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Maximal Biflow  in  an  Undirected  Network 

Abstract: In  this  network flow  problem  we  deal  with  two  distinct  commodities,  each  commodity  being  identified  by a pair of source 
and sink  nodes.  The  problem  consists  of  maximizing the total flow  (biflow)  of the two  commodities. It is  solved  by an  inductive 
algorithm which starts with a maximal  multiterminal  flow from  the set  of  sources to the set  of  sinks  in the  network, yields the value 
of the maximal  biflow and  terminates  with  the  construction of the maximal  biflow  itself. Computational experience  shows that this 
algorithm  can  also  be  used  in  the  three-commodity  flow  problem to obtain a good  lower  bound  for the value of a maximal three- 
commodity  flow. 

lntroduction 
The  important problem of maximizing flow from a source 
to a sink in a network was first solved by a simple node 
labeling procedure in 1956.’ This  procedure,  together with 
the “max-flow min-cut” theorem,’ has initiated  a  number 
of sophisticated methods  for the solution of network flow 
problems. In 1960 Gomory  and  Hu2 solved the multi- 
terminal  network flow problem. 

In many problems, however, it is necessary to deal with 
several distinct commodities, each commodity being 
identified by a  pair of source and sink nodes. The problem 
consists of maximizing the  total flow of all commodities. 
It is known that this multicommodity maximal flow 
problem belongs to a class of large linear  programs of 
special ~tructure.~ Jewel14 and  Ford  and Fulkerson’ gave 
early solutions. More recently, Tomlin’ and SakarovitchG 
gave solutions based on special considerations in linear 
programming, for instance, the decomposition principle 
of Dantzig and Wolfe? In 1963 Hus directly solved a 
two-commodity maximal flow problem using the charac- 
teristic features of networks. Then  in 1966 Rothschild 
.and Whinston’ gave an alternative approach to  the same 
problem. 
In this  paper we describe a special case of a general 

.approach to network flow problems. This  approach con- 
sists of solving the problem for a given global network 
using the maximal solution of the same  problem for a 
reduced network; the maximal feasible solution for the 
reduced network is considered as an initial unfeasible 
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solution for  the global network. The algorithm starts 
with this  solution and progressively reduces the maximal 
value previously found until the final solution is a feasible 
maximal solution for  the global network. 

Definitions  and  theorems 
Let G = ( X ,  U) be a finite, undirected, connected network. 
There is no  loop in G ;  X is the set of nodes x of G ;  U is 
the set of edges u of G. A non-negative integer c(u), called 
the capacity of u, is associated with each edge of G. Let 
xl, x,, y1 and y ,  be four  distinct nodes of G with x1 and 
x ,  not related by an edge of G. The problem is to find a 
maximal biflow from x1 to y ,  and  from x ,  to y ,  subject 
to  the capacity constraints. 

For convenience of notation we introduce arbitrary 
directions on the edges of G, corresponding to a node-edge 
incidence matrix e in which 

e(x, u) = 0 if node x is not  an extremity of edge u, 
e(x,  u) = 1 if node x is the initial extremity of edge u or 
e(x, u)  = - 1 if node x is the terminal extremity of edge u. 

In particular we take for all u, u E U, 

e(x , ,  u) = 0 or 1 and e(xz, u) = 0 or 1. 

The graph is denoted by G = ( X ,  U, e). 

Multiterminal flow 
A multiterminal flow cp from x1 and x ,  to y t  and yz  in 
G is a  function 

c p : U + R  
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such that 

Feasible flow 
A flow cp is said to be feasible if 

Icp(u)l 5 c(u>, vu E u. 

Maximal Jlow 
A flow cp is said to be maximal if its value v is a maximum. 

Cut 
Let X , ,  and Y l z  be a partition of the set X with x 1  E X,,, 
x ,  E X l z ,  y 1  E Y,,  and yz  E Y l z ;  then  the set of edges 
(X, , ,  Y,,) with one extremity in Xlz and  the other in 
Y l z  is a cut separating x l ,   x z  and y , ,  y , .  The capacity 
of the  cut (X, , ,  Y,,) is 

C ( X l Z ,  Yl,) = c 4 4 .  
UE(Xl1, Yl*) 

Theorem 1 Max$ow min-cut’ 
The value of a maximal flow from x,, x2 to y l ,   y z  in G 
is equal to the capacity of a minimal cut separating x, ,  x, 
and y l ,  Y Z .  

Theorem 2 Integrality and non-negativity 
There exists a maximal feasible flow cp from x,, x z  to 
y , ,  y ,  in G with, for all u, u E U, 

p(u) an integer, 

4% M 4  2 0 and 4 x 2 ,  4cp(u> 2 0. 

Chain 
A sequence of nodes x,,, . . . , xi, ’ . . , x, and of edges 
uo, ... , ui, . .. , u,-, with 

e(xi,  ui)e(xiil,  ui) = - 1  

is called a chain relating x. and x,. If chain E relates 
nodes x,, and xk and if chain E’ relates x k  and x,, we 
denote by E 0 E’ the  chain relating x,, and x,. 

Forward and backward edges 
An edge ui of the chain is said to be a forward edge 
(backward edge) if 

e(xi, ui) = 1(-1). 

The set of forward edges  of a chain E is denoted by E’; 
374 the set of backward egdes of E is denoted by E-.  
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Cycle 
If x. and x, are the same node of G, a chain relating x .  
and x, is called a cycle  of G and is denoted by K. 

Cycle flow 
Let cp be a flow from x l ,  x, to y , ,  y ,  in G and  lei K be a 
cycle of G. The set 

dm = (Cp(4 I E K )  

is called a cycle  flow contained in cp if 

cp(u) 0 for all u, u E K’, and 

q(u) 5 0 for all u, u E K - .  

Theorem 3 Cycle flow 
Let cp’ be any feasible flow  of value v, u an integer, from 
x,, x ,  to y , ,   y ,  in G ;  then  there exists a feasible flow cp 
of value u from x,, xz to y , ,  y ,  in G that satisfies the 
integrality and non-negativity theorem and does not con- 
tain a cycle  flow. 

Theorem 4 Chain flow 
Let cp be a feasible flow from x l ,  x, to y , ,   y ,  in G satisfying 
Theorem 3 and let ui be an edge of G with extremities x i  
and x i + ,  such that e(xi ,  ui)cp(ui) > 0; then  there exist 

a positive number E, E 5 Icp(ui)l, 
a chain E, relating x, (or x,)  and xi with 

a chain E,  relating and y ,  (or y,)  with 
q(u) > 0 if u E E: or with cp(u) < 0 if u E E;,  and 

q(u) > 0 if u E E; or with cp(u) < 0 if u E E,  

such that E, 0 ui 0 E, is a chain E relating x ,  (or x,)  and 
y ,  (or y , )  and such that the flow  defined as follows is a 
feasible flow : 

cp’(u) = cp(u) - E if u E E’, 
cp’(u) = q(u) + E if u E E- or 
P’@> = P(4  otherwise. 

We say that  the chain E passes by edge ui and we call this 
operation an €-diminution of  flow along  the chain E. 

Bunch 
A set of chains relating two sets of nodes X ,  and X ,  and 
passing by edge ui is called a bunch relating X ,  and X, 
and passing by ui. 

Theorem 5 Bunch flow-diminution 
Let cp be a feasible integral flow from x, ,  x, to y , ,   y z  
in G satisfying the cycle-flow theorem and let ui be an edge 
of G with extremities xi and xi+l such that e(xi ,  ui)cp(ui) 
> 0; then  there exists a bunch B relating xl, x ,  and y , ,   y z  
and passing by ui such that  the flow cp’ obtained  after 
a finite sequence of E-diminutions along chains of B is 
feasible and integral with cp’(ui) = 0. 
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Bunch flow-diminution procedure 
We  use a node scanning and labeling procedure similar 
to  the classical method developed by Ford  and Fulkerson.’ 

Biflow 
A biflow 91, cpz from x ,  to y1 and  from x ,  to y ,  in G is 
a  pair of functions 

cpl : U +  R and cp, : U +  R 

such that 

c cp1(4e(x, 4 = 0 ,  x E x - { x , ,  y , ) ;  
U E U  

Feasible biflow 
A biflow cpl, cp2 is said to be feasible if for all u, u E U, 

I c p l ( 4 1  + Icp,(u)l 5 c(u>. 

Maximal  bifow 
A biflow cp,, cp, is said to be maximal if its value u = u1 + u, 
is a maximum. 

Bifrow and multiterminal flow 
Let cpl, cp2 be a feasible biflow of value u = u1 + u, from 
x ,  to y1 and  from x ,  to y ,  in G; then the function cp de- 
fined by 

cp(4 = cpl(4 + 411) 

is a feasible multiterminal flow of value u from x , ,  X ,  

to y , ,   y ,  in G. 

Theorem 6 
The value of a maximal feasible biflow from x ,  to y ,  and 
from xz to y ,  in G is not greater than  the value of a maxi- 
mal feasible multiterminal flow from x,,   xz to y, ,   y,  in G. 

Corollary 7 
The value of a maximal feasible biflow from x, to y ,  
and  from x ,  to y ,  in G is not greater than  the value of a 
minimal cut  separating x , ,   x ,  and y , ,   y ,  in G. 

Theorem 8 Interchange 
If pl, cp, is a feasible biflow from x 1  to y ,  and  from x2 to y 2  
in G and if K is a cycle  of G with 

cpl(u) > 0 if u E K +  or 

cpl(u) < 0 if u E K - ,  

then there exists an E > 0 such that  the biflow cp;, cp; is 
feasible, i.e., 

cp;(u) = cpl(u) - E and cp;(u) = cp2(u) - E if u E Kf , 

Theorem 9 
Let cp,, ‘p, be a feasible biflow from x ,  to y ,  and x 2  to y ,  
in G;  the chain-flow and bunch flow-diminution theorems 
are applicable to either  flow cp, or flow cp2 with the  other 
flow remaining fixed. The bunch flow-diminution pro- 
cedure is unchanged. 

Construction of a maximal biflow 
We start with a maximal feasible multiterminal flow from 
x,, x2 to y,, y ,  in G and progressively construct a maximal 
feasible biflow pl, cp:! from x ,  to y ,  and  from x ,  to y,. 
The algorithm proceeds in three phases: 

1. Construct an initial  integral biflow. 
2. Find  the value of maximal feasible biflow. 
3. Determine the maximal feasible biflow itself. 

Phase 1 
Consider  a maximal feasible multiterminal flow cp from 
x , ,   x ,  to y , ,   y ,  in G of value u = u1 + u2 = -(u{ + 0;). 
By application of the chain-flow theorem and  the integrality 
and non-negativity theorem, it is always possible to find 
two feasible integral  multiterminal flows cp: from x ,  and 
x ,  to y ,  and cp; from x ,  and x ,  to y,, where cp: has value 
-u l  and cp; has value -u2, such that 

cp = cp: + cp; 
and,  for all u, u E U ,  

e ( x l ,  u)cp:(4 2 0, 

e(&, u)cp;(u) 2 0 ,  

e(x, ,  u)cp:(u) 2 0 and 

e(x, ,  u ) c p m  2 0.  

We illustrate  this  phase with the network G of Fig. 1 
in which nodes are represented by circles, edges by lines 
and capacities by numbers assigned to  the lines; direc- 
tions of the edge flows are represented by arrows and their 
values by numbers assigned to  the arrows. 

Then  in  the network G* = ( X ,  U*,  e)  (see Fig. Id) ob- 
tained from G by the  addition of one supplementary 375 
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( C )  (dl  

Figure 1 Network G-an example of Phase 1: (a) nodes, 
edges and capacities; (b) maximal flow from XI, x2 to y l ,  ya; 
(c) maximal flows from xl, x3 to yl (PI', solid arrow) and 
from xl, xz to y3 (pd, dashed arrow); and (d)  initial biflow 
(end of Phase 1 ) .  

edge u* relating nodes x 1  and x,, with c(u*) = 0 and 
e(xl, u*) = 1, the pair of functions cpl, (p, defined  by 

v,(u) = d ( 4 ,  u E u; 
4 4  = c p : ( 4 ,  u E u; 
col(u*) = C cp:(u)e(x2, u ) ;  and 

d u * )  = - C cpXu)e(xl, u) 

is a biflow of value u = u1 + u, from x 1  to yl and  from 
x ,  to y ,  in G* which satisfies the condition 

ut U 

"E (I 

Iv1(u)l + Icpz(u)l I c ( 4 ,  E u, 
where pl(u*) and -p,(u*) are non-negative integers. 

Phases 2 and 3 
In Phase 2 the algorithm simultaneously reduces the 
values of cpl(u*) and -cpz(u*) by the same integer or 
half-integer E, e > 0, and yields either a maximal feasible 
biflow from x1 to y1 and  from x 2  to y, in G or a minimal 
cut  separating xlr y ,  and xp, y 1  in G. In  the  latter case 
Phase 2 also yields the value of a maximal biflow. 

In Phase 3 the algorithm  constructs the maximal biflow 
376 itself. This will be proved in  the following section. Before 

describing the algorithm, we introduce the notions of 
unsaturated  chain and of maximal modification of the 
biflow. 

Saturated chain 
A chain E relating x l  and x ,  in G is said to be saturated 
if there is either a  forward edge u of the chain such that 

cpl(4 2. 0,  cp&) I 0 and 

or a backward edge u such that 

Otherwise, chain E is said to be unsaturated. A node 
scanning and labeling routine finds such an unsaturated 
chain if one exists. 

Modification of the biflow along  an unsaturated chain 
If E is an unsaturated  chain relating x 1  and x2 in G, there 
exists a positive number E such that, starting with an 
initial biflow cpl, cp, of value u, the pair of functions pi, cp; 
obtained  as 

cpi(u) = cpl(u) + E, d ( u )  = cp2(u) - E if u E E', 

d ( u )  = cpl(u) - e ,  d ( u )  = cp2(u) + E if u E E- 

or 

c p : ( 4  = C P l b ) ,  cpm = 4 4  if u 6 E ,  

with 

d ( u * )  = cpl(U*) - E ,  d ( u * )  = cp*(u*) + e 

is a biflow of value u from x1 to yl and from x,  to y, in G, 
and 

IvP:(u*) I + IcpXU*) I = Icpl(U*)l + Iv*(u*) I - 2 e .  

Maximal modijication of the biflow 
With the contraint that cp:(u*) remains non-negative and 
cpi(u*) remains non-positive, the maximal value of e is 
given  by 

Theorem 10 
The biflow obtained  after any maximal modification is 
integral or half-integral. 
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Flow of type 2 can be reduced by 2A0 - A, along B: 
and one  obtains p2(u*) = 0. 

Further, Theorem 5 indicates that 

A - A, > 0 =+ there exists a bunch B*, relating x 2  and 
y ,  in G* passing by ii. 

Flow of type 2 can be reduced by A - A, along BY, and 
one  obtains pz(ii) = 0. 

The two bunches B3 = B: - u* and B,  = BY, - ii 
form  a bunch B relating x, and y ,  in G*; B is unsaturated 
and it is possible to increase the flow  of type 1 along 
B by the value 

u’ = min (2A0 - A,, A - A,). 

The final biflow is a feasible biflow from x1 to y ,  and 
from x2 to y ,  in G*, obtained after a reduction by [A, f 
(A - A,) -/- (28, - A,)] and  an augmentation by v‘ 
of the  initial value u f A, and 

p,(a) = (p2(a) = p,(u*) = cpz(u*) = 0. 

This biflow is then  a maximal feasible biflow from x1 to 
y ,  and from x2 to y 2  in G of value 

V if A 2 2A0 or 

u + A - 2A0 if A < 24,. 

Example 
Refer to  the network in Fig. Id; after  a sequence of maxi- 
mal modifications along  unsaturated chains we obtain the 
network in Fig. 4a. A maximal biflow from x, to y ,  and 
from xz to y ,  is shown in Fig. 4b, where a minimal cut 
separating x,, y ,  and y, ,  x, has been indicated. 

Discussion and extension 
The most interesting feature of the algorithm described 
is that  it takes only a short time to  do Phase 2 and  it is 
therefore easy to compute the value of a maximal biflow 
in a given network. This may  be  sufficient in a number 
of problems where one is not really interested in the 
construction of the maximal feasible biflow itself. 

This  algorithm, with a classical, maximal-flow, search 
procedure, can be used to determine the  initial multi- 
terminal flows from x,, x2 to y ,  and  from x,, x, to y ,  in G. 

The algorithm can also be used to compute easily a 
lower bound of the value of a multicommodity flow 
between a set of sources and a set of sinks in a given 
network. In particular, we have obtained results in  the 
case of a three-commodity flow problem. To find a 

(a )  (b) 
Figure 4 Network G :  (a) final unfeasible biflow (end of 
Phase 2) and  (b) maximal biflow and  minimal cut  (end of 
Phase 3 ) .  

maximal three-commodity flow from x, to y, ,  x, to y 2  
and x, to y3,  the procedure is as follows: 

1. Group x,, x 2  and x3 and find a maximal flow cp from 
x19 xz, x3 to Y l ,  Yzt Y3.  

2. Separate x,, x, and x, and find a maximal flow cp12, p3 
from x,,  x, to y , ,  y ,  and  from x, to y,. 
3. Fix cp3 and separate x, and x, ; find a maximal biflow 
pl, p, from x1 to y ,  and from x, to y2 with the capacities 
now being c - 9,. 
4. Fix p1 and resume the  procedure with p3 and p2, etc. 
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