the second term is n 
(n ,); for the 
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denominator we get . Because c is the best possible 

average cost, it is equivalent to  the lower bound of the encouragement. In particular, A. J. Hoffman pointed out 
average optimal cost and therefore the need for the lemma and A. G. Konheim suggested a 

= n[l + ( K  - n ) / ( n  + 1)1 

= K n / ( n  + 1)  

= (1.5422 *)n. (34) 

Again, to estimate the actual  asymptotic average optimal 
cost, random-permutation matrices were generated on  the 
computer and  the optimal cost was determined by the 
Hungarian methodP The results are listed in  the final 
column of Table 1 ; we conjecture that  the average optimal 
cost is about 1.8 n. 

Summary 
There are basically two results, a new suboptimal  algorithm 
with well-characterized performance and a better knowl- 
.edge of bounds of average optimal solutions for three 

possible method of proof. 
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