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Model of Competition in a Two-seller Market

Abstract: In this model of sellers’ competition we are concerned with the transition from a single-seller market to a two-seller market,
the effects of transition on the first seller, his likely reactions and the thereby changed market situation that awaits the entering competi-
tor, The decision variables considered in this model are the sizes of the two sales forces. We show that the enterer should not view the
market as it stands prior to his entry, but as changed by the first seller to accommodate or oppose his entry. Upon the entrance of the
competitor, both sellers must increase their sales forces to attaia the levels of profit anticipated prior to entry, if indeed these can be
attained. Equilibrium strategies are shown to be maximal sales effort on the part of the first seller and either maximal sales effort or
abstention from entry on the part of the enterer. A finite series is derived to express the exact expectation of a class of rational func-

tions of a binomially distributed random variable.

Introduction

Sellers’ competition has been discussed by several authors.
Machlup® has considered markets of one, few and many
sellers. Sengupta® has included the sizes of the sales
forces in the determination of the effects of competition.
Von Neumann and Morgenstern® modeled sellers’ com-
petition in a game-theoretic structure, opening the litera-
ture to many subsequent contributions. Shubik* con-
sidered the entry of new competitors into the market.
The latter two citations consider price as an equilibrium
determining variable.

An equilibrium exists when a change in the strategy
of any one of the sellers would worsen his position, given
that the other sellers do not vary their respective strategies.
Price has traditionally been a variable in the set of strate-
gies considered by economists. However, we believe that
there exist market conditions in which all sellers would
maintain a price regardless of other circumstances. In this
model we analyze both a price-invariant equilibrium and
a price-invariant status quo situation.

It is well known that if a single seller enjoys a high
profit level, the entrance of a competitor will lead to a
decline in prices and profits. In this paper we consider an
enterer whose interest in the given business is to share
the high profits of the first seller. He wishes to act not
as a price competitor, but as a participant in the business
of the first seller and therefore commits himself to charge
the same price as the first seller who in turn, aware that
a price cut might lead to equilibrium at a much lower
price level, preserves his price.
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We assume that the decision variables of the two com-
panies are the sizes of their sales forces. Under certain
assumptions about the selling practices of the companies,
we show that profit, profit margin and market share can
be expressed as functions of the sizes of the sales forces
of both companies and the overlap of their territories.
Overlap is shown to be a hypergeometrically distributed
random variable. We obtain expressions for expected
profit, expected profit margin and expected market share
as functions of the sizes of the sales forces and the number
of prospects.

Given target values of expected profit, if a solution
exists the sizes of the sales forces necessary to achieve
the target profits can be determined. Three strategies are
shown to be necessary and sufficient to answer any
strategy of the opponent. Under certain conditions, if the
first seller uses a sufficiently large number of salesmen,
he can make entry at any level unprofitable for the enterer.
If these conditions are not satisfied, each company im-
proves its own expected profit and degrades its opponent’s
expected profit by enlarging its own sales force. If the
companies wish to maximize expected profit, a Nash
equilibriumt® exists when the first seller saturates the
market and the enterer either saturates the market (if entry
is profitable) or abstains from entry (if entry is unprofit-
able). These two equilibria are mutually exclusive and
collectively exhaustive; both are not equilibria simul-
taneously and the competitors possess the information to

select the actual equilibrium. i 64
t If x is the strategy of the first seller, y the strategy of the enterer and
f(x, ¥) and g(x, ») the respective “rewards,” then (x*, y*) is a Nash equilibrium

if f(x*, p*) > f(x, y*) and g(x*, p*) > g(x*, ) for all feasible choices of
xand y.
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An equilibrium can exist in which the enterer saturates
the market and the first seller withdraws. This equilib-
rium is not the one preferred by the first seller and,
if he announces his intention of not withdrawing, he
can assure himself of attaining the desired equilibrium
under an assumption of rational behavior on the part
of the enterer.

The upper bound on expected profit margin for either
company decreases when the strength of the sales force
of the opponent increases, while the actual value of ex-
pected profit margin for each company increases with the
strength of its own sales force, as long as entry is profitable.
Thus the optimal strategies for the maximization of ex-
pected profit hold also for maximizing expected profit
margin.

Upper and lower bounds on expected market share are
obtained which, for each company, increase with the
strength of its own sales force, but decrease as that of its
opponent increases. Optimal strategies for both are to
saturate the market.

In the evaluation of expected profit margin and ex-
pected market share, expressions of the form

a, — bk
E<————1 ! ) 1

a, — bk ( )
occur, where k is a binomially distributed random variable

with mean pN, and E is the expectation with respect to
the distribution of k; for discrete &

Eftk) = Elf()] = 2 f(x) Plk = x], (2)

where the sum is over all possible values of x and P is the
probability measure on the space over which £ is defined.
If |by/a,] < 1, then (1) can be written as an infinite but
convergent sum,
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If the coefficients also satisfy the condition |by/a,| < 1/N,
we let @« = Nby/a,, |a| < 1, and show in the Appendix

that the sum of the expectations in (3) can be evaluated
exactly as a finite series:
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Competitive environment
Let the first seller be called the Red company and the
enterer the Blue company.

We assume that the selling process is a discrete opera-
tion completed in a short time. The Red company sells
a product among s prospects; s prospects were available
in preceding time periods and s prospects will also be
available in succeeding time periods. The transition to
sales with a variable number of prospects, dependent on
the number of sales in the preceding period and on external
market conditions, is straightforward.

Let the sales unit of a company be defined as the number
of hours required to sell the product to a prospect. By
including the pro-rated hours of selling time wasted
approaching people who are not prospects, we can specify
that every prospect will purchase one unit of the product
with certainty if approached by a salesman. This definition
presupposes that the number of salesmen required to sell
to s prospects is linear in s. This assumption can be justified
if the product is unique and the set of prospects is fairly
well identified. We assume sufficient coordination between
salesmen so that no two salesmen from the same company
approach the same prospect. Prospects are chosen at
random from the available set.

Let the Red company possess # sales units. By hypothe-
sis the product is sold to n prospects. Clearly n < s.
Let a be the unit manufacturing cost, ¢, be the selling
cost incurred by the sales unit and » be the unit revenue.
Then, since each sales unit accounts for the sale of one
product, the unit profit is r — @ — ¢; and the total profit
is (@@ — a — cy).

Now the Blue company enters into competition with
the Red company. There are m Blue sales units and the
associated salesmen, like the Red salesmen, do not inter-
fere with each other. However, there is no communication
between Red and Blue salesmen, so it is possible for a
prospect to be approached by no salesman, one Red
salesman, one Blue salesman, or one Red and one Blue
salesman. In the first case no sale will be made, in the
second and third cases one sale by Red and by Blue,
respectively, and in the fourth case, which we call overiap,
one sale will be made by Blue with probability p or by
Red with probability ¢ = 1 — p. We assume that the
Red and the Blue products are undifferentiated and priced
the same. The preference of the purchaser depends on
his confidence in the Red and Blue companies. Red is more
favored by virtue of experience and reputation, so p < g.

When overlap occurs, the sales effort is greater on both
sides because the two salesmen are competing against
each other and may have to repeat calls more frequently.
Let ¢, be the sales cost incurred by each sales unit in
overlap situations; thus ¢, > ¢;. Here two sales units are
expended to obtain one sale. Let k be the number of over-
laps among s prospects. From consideration of the equiv-
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alent occupancy problem, k£ is a random variable with
hypergeometric distribution

nsmnd = ()0 20 ®

If n cells out of s are occupied at random and if m cells are
selected at random without replacement, then Py(k; m, n, )
is the probability that exactly & occupied cells will be
selected. With this distribution, Ek = mn/s.

Company objectives

The functions of interest to Red and to Blue are profit,
profit margin and market share. The objectives of the
companies may be the maximization of the expectation
of one or more of these functions, subject to constraints
on the others. Frequently, however, a company will not
maximize a function because a concomitant of maximiza-
tion could be rapid growth. This rapid growth might be
associated with large debt or with the anticipation of little
or no growth in subsequent years and both of these con-
sequences can be undesirable. When the objective of a
company is not the maximization of one of these functions,
it may be the attainment of a particular value of one of the
functions. We do not attempt to prescribe a management
philosophy but, where the maximization of a function is
desired, we show the optimal strategies and, where the
attainment of a target is sought, we show the relevant
strategies.

We consider the strategies of both companies with
respect to objectives that are, in turn, the expectations
of profit, profit margin and market share. Blue’s strategy
is determined by the choice of a value of m, Red’s by the
choice of a value of n. If there are s prospects, no more
than s units can be sold by either company; hence m
and n are bounded from above by 5. We define saturation
by Blue (or Red) as the choice of m (or n) equal to s.
Clearly n is positive and m is positive if Blue chooses
to enter the market or zero if Blue abstains from entry.

The following notation is used:

A number of units sold,

B = cost of manufacturing 4 units,

C = cost of selling A units,

D = revenue from the sale of 4 units,

X = profit from the sale of 4 units,

Y = profit margin from the sale of A units and
Z = market share from the sale of A4 units.

Variables associated with Blue and Red are subscripted
B and R, respectively:

Ag = m — k + pk = m — gk,
By = ady = a(lm — gk),
Cp = c(m — k) + cok = mey, + k(cs — c1),

DB:rAB=r<m—qk)’
XB:DB—BB_CB

=(r—a—ca)ym— (rg — ag + ¢, — c)k,

X,

Ya = B, + C)

_r—a—c)m— (ra —ag+ ¢ —c)k

B (a4 c)m — (ag — ¢y + )k and
Z, = Dy - _m— qk i

Dy + Dg m-+n—k
Similarly,
Ar = n — pk,
Br = a(n — pk),
Cr = nc, + ke, — 1),
D = r(n — pk),
X =0 —a—c)n— (p — ap + ¢, — c)k,
— a — ¢)n — — —

ve=t (a + é)l)n ~(?Zp ST 2 ana

In writing these expressions we have assumed that unit
costs are the same for both companies. Because k, the
number of sales overlaps among s prospects, is a random
variable, X, Y and Z are random functions.

Expected profit
Using the hypergeometric distribution (5), as a con-
sequence of Ek = mn/s we obtain

EXz =mlr—a— ¢, — (rg — ag + c; — c)n/sl, (6)

which is linear in m. We assume r — a — ¢; > 0. The
expected profit EX} is increasing in m if

r—a—c > @q— aq+ c; — cn/s. @
Because r > a and ¢, > ¢, this inequality holds when
n<(r—a—c)s/(rqg— aqg+ ¢ — c,) = v. ®)

Thus, if n > », Blue’s entry will not be profitable at any

level. If Red wishes to exclude Blue and inequality (8)

is satisfied prior to Blue’s entry, Red can reverse the

inequality by increasing n provided /s < 1 or r—a < ¢;/p.
Similarly the expected profit for Red is

EXg=nr—a—c—(@p—ap+c,— com/sl, (9
which is increasing in # when

r—a—c¢ > @p— ap+ co — c)m/s. (10)
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If inequality (10) can be reversed by Blue, i.e., if Blue
can act to exclude Red, then Blue is excludable by Red,
forifr—a— e < (rp — ap + cs — c))m/s, then it
follows that r — a < ¢,/q < ¢5/p.

Prior to Blue’s entry m = 0 and Red’s expected profit is

E(Xzl m = 0) = n(r — a — cy). (11

If Blue is deterred by increasing # to n*, n* > v > n,
Red’s expected profit is increased. Thus Red does not
lose by excluding Blue. If Blue is not deterred, accepting
an unprofitable entry, Red’s expected profit is

EXp=n*r—a—c — (p— ap+ c: — com/sl. (12)
The change in expected profit for Red is

n* —nmr—a—c)— (rp— ap+ c; — chn*m/s, (13)
which is positive when

m< @* — n)r— a— c)s/lrp — ap+ ¢; — con*l. (14)

The right-hand side of (14) is maximized when n* = s
and (13) is negative only if the inequality (14) is reversed.
By choosing n* = s, Red can maximize the minimal
value of m required to reverse the inequality. Then Blue’s
entry would cause a diminution of Red’s expected profit
only if

n> sl(r — a)g — cl/(r — a— c). (15)

If Blue is rational, i.e., follows a strategy of non-
negative profit, KX, is maximized at n* = s, so Red can
find no better strategy. If, however, Blue is irrational,
choosing a losing strategy to spite Red, n* = s can be
Red’s worst strategy although Blue loses more than Red.
Blue may pick such a strategy if he has more resources
than Red and is willing to suffer initial losses to drive
Red out of the market. Such a strategy belongs to a game
of economic survival,® which we shall not discuss in
this context. We affirm here a specific assumption of
rationality—if Blue is excludable and Red acts to exclude
him, then Blue does not enter.

From the analysis of expected profit alone, it is optimal
for Red to saturate the market, i.e., to choose n = s.
Then if p > ¢,/(r — a), Blue should also saturate the
market; but if p < ¢,/(r — a), Blue should not enter.
For p = ¢,/(r — a) any non-negative m < s yields the
same profit. Expected profits derived from the optimal
strategies are

EX, — {s[(r —ap — ) ifp > c/(r — a)or (16)
0 ifPSCz/(r—a)

and

EXR _ {S[(I‘ - a)q ht Cz] lfp > Cz/(r — a) or (17)

sr —a—c) ifp <c/lr — a);
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for p = ¢/(r — a) Red’s expected profit has a value
between the extremes.

Red and Blue, in the face of mutual interaction, might
want to maintain certain profit levels rather than maximize
them. For example, prior to Blue’s entry Red’s expected
profit is n(r — a — c¢;). Not taking into consideration
any change in #, Blue selects m for entry to yield expected
profit m[r — a — ¢, — (rg — aq + c¢: — ci)n/s]. This is
possible if there exists a solution m*, n* > 0 of the
equations

n*lr—a—c — (p— ap+ c;— cym*/s]
=n(r— a— ¢) (18a)
and
m*lr —a— ¢, — (rg — ag + ¢; — c)n*/sl
=mr—a—c — (rq — aq + ¢, — c)n/sl, (18b)

subject to m*, n* < s. If a solution exists, n* > n from
(18a) and therefore m* > m from (18b), provided the
inequality (8) is satisfied for n*.

If no n* satisfies (18), the best Red can do is to pick
n* = §; then m* is determined by (18b). The best Blue
can do is to choose the lesser of m* and s. Similarly,
if no m* satisfies (18), the best Blue can do is to pick
m* = s; then (18a) fixes the value of »* and Red should
choose the lesser of n* and s. If, for any n* (or s) that
Red picks, inequality (8) is not satisfied, then Blue should
not enter.

Expected profit margin

We showed in the last section that to maximize expected
profit Red has a strategy optimal against any rational Blue
strategy, namely n = s, and Blue has a strategy which is
optimal against n = s, namely m = sif p > ¢/(r — a)
orm = 0if p < ¢,/(r — a). In this section we show that
the same strategies are also optimal in the case in which
the objective is to maximize expected profit margin.

For Blue the expected profit margin is

_ (r—a—c)m—(rq—aq—f—CQ—c,)k:I_
By = El: (@ +cym — (ag — ¢c; + )k

(19)

The ratio of the expectation of the numerator to that
of the denominator represents an upper bound [because
Yx(k) is a concave function of k] of EY5, i.e.,

a—c)s— (rq—aq+c, —c)n
(@+c)s —(ag —co+c)n~
which is concave and decreasing in n. Thus Red can
bound Blue’s expected profit margin.

To evaluate the right-hand side of (19), we first note
that the factorial moments of the hypergeometric dis-
tribution are

By, < L=

(20)
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m(m — Dnn — 1)
[s(s — 1)] ’

Ek(k — 1) =

Ek(k _ 1) e (k= J)

_ mm =1 - (m—jnn=1) - (n—=))

[sc = 1) =+ (s — )]

If n and s are large and j is small, the first j 4+ 1 factorial
moments are closely approximated by

mn/s,
m(m — Dn’/s?,

mm— 1) - (m— jn'/s,

which are the factorial moments of the binomial dis-
tribution,

nmns = (DS e

Hence for sufficiently large » we use the binomial dis-
tribution as a close approximation to the hypergeometric
distribution.

The expectation EYj therefore takes the form [see
Egs. (3) and (4)],

EYZr—a—cl{l [l_rq—aq—}—cz—cl:\
7 a-+c + alr — a — ¢y)
< nj%—j_l Ln——l‘l
XZH a . (22
=t m
— = m—1 m
[0

where a = (ag — ¢; + ¢)/(a + ¢1) < 1. We now show
that the magnitude of the series in (22) is decreasing in m
for n/s < 1 and constant in m for n/s = 1.

For n/s = 1, k takes the value m with probability one,
ie., Plk = m] = 1. Hence Ek* = m' for all ¢ and

t=1 m 1l —«

The finite series in (22) is also a valid representation,
so for n/s = 1 we obtain the identity

a  _am o m(m — 1)
1 —a m—a+(m——a)(m-—2a)+
a”m!
R R I

for all positive integers m.

Each term of the series in (22), n/s < 1, is a term of
(24) weighted by (n/s)’, j = 1,2, -+ , m; (n/s)’ is de-
creasing in j, so as m increases the series decreases in
magnitude. We can write the value of the series as

- ("
1 —a\s ’

where B(m) is a real number, 1 < 8 < m, and is increasing
in m. Thus the expected profit margin for Blue can be
expressed as

r — a — ¢

a+ ¢

x[l S ey Py @ﬂ(m)]' 25)

Clearly (25) is increasing in m.
Similarly we can write

EY, =

r—a— ¢

a-+ ¢

_ rlcs — ¢1q) m 7(")]
X[l ¢ —a—c)ate) —a)(s) » (26)

which is increasing in n. If EY7, is positive, n=s is optimal
for Red, thus making EYg, Eq. (25), constant in m and
positive only if p > ¢;/(r — @). If Blue is rational, m > 0
implies p > ¢,/(r — a) and also g > ¢,/(r — a) because
g > p. Thus EYy, Eq. (26), is positive and it follows
immediately that the optimal strategies of the preceding
section are optimal for this section also.

EY, =

Expected market share

It is intuitively obvious, regardless of the value of p,
that m must be greater than zero when Blue’s objective
is the maximization of expected market share, even though
profit may have to be sacrificed. Blue’s expected market
share is

m — gk )
EZ, =E -
B <m+n—k

m m— qglm 4+ n) < ( k )‘]
= E .
m -+ n [1 + m ; m -+ n
27
The series in Eq. (27) can be expressed as in Eq. (4) as

pel ) =)
ST e

n—1

The market share function Z; is concave or convex in
k for ¢ S m/(m -+ n), respectively, and is linear in k
for ¢ = m/(m + n). Therefore the value of
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m(s — gn)/(ms -+ ns — mn) (29)

is, respectively, a lower bound, an upper bound or the
exact value of EZ5, Eq. (27), according to the value of q.
The bound (29) is decreasing in »; if it is an upper
bound of Blue’s expected market share, Red can limit it
to at most the value qzm/ [m(g — p) + spl by choosing
n > ps/q. Because (29) is increasing in m, whether it is a
lower or an upper bound, the best Blue can do regardless of
Red’s strategy is to choose m = s. Red’s best strategy is to
choose n = s because its market share is the complement
of Blue’s. With both m and » equal to s, (29) is seen
to be an upper bound with value p. Under this strategy
Plk = s1 = 1 and EZ; = p; the bound is the expectation
itself.

Summary

The optimization of expected profit, profit margin and
market share leads to a unique strategy for Red and for
Blue as long as Blue is not excludable. This strategy is
m = n = §5. If Blue is excludable the optimization of
expected profit and profit margin is achieved by n = s
and m = 0. This strategy also optimizes Red’s expected
market share. The strategies are equilibrium and Red’s
strategy is dominating. One can interpret the situation as
follows: Prior to Blue’s entry Red sells (free from external
pressure) at a convenient level, not necessarily saturating
the market. With Blue’s real or potential entry, Red will
increase his sales efforts. If guided solely by the criteria
of profit, profit margin or market share, the increased
effort will be planned to saturate the market as soon as
possible. If Blue is contemplating entry at a certain level, he
should expect to enter at a higher level to achieve the same
profit. His best return, profitable entry, is also attained by
saturating the market. Hence the equilibrium result is
strong competition in a saturated market.

Appendix
Theorem

For 0 < Ja| < 1 and k binomially distributed with
mean pN,

= ak ¢ __ _apN a’p’N(N — 1)
;E<N> N N-—a+(N—-a)(N—2a)+
aNpNN!

TN e (N N

N B -1
- (AD)
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Proof
Let m(z) be the moment generating function and P(z) be
the probability generating function. Then (see Ref. 6)

m(z) = P(e) (A2)
and
d’ m(z) d' P(e");
Ek' = = A
el | (A3)
Also let
9 _ dj_’/n@
m’ = P
and
Y dip(ez) .
P - d(ez)i > (A4)

thus we generate the sequence of derivatives

m® = P,

m(?) — ezl’)‘(l) + e2z1’)‘(2)’ (AS)
m(3) — ezl’)‘(l) + 362213(2) + e3zp(3)’etC.

If m; is the jth moment and (m); is the jth factorial
moment, then

(7}
m; = m lz=0

and
m); = PV .. (A6)

Evaluating (A5) at z = 0 we have
my = ap(m),

my = dg1(m) + agx(m), (A7)

m; = ajp(m) + ap(m) + -+ + a;;(m);,
where a;; = 1 and

_ ia;_q,; + Ai1,i-1s
a;; =
0, i>j.

1 P <
< i< j, or (AS)

Multiplying the jth row of (A7) by (¢/N)* and summing
over ¢, we obtain

TN

S (%) = 5 (%) antmn + 5 (2) auton.

t=1 t=1

t=73

o+ i (%)La”(m>], 4+ o <A9) 371
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We now show by the method of induction that
i

g(ﬁ)”” - (N—a)(N—-;a) - (N=ja)’

j < N. (A10)
Clearly, for j = 1
o t
(24 @
Assume that
@ t
Z (_a) ag,i-1
521 \N '
ot
; (A12)

T (N—a(N—2a) - [N—( — Dal

then, using relations (8), we find

Z ()

t=y
2\t
= <7]> (]'apl,i + at—-l,j—l)

zle

8

1

i

J

=[5

g (_Jf_f)t““ T NN—a ---OEN— (G — Dal

or

; (E) @ TN —a)(N=2a) - (N — ja)
(A10)

It follows from (A7) that

© t 2
o (84 44
tZ__;l <N> me= N M N Ty (N = 20 (2

N
27

+ "'+(N—a) -'-(N—Na)(m)N

+ > ¥ (f—,)tatmm),-. (a13)
Finally,
V’N(N— -~ (N—Jj+ 1,
(m); = j=1,---, N, (A14)
10, =N+,

and the Theorem (Al) is proved.
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