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Maximal Biflow in an Undirected Network

Abstract: In this network flow problem we deal with two distinct commodities, each commodity being identified by a pair of source
and sink nodes. The problem consists of maximizing the total flow (biflow) of the two commodities. It is solved by an inductive
algorithm which starts with a maximal multiterminal flow from the set of sources to the set of sinks in the network, yields the value
of the maximal biflow and terminates with the construction of the maximal biflow itself. Computational experience shows that this
algorithm can also be used in the three-commodity flow problem to obtain a good lower bound for the value of a maximal three-

commodity flow.

Introduction

The important problem of maximizing flow from a source
to a sink in a network was first solved by a simple node
labeling procedure in 1956." This procedure, together with
the “‘max-flow min-cut” theorem," has initiated a number
of sophisticated methods for the solution of network flow
problems. In 1960 Gomory and Hu® solved the multi-
terminal network flow problem.

In many problems, however, it is necessary to deal with
several distinct commodities, each commodity being
identified by a pair of source and sink nodes. The problem
consists of maximizing the total flow of all commodities.
It is known that this multicommodity maximal flow
problem belongs to a class of large linear programs of
special structure.” Jewell* and Ford and Fulkerson® gave
early solutions. More recently, Tomlin® and Sakarovitch®
gave solutions based on special considerations in linear
programming, for instance, the decomposition principle
of Dantzig and Wolfe.” In 1963 Hu® directly solved a
two-commodity maximal flow problem using the charac-
teristic features of networks. Then in 1966 Rothschild
and Whinston® gave an alternative approach to the same
problem.

In this paper we describe a special case of a general
approach to network flow problems. This approach con-
sists of solving the problem for a given global network
using the maximal solution of the same problem for a
reduced network; the maximal feasible solution for the
reduced network is considered as an initial unfeasible
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solution for the global network. The algorithm starts
with this solution and progressively reduces the maximal
value previously found until the final solution is a feasible
maximal solution for the global network.

Definitions and theorems
Let G = (X, U) be a finite, undirected, connected network.
There is no loop in G; X is the set of nodes x of G; U is
the set of edges # of G. A non-negative integer c(u), called
the capacity of u, is associated with each edge of G. Let
X1, X2, y1 and y, be four distinct nodes of G with x; and
X, not related by an edge of G. The problem is to find a
maximal biflow from x, to y, and from x, to y. subject
to the capacity constraints.

For convenience of notation we introduce arbitrary
directions on the edges of G, corresponding to a node-edge
incidence matrix e in which

e(x, u) = 0 if node x is not an extremity of edge u,
e(x, u) = 1 if node x is the initial extremity of edge « or
e(x, u) = —1 if node x is the terminal extremity of edge u.

In particular we take for all u, u & U,
e(x;,u) = 0orl and e(x,, u) = Oorl.
The graph is denoted by G = (X, U, e).

» Multiterminal flow

A multiterminal flow ¢ from x, and x, to y; and y, in
G is a function
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such that

2 e(welx, u) = 0,

wEU

X E X - {xls X2, V1s yZ};

2 e(we(x, w) = vy (orvs),  x = x (or x3);

u<

2 e(we(x, u) = o (orvd),  x

uEU

v=u0, +0v, = —@ + 0.

yi (or y;);  and

Feasible flow

A flow ¢ is said to be feasible if
o) < c(w), Vu& U.
Maximal flow

A flow ¢ is said to be maximal if its value v is a maximum.

Cut
Let X, and Y, be a partition of the set X with x, & X,
X: & Xis, y1 € Yy, and y, & Y,,; then the set of edges
(X12, Y;5) with one extremity in X,, and the other in
Y., is a cut separating x;, x, and y;, y,. The capacity
of the cut (X1,, Yi2) is
(X2, Yia) = c(u).

WE(Xaas Fis)
Theorem 1 Max-flow min-cut*
The value of a maximal flow from x;, x, to y;, y, in G
is equal to the capacity of a minimal cut separating x;, x,
and y,, y..

Theorem 2 Integrality and non-negativity
There exists a maximal feasible flow ¢ from x;, x, to
Y1, ¥o in G with, for all u, u & U,

(1) an integer,

e(xy, W) 2 0 and  e(xy, we(u) = 0.

Chain

A sequence of nodes x,, -+ , Xx;, -+ , X, and of edges
Ugy v s Uy 0 aun—IWith

e(xy, ue(xg, ;) = —1

is called a chain relating x, and x,. If chain E relates
nodes x, and x, and if chain E' relates x, and x,, we
denote by E o E’ the chain relating x, and x,.

Forward and backward edges
An edge u; of the chain is said to be a forward edge
(backward edge) if

e(x;, u;) = 1(=1).

The set of forward edges of a chain E is denoted by E*;
the set of backward egdes of E is denoted by E™.

Cycle
If x, and x, are the same node of G, a chain relating x,
and x, is called a cycle of G and is denoted by K.

Cycle flow
Let ¢ be a flow from x;, x, to ¥, ¥, in G and let K be a
cycle of G. The set

oK) = {o() |uE K}
is called a cycle flow contained in ¢ if
o) 2 0 forallu,u & K', and
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o) S0 forallu,uc& K.

Theorem 3 Cycle flow

Let ¢’ be any feasible flow of value v, v an integer, from
X1, X2 10 y1, ¥ in G; then there exists a feasible flow ¢
of value v from x;, x, to y;, y, in G that satisfies the
integrality and non-negativity theorem and does not con-
tain a cycle flow.

Theorem 4 Chain flow

Let ¢ be a feasible flow from x,, x, to y;, y» in G satisfying
Theorem 3 and let #; be an edge of G with extremities x;
and x,,, such that e(x;, u;)e(u;) > 0; then there exist

a positive number ¢, € < |o(u,)l,
a chain E, relating x; (or x,) and x; with

o) > 0if u & E* or with o) < 0if u & E7,
a chain E, relating x,., and y, (or y,) with

o) > 0ifu& Ejorwithe(w) < 0if u € E,

and

such that E; o u; o E, is a chain E relating x, (or x,) and
y; (or y,) and such that the flow defined as follows is a
feasible flow:

o) = o) — e if u& E’,
W) =)+ ¢ it uc E or
') = o(u) otherwise.

We say that the chain E passes by edge u; and we call this
operation an e-diminution of flow along the chain E.

Bunch

A set of chains relating two sets of nodes X; and X, and
passing by edge u; is called a bunch relating X; and X,
and passing by «;.

Theorem 5 Bunch flow-diminution

Let ¢ be a feasible integral flow from x;, x, to y;, ¥,
in G satisfying the cycle-flow theorem and let #; be an edge
of G with extremities x; and x,., such that e(x,, u)o(u;)
> 0; then there exists a bunch B relating x,, x, and y;, y,
and passing by u; such that the flow ¢’ obtained after
a finite sequence of e-diminutions along chains of B is
feasible and integral with ¢'(u;) = 0.
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Bunch flow-diminution procedure
We use a node scanning and labeling procedure similar
to the classical method developed by Ford and Fulkerson.!

e Biflow
A biflow ¢,, ¢, from x; to y; and from x, to y, in G is
a pair of functions

(pl:U_)R and @Q:U'_>R

such that

ez¢1(“)e(x5 u) = 0’ X E X — {x19 yl}’
uwelU

2 ewelxy, ) = v

uwEYU

u;] ei(we(yy, u) = —uvy;
u;] eo(we(x, u) = 0,

MEZU ex(w)e(x,, u)
ueZU e(w)e(y2, u)

x & X — {x2, .V2}§

Uy; and

1l

I

—U,.

Feasible biflow
A biflow ¢, ¢, is said to be feasible if for all u, u & U,

lex@)] + lexw)] < c(w).

Maximal biflow
A biflow ¢, ¢, is said to be maximal if its value v = v, + v,
is a maximum.

& Biflow and multiterminal flow

Let ¢4, ¢, be a feasible biflow of value v = v, + v, from
x; to y; and from x, to y, in G; then the function ¢ de-
fined by

(1) = o1(1) + oo(u)

is a feasible multiterminal flow of value v from x,, x.
to y,, y. in G.

Theorem 6

The value of a maximal feasible biflow from x; to y; and
from x, to y, in G is not greater than the value of a maxi-
mal feasible multiterminal flow from x;, x, to y:, y, in G.

Corollary 7

The value of a maximal feasible biflow from x, to y,
and from x, to y, in G is not greater than the value of a
minimal cut separating x,, x. and y,, y, in G.

Theorem 8 Interchange

If ¢,, ¢, is a feasible biflow from x, to y, and from x, to y,
in G and if K is a cycle of G with
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o) >0 if u& K" or
o) <0 if u&€ K,

then there exists an ¢ > 0 such that the biflow ¢!, ¢} is
feasible, i.e.,

i) = o1(w) — eand pi(u) = () — eif u € K",

i) = ¢1(u) + e and ¢j(u) = ¢y(u) + eif u € K~

or

|

e1(w) = ¢1(u) and p3(u) = ¢,(u) if u & K.
Theorem 9

Let ¢,, ¢, be a feasible biflow from x; to y; and x, to y,
in G; the chain-flow and bunch flow-diminution theorems
are applicable to either flow ¢, or flow ¢, with the other
flow remaining fixed. The bunch flow-diminution pro-

cedure is unchanged.

Construction of a maximal biflow

We start with a maximal feasible multiterminal flow from
X1, X3 t0 ¥y, ¥o in G and progressively construct a maximal
feasible biflow ¢,, ¢, from x, to y; and from x, to y..
The algorithm proceeds in three phases:

1. Construct an initial integral biflow.
2. Find the value of a maximal feasible biflow.
3. Determine the maximal feasible biflow itself.

o Phase 1
Consider a maximal feasible multiterminal flow ¢ from
X1, Xg 10 ¥1, y2 in G of value v = v; 4+ vy = — (] + v}).

By application of the chain-flow theorem and the integrality
and non-negativity theorem, it is always possible to find
two feasible integral multiterminal flows ¢} from x; and
X3 to y; and ¢} from x; and x, to y,, where ¢/ has value
—v; and ¢} has value —u,, such that

e=o¢+ ¢

and, for all u, u € U,
e(xy, wei(u) > 0,
e(x1, Wei(u) > 0,
e(x., wei(u) > 0 and
e(xs, uei(u) > 0.

We illustrate this phase with the network G of Fig. 1
in which nodes are represented by circles, edges by lines
and capacities by numbers assigned to the lines; direc-
tions of the edge flows are represented by arrows and their
values by numbers assigned to the arrows.

Then in the network G* = (X, U*, e) (see Fig. 1d) ob-
tained from G by the addition of one supplementary
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(c) (d)
Figure 1 Network G—an example of Phase 1: (a) nodes,
edges and capacities; (b) maximal flow from xi, x: to yi, ys;
(¢) maximal flows from xi, x: to y1 (¢4, solid arrow) and

from xi, x» to y; (@2, dashed arrow); and (d) initial biflow
(end of Phase 1).

edge u* relating nodes x;, and x,, with ¢(u*) = 0 and
e(x,, u*) = 1, the pair of functions ¢,, ¢, defined by

ei(u) = ol(w), uwE& U
() = o3(u), u € U;
oi(u*) = ;Uso{(u)e(xz, u); and

po(u®) = — Z Wé(”)e(xls ”)

uEU

is a biflow of value v = v, + v, from x; to y, and from
X, to y, in G* which satisfies the condition

lo@)| + lox()] < c@), ue& U,

where ¢,(u*) and —¢.(u*) are non-negative integers.

e Phases 2 and 3
In Phase 2 the algorithm simultaneously reduces the
values of ¢,(u*) and —p.(u*) by the same integer or
half-integer ¢, ¢ > 0, and yields either a maximal feasible
biflow from x; to y, and from x, to y, in G or a minimal
cut separating x,, y, and x,, ¥; in G. In the latter case
Phase 2 also yields the value of a maximal biflow.

In Phase 3 the algorithm constructs the maximal biflow
itself. This will be proved in the following section. Before

describing the algorithm, we introduce the notions of
unsaturated chain and of maximal modification of the
biflow.

Saturated chain
A chain E relating x; and x, in G is said to be saturated
if there is either a forward edge u of the chain such that

() 2 0, @) < 0 and
le:@)] + ()| = )

or a backward edge u such that
e1(w) L0, @) >0 and

los)| + o] = ().

Otherwise, chain E is said to be unsaturated. A node
scanning and labeling routine finds such an unsaturated
chain if one exists.

Modification of the biflow along an unsaturated chain

If E is an unsaturated chain relating x; and x, in G, there
exists a positive number e such that, starting with an
initial biflow ¢,, ¢, of value v, the pair of functions ¢f, ¢}
obtained as

el(w) = e1() + €, ob(w) = () — e if u & E",
ot(w) = oi(u) — €, oi(w) = @) + ¢ if u € E
or

oi(w) = oi(u), ei(u) = ou(u) if u @ E,

with
o3 () = @(u*) + €

is a biflow of value v from x, to y, and from x, to y, in G,
and

o1(W*) = i(u*) — ¢,

lel(@®)] + lei@®)] = leu(@)] + le(u)| — 2e.

Maximal modification of the biflow

With the contraint that ¢}(#*) remains non-negative and
©4(u*) remains non-positive, the maximal value of e is
given by

2¢ = min {min [c(u) — o) + (],
min [e(0) + ex(6) — (],
20,8, —20,()}
Theorem 10

The biflow obtained after any maximal modification is
integral or half-integral.
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Flow of type 2 can be reduced by 2A, — A, along B%
and one obtains p,(u*) = 0.
Further, Theorem 5 indicates that

A — A, > 0= there exists a bunch B% relating x, and
¥ in G* passing by a.

Flow of type 2 can be reduced by A — A, along B% and
one obtains ¢,(i1) = 0.

The two bunches B; = B%¥ — u* and B, = B% — i
form a bunch B relating x, and y, in G*; B is unsaturated
and it is possible to increase the flow of type 1 along
B by the value

v = min 24, — A, A — A)).

The final biflow is a feasible biflow from x; to y; and
from x, to y, in G*, obtained after a reduction by [A; +
(A — A) + A, — A)] and an augmentation by v’
of the initial value v + A, and

e1(@) = o) = o1(u*) = u(u*) = 0.

This biflow is then a maximal feasible biflow from x, to
v, and from x, to y, in G of value

v if A > 24, or
v+ A — 24, if A <2A,.

Example

Refer to the network in Fig. 1d; after a sequence of maxi-
mal modifications along unsaturated chains we obtain the
network in Fig. 4a. A maximal biflow from x, to y, and
from x, to y, is shown in Fig. 4b, where a minimal cut
separating x,, ¥, and y;, x, has been indicated.

Discussion and extension

The most interesting feature of the algorithm described
is that it takes only a short time to do Phase 2 and it is
therefore easy to compute the value of a maximal biflow
in a given network. This may be sufficient in a number
of problems where one is not really interested in the
construction of the maximal feasible biflow itself.

This algorithm, with a classical, maximal-flow, search
procedure, can be used to determine the initial multi-
terminal flows from x,, x, to y, and from x,, x, to y, in G.

The algorithm can also be used to compute easily a
lower bound of the value of a multicommodity flow
between a set of sources and a set of sinks in a given
network. In particular, we have obtained results in the
case of a three-commodity flow problem. To find a
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Figure 4 Network G: (a) final unfeasible biflow (end of
Phase 2) and (b) maximal biflow and minimal cut (end of
Phase 3).

maximal three-commodity flow from x, to y,, xs to y,
and x; to ys, the procedure is as follows:

1. Group x;, x, and x; and find a maximal flow ¢ from
X1, X2, X3 1O Y1, Vo, Va.

2. Separate x;, x, and x; and find a maximal flow ¢, 5, ¢3
from x,, x, to y, ¥, and from x; to y;.

3. Fix ¢; and separate x; and x,; find a maximal biflow
@1, ¢ from x; to y, and from x, to y, with the capacities
now being ¢ — ¢s.

4. Fix ¢, and resume the procedure with ¢; and ¢., etc.
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