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Algorithm and Average-value Bounds for

Assignment Problems

Abstract: A new suboptimal intermediate-speed algorithm which uses 72 In 7 steps is developed for the assignment problem. Upper and
lower bounds are derived, using this algorithm and other methods, for the average values of three classes of n X n assignment problems:

1. When the elements of the matrix are random numbers uniformly distributed over the range 0 to 1, the average optimal value is
smaller than 2.37 and larger than 1 for problems with large n. Experimentally the value is about 1.6.

2. When the elements of the matrix are random numbers such that the probability of being less than x is x**(k = 0), asymptotic
expressions for the upper and lower bounds of the average optimal value are Cpnt! &+ and Cil(k-+1)/k]n* ¢, respectively.

3. When each column of the matrix is a random permutation of the integers 1 to s, asymptotic upper and lower bounds are 2.371

and 1.54 n, respectively. Experimentally the value is about 1.8 n.

Introduction

The assignment problem can be defined as follows: Given
an n X nmatrix a;;, find the permutation p; on » numbers
such that the value or ““cost”

C = ; Aip; (1)

is a minimum. As a simple example of such a problem,
consider the case of » men being assigned to r different
jobs, where the cost of training each man for each job is
different. We want to find the man-to-job assignment
such that the total training cost is a minimum. If we let
each man be identified by the index i and each job by j
and denote the training cost as a;;, the problem is exactly
in the form of Eq. (1). Because of its wide range of appli-
cation, this problem has been studied from various points
of view by a number of authors."™"*

Algorithms exist'™® that are guaranteed to find the
optimal solution and much of the past work is concerned
with finding solution methods. It is known that such
methods exist and that it is possible to find an optimal
solution within n’ steps.”'® However, it is also of con-
siderable interest to know the expected average minimal
value of the solution to any given set of problems or, alter-
natively, what bounds exist for the average optimal cost.
Kurtzberg'® studied this question (in connection with
the development of suboptimal algorithms) for the case
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in which the a,; are random numbers uniformly distributed
in the range 0 to 1 and found bounds n(z 4+ 1) and In n
for this problem.

We derive a new upper bound of 2.37 for the average
result of this problem using a new method of proof. Our
experimental results indicate that the average optimal
value is about 1.6. We also extend Kurtzberg’s method
to the case in which the elements of the matrix have a
probability distribution p(x) with values

0’ x < 0;
plx) = Yk + 1)x", 0<x<1; or (2)
10, x > 0.

In addition, we consider the case in which the columns
of each matrix are random permutations of the integers
1 to n. Our methods give lower and upper bounds of
1.54n and 2.37n for large n, while experimentally the
result is found to be about 1.8 .

In the first section we describe the new algorithm and
derive a theorem that gives an upper bound of the average
cost for n X n matrices whose columns are random per-
mutations of the integers 1 to n. Then we prove a lemma
that allows us to derive the corresponding result for n X n
matrices whose elements are random and uniformly distrib-
uted over the range 0 to 1. The derivation of upper
and lower bounds for the nonuniform-distribution case
is described in the next section. The results are based
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on the column-scan method already applied by Kurtz-
berg to the uniform-distribution case. Finally we derive a
lower bound for the random-permutation matrices. Here
an enumeration method is used to obtain the result.

Multiple-column-scan algorithm and derived bounds
The algorithm will generate suboptimal results; i.e., it
will not solve Eq. (1) exactly, but will yield an approxi-
mate solution. It could perhaps be described as an abbre-
viated version of the optimal method developed by Karp®
and by Edmonds’® or as an expanded version of the column
scanning procedure used by Kurtzberg.’® In the column-
scan method each column is searched in turn for the
lowest-valued element (LVE) among those that are in
“free” rows. Initially ail rows are free, so the search of the
first column necessarily yields the minimal entry. The row
in which the LVE is found is assigned to the column being
searched. All elements in an assigned row are exempt
from examination during the search of subsequent columns.

In the multiple-column-scan method we again consider
each column in turn, searching for the LVE, but exempt-
ing no element from examination. If the LVE is in a free
row, that row is assigned to the column being scanned.
If, however, the LVE found during the scan of column i
is in a row that has previously been assigned to another
column, say k,, a secondary scanning procedure is begun.

We call column i the primary scanning column and k;
the first secondary scanning column. The secondary scan-
ning procedure can lead to a reassignment of rows, so we
institute a current-assignment list and update it at each
step. After the first scan of column i, in which the conflict
of row requests was discovered, columns i and &, both
have the same row assignment in the list.

Now, for both of the scanning columns, we look for
the next-LVE in the column, i.e., the next-larger entry
compared with the one in the current-assignment list.
If the next-LVE is found in a free row for one of the scan-
ning columns, the scan for column i is terminated and new
assignments are generated as follows: If the free row has
been found for column i, that row is assigned to column i
and the assignment of the secondary column is left un-
changed. Should the free row have been found for the
secondary column k;, however, this assignment is made
and column i is given the row assignment that neces-
sitated the secondary scanning step, i.e., its entry in the
current-assignment list.

When it happens that neither of the next-LVE’s is
found in a free row, we temporarily make the assignments
indicated by the next-LVE’s and update the current-
assignment list. Then we add to the list another secondary
scanning column k, which is the column previously as-
signed to the row now in conflict with the current assign-
ment of the primary scanning column. Next we scan
columns i, k, and k, for the next-LVE in each relative to
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the value of the entry for each in the current-assignment
list.

The assignment procedure for three (or more) columns
scanned jointly is a simple extension of the two-column
procedure. If a free row is found, it is assigned to the
corresponding column. If this latter column was a secon-
dary scanning column, the primary column is given the
row assignment that the secondary column had at the
termination of scanning for primary column i — 1 and
all other columns retain the assignments which existed
at that time. If free rows are found during any scanning
step for more than one column (primary or secondary),
the choice of which column to reassign is arbitrary.

Again, should no column have a free row as its current
assignment, we add another column to the set of secon-
dary scanning columns and repeat the multiple-scan pro-
cedure. The column to be added is always that one
whose previously assigned row is in conflict with the new
current assignment of the primary column. (Whenever
the scan of the primary column results in a previously
assigned row, that row will have been assigned to a column
which is not in the set of secondary scanning columns at
the current stage.) Note that on the sth scanning of the
primary column i there exist s scanning columns and
that by the ith scanning of the primary column there
certainly exists a free row.

Let us denote by ¢,, the probability that, after the sth
scanning step, the scanning process has not terminated
for the ith column. We can see that

gio = 1,
g, = iz 1 and
n
i— 1\i—2V\
s (5=
n n—1

[One factor (i — 2)/(n — 1) corresponds to the proba-
bility that the secondary scanning column does not find
a free row. Should this column not be assigned to the
row containing the column’s minimal element, this factor
would be smaller because at least one assigned row would
be excluded from the scan for this secondary column.]
Continuing the sequence we have

o< (= (=)

i—s \ 17 i—j—l)_
q,-aﬁqi.,q(n_’_l_s)gl( PR (3)

We can also see that

i— 1 a(s+1)/2
0 < (20 @

n
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because

i—j=l izl 4 o<i<i<an.

n—j n

We can now make use of the algorithm to prove the first
theorem.

o Theorem 1

Consider the set of all n X »n matrices such that each col-
umn is a permutation of the integers 1 to n. The average
cost C for assignment problems of this class is less than
2.37n.

Proof

If we apply the above algorithm to this problem, the
incremental cost of assigning a column on the sth step
(each step is the finding of the next-LVE for all scan-
ning columns) to some column i is just s, independent of
whether the column is a primary or a secondary scanning
column. The probability of terminating on the sth step
is given by

qi,s-1 ™ Giss (5)

so that the average cost C is bounded:

n i

C < Z Zs(qi,s—l - Clis) (6>

i=1 s=1

n i

S is

3

IA

g
EIOEEE

n 1
1)/2
<n—|—n§fx’(”)/d
8=1 0

3

< n{l + i‘i [1+ s(s + 1)/2]*‘}

< (2en/V/7) tanh (x\/7/2)
< (2.3722 - )n. (7

We can also compute an upper bound of the average
computing time. In solving an assignment problem it is
advantageous to initially apply a sorting procedure to each
column to facilitate finding the entries in order (i.e., to
generate a ranking matrix). The sort requires a number of
computing steps of the order of #° In n. At the sth scanning
step of our procedure we require s computing steps, so the
average computing time required is

n K

Tn = 2 2 §q ;s (8)

=1 §=1 to.
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We find

i P — 1 s(s+1)/2
25

n i_‘ 1 s(s+1)/2
N
s=1 i=1 n

=]
IA
™

AN
M-

3

< > ns[l + s(s + 1)/2]7

s=1

< 2n ln n. )

We can see that for large n the computing time is domi-
nated by the initial sorting process. The permutation
matrices just considered for the integers 1 to n, however,
are equivalent to the ranking matrices and the initial sort
1S not necessary.

Uniform distributions

We are interested in the relation between permutation
matrices and matrices in which the elements are random
variables. Let us denote the set of all matrices in which
each of the n columns is a permutation of » integers by
R,. We now consider the set of problems 4,, where 4 & A,
is an n X n matrix whose elements are random variables
identically but independently distributed. We also consider
the ranking matrix M(A4), where each element of A is
replaced by its column ranking. That is, if a;; is the sth-
LVE in column J, it is replaced by s: a;; — 5. We note
that, for some X & R, and some 4 & A,, the probability
that M(4) = X is just [R,|”'. We now prove the follow-
ing lemma.

o Lemma

If the distribution of the random variable used in generat-
ing A, is such that the expected value E,(z,, - - -, z,) of
the ith lowest number of # numbers z;, - - , z, satisfies

Ei(zl, Y Zn) _<__lO£ (10)

for some «, and if there exist assignments for every
X & R, having a cost C(X) such that

[R,|™* X;R c(x) <8 (11)

for some B3, then there exist assignments for all 4 & 4,
having costs C(A4) such that

E [C(4)] < aB. (12)

AEA,

Proof

Given X & R,, consider all Y & A, such that M(Y) =
We consider the cost C(X) that enters Eq. (11), i.e., which
must exist to give an expectation less than 8. Assume that
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Table 1 Summary of computed (experimental) average
optimal costs.

Average optimal cost

Uniformly
distributed
random Integer
Number variable permutation
of matrices matrices
n matrices '(8) C/n)
10 25 1.474 1.624
20 25 1.374 1.750
30 25 1.561 1.738
40 25 1.628 1.767
50 25 1.516 1.781
75 10 1.541 1.841
100 10 1.626 1.800

the ranking matrix assigns the columns to their rth,
roth, - -, r,th rows so that

CX)=r4rt -+ (13)

The expectation E{C[{ Y : M(Y) = X}]) is related to C(X)
by

E(CHY: M(Y) = X}]) < 20 Bz zor -+ 2 22)
S [ed Z ri
< aC(X), (14)

because the columns are mutually independent and, for
each individual column, we have the set of all sequences
of # random numbers in a specified order. The number of
elements in {Y : M(Y) = X} is independent of Y and it
follows that

E[C(4,)] = Z E(C[{Y: M(Y) = X}]) R,
<a XZR C(Xx) R
< af. (15)

We can now easily prove the final theorem of this
section:

o Theorem 2

It is given that A4, is a set of matrices whose elements are
random numbers uniformly distributed in the range 0 to
1. Then

E[C(4,)] < 2.37n/(n + 1). 16)
Proof

For n random numbers uniformly distributed in the range
0 to 1, the average value of the ith lowest number is

Ei(zb Tt Zn) = i/(n + l)a (17)
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so that « of the preceding lemma is just (# 4 1), Theorem
1 specifies 3 < 2.37n and by substituting these values in
Eq. (12) we obtain Eq. (16).

The upper bound of the average value of A, is thus 2.37.
Previous upper and lower bounds of A4, with uniform
distribution were due to Kurtzberg® and are (asymptoti-
cally) Inn and 1, respectively. To estimate the actual
average optimal cost, random-number matrices were
generated on a computer and the optimal cost was de-
termined using the Hungarian method.? The results are
listed in Table 1; it appears that the average optimal cost
for large n is about 1.6. We also computed the upper
bound of the average optimal cost as a function of »
using Egs. (3) and (6), the Lemma and Theorem 2. These
values are given in Table 2.

Nonuniform distributions

One may encounter assignment problems generated in a
two-, three- or higher-dimensional environment and it is
often adequate to approximate the resulting cost matrices
by independent random variables with linear, quadratic
or higher-dimensional distribution functions. We now
study the case in which the probability p(x)dx that a given
random number is in the range [x, x - dx] is

p(dx = (k4 Dxdx, 0< x< 1. (18)

We use the methods Kurtzberg® developed for the
uniform distribution, i.e., for the lower bound of 4, we
assume that every column is assigned to its LVE and for
the upper bound we let column 1 be assigned to its LVE,
column 2 to the LVE of the n — 1 remaining rows, column
3 to the LVE of the n — 2 remaining rows, etc. Let e,
be the expectation value of the lowest of » random variables
with the distribution Eq. (18). Then

Crn = /01 [1 — /: p(x") dx’]n_lxp(x) dx (19)

and, if

P(x)

i

f p(x") dx’,
0
then

Crn = /1 nx[1 — Px)]*"* dP(x)

it

fo P — P PG,

This latter expression is recognized as a beta function'
and can also be written as

DT/ + D]/Tln + &/ + D]
H i — Uk + 017 (20)

l

€rn

i
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Table 2 Computed (experimental) upper bounds of the average optimal cost for uniformly distributed random variable

matrices.

n 3 4 5 10
Upper bound 1.0417 1.1889 1.3003 1.6103

For k£ > 0 an asymptotic expression for large n is

In ey, = Z In {1 — [tk + DY

=—§§Mwuﬁw

. > itk + DI/

I=1 ;=1

= —(k+ 1) Inn + o),
so that

O = G VY, (1)

To obtain L, the asymptotic lower bound of the average
result, we set (the method of Kurtzberg®)

L = ne;,
= Cn" "V (22)

The asymptotic upper bound U is similarly given by
U= Z Cim
m=1

n

—1/(k+1)
E C;Cm /e
m=1

U

n
—1/(k+1)
= Ckf m dm
0

= Cllk + 1)/kn™ ¥V, (23)

The following values of C, were computed: C, =
0.7535, C, = 0.8953, C; = 0.9474, C, = 0.9602 and
C; = 0.9742. Note that the ratio U/L is (k + 1)/k.

Lower bound of permutation matrices
Kurtzberg’s method in the case of permutation matrices
leads to the result that L (the lower bound) is n. We use
an enumeration technique to give a somewhat larger
(i.e., better) bound. The number W, of distinct problems
(wherein each column of the assignment matrix is a
random permutation of the integers 1 to n) is W, = (n!)".
Let W, be the number of feasible solutions with cost k.
We use the method of generating functions to derive a
formula for W, i.e., set

W.(x) = k}ij W (24)
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20 30 40 50 75 100

1.8474 1.9530 2.0153 2.0572 2.1211 2.1583

Before solving the assignment problem there can be n!
column-to-row assignments and for each column the
assigned row can be ordered 1, 2, --- , n, while the other
rows can have their elements arranged in (n — 1)! ways.
To enumerate all possibilities we write the generating
function W, (x) as

Wux) = nl[ln — DNx+ x4+ x>+ -« + "
= n!f(n — Dx(1 — x")/1 — x)]". (25)

The essential step in the further development here is that
we look for the smallest value of &, say K, such that

Swe> W, = (), (26)

k<K

which gives the best possible set of feasible solutions to
this set of problems.

We assume that K is in the range » < K < 2n. Then
the W, of interest are not affected if we simplify W, (x) to

W) = nll(n — 1! x/(1 — 2T @7

For this range of values we see that

W, — <ﬁ - })n!(n — (28)
and
]z_‘;{ W, = (f)n!(n — . (29)

The optimal K is related to n by the inequality

K! I
(K — n)! 2 [(n - 1)!] - (30

We use Stirling’s approximation for large X,

K! = Qm)K* e,

and therefore have to solve
K+HMK—K—n—HIn(K—n =ninn (30)
For large n we find

K = (1.5422- - )n (31)

and we see that K is indeed less than 2n as we previously
assumed.

The average cost C of this best possible set of feasible
solutions,
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Table 3 Summary of asymptotic bounds of average optimal
solutions of the assignment problem.

Bound
Class
(n X n matrix) Lower Upper
Uniformly distributed 1.00 2.37---

random variables

Nonuniformly distributed
random variables,

p(x) = (k + Dx*

Random permutations
of integers

Clc nk! (k1)

Ck(k ’]‘{' 1)nk/(k+1)

(1.54- - n (2.37--m

C= D kWD Wi, (32)

k<K k<K

is evaluated by considering

xdW(x)/ox = 2 kx*W,

= an![(n — D"
X[x"(1 — %)™ 4 3"~ %), (33)

which gives us a generating function for k#W,. Summing
the first term in Eq. (33) over £ < K, we obtain a contribu-

tion n(K> to the numerator in Eq. (32), while the con-
n
tribution from the second term is n 11 ; for the
n

denominator we get <K> Because C is the best possible
n

average cost, it is equivalent to the lower bound of the
average optimal cost and therefore

v (5]

n[l + (K — n)/(n + 1]
Kn/(n 4+ 1)
= (1.5422 -~ )n. (34)

Again, to estimate the actual asymptotic average optimal
«cost, random-permutation matrices were generated on the
computer and the optimal cost was determined by the
Hungarian method® The results are listed in the final
column of Table 1; we conjecture that the average optimal
cost is about 1.8 .

Summary

‘There are basically two results, a new suboptimal algorithm
with well-characterized performance and a better knowl-
edge of bounds of average optimal solutions for three
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Table 4 Comparison of algorithms for the assignment
problem.

Method
Multiple-
Row- column- Hungarian
Average scan scan (or dual)

Optimal value (for Inn 2.2 1.6

uniformly distributed

random variables)
Computing time n nlnnor < nd

(proportionality) nln nt

1 The lower value applies when the ranking matrix is available.

classes of assignment problems. These bounds are sum-
marized in Table 3. The algorithms now available for this
type of problem are compared in Table 4. The multiple-
column-scan method developed here is intermediate in
speed between the row-scan method and the Hungarian
method and is also intermediate in value of the average
optimal result. If, however, the ranking matrix is already
known, the new algorithm is faster than the other two
methods. In this case the multiple-column-scan method is
a good candidate for solving the traveling-salesman
problem when used with a dynamic programming
approach.™
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