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Model of Competition  in a Two-seller  Market 

Abstract: In  this model  of  sellers’ competition we are  concerned  with the transition  from a single-seller  market to a two-seller market, 
the effects of transition on the first  seller,  his  likely  reactions and the thereby  changed  market  situation that awaits the entering  competi- 
tor, The decision  variables  considered  in  this  model are the sizes of the two sales  forces.  We  show that the enterer  should  not view the 
market  as it stands prior to his  entry, but as  changed  by the first  seller to accommodate  or  oppose  his  entry. Upon the entrance of the 
competitor, both sellers  must  increase  their  sales  forces to attain the levels  of  profit anticipated  prior to entry, if  indeed  these  can  be 
attained.  Equilibrium  strategies  are  shown to be  maximal  sales  effort on the part of the first  seller and  either maximal  sales  effort or 
abstention  from  entry on the part of the  enterer. A finite series is derived to express the exact  expectation of a class of rational  func- 
tions of a binomially  distributed  random  variable. 

Introduction 
Sellers’ competition has been discussed by several authors. 
Machlup’ has considered markets of one, few and many 
sellers. Sengupta2 has included the sizes  of the sales 
forces in  the determination of the effects of competition. 
Von Neumann  and Morgenstern“ modeled sellers’ com- 
petition  in a game-theoretic structure,  opening the litera- 
ture  to many subsequent contributions.  Shubik4 con- 
sidered the entry of new competitors into  the market. 
The  latter two  citations consider price as  an equilibrium 
determining variable. 

An equilibrium exists when a change in the strategy 
of any one of the sellers would worsen his position, given 
that  the  other sellers do  not vary their respective strategies. 
Price has traditionally been a variable in the set of strate- 
gies considered by economists. However, we believe that 
there exist market  conditions in which all sellers would 
maintain a price regardless of other circumstances. In this 
model we analyze both a price-invariant equilibrium and 
a price-invariant status  quo situation. 

It is well known that if a single seller enjoys a high 
profit level, the entrance of a competitor will lead to a 
decline in prices and profits. In this  paper we consider an 
enterer whose interest in  the given business is to  share 
the high profits of the first seller. He wishes to act not 
as a price competitor, but as a participant in  the business 
of the first seller and therefore commits himself to charge 
the same price as the first seller who  in turn, aware that 
a price cut might lead to equilibrium at a much lower 
price level, preserves his price. 

We assume that  the decision variables of the  two com- 
panies are  the sizes  of their sales forces. Under certain 
assumptions about  the selling practices of the companies, 
we show that profit, profit  margin and  market  share can 
be expressed as functions of the sizes of the sales forces 
of both companies and  the overlap of their  territories. 
Overlap is shown to be a hypergeometrically distributed 
random variable. We obtain expressions for expected 
profit, expected profit margin and expected market  share 
as functions of the sizes of the sales forces and  the number 
of prospects. 

Given  target values of expected profit, if a solution 
exists the sizes  of the sales forces necessary to achieve 
the target profits can  be determined. Three strategies are 
shown to  be necessary and sufficient to answer any 
strategy of the opponent. Under certain conditions, if the 
first seller uses a sufficiently large  number of salesmen, 
he  can  make entry at  any level unprofitable for  the enterer. 
If these conditions are  not satisfied; each company  im- 
proves its own expected profit and degrades  its  opponent’s 
expected profit by enlarging its  own sales force. If the 
companies wish to maximize expected profit, a Nash 
equilibriumt5 exists when the first seller saturates the 
market and  the enterer  either  saturates the  market (if entry 
is profitable) or abstains from entry (if entry is unprofit- 
able). These two equilibria are mutually exclusive and 
collectively exhaustive; both  are  not equilibria simul- 
taneously and  the competitors possess the information to 
select the  actual equilibrium. p 
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f ( x ,  y) and g(x, y) the respective “rewards,” then ( x * ,  y*) is a Nash equilibrium 
t If x is the strategy of the first seller, y the strategy of the enterer and 

if !(x*, y*)  2 !(x, y*) and g(x*, y*)  3 g(x*, y) for all feasible choices of 
x and y .  
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An equilibrium can exist in which the enterer saturates 
the market and  the first seller withdraws. This equilib- 
rium is not the  one preferred by the first seller and, 
if he announces his intention of not withdrawing, he 
can assure himself  of attaining the desired equilibrium 
under an assumption of rational behavior on  the  part 
of the enterer. 

The upper bound on expected profit margin for either 
company decreases  when the strength of the sales force 
of the opponent increases,  while the actual value of ex- 
pected profit margin for each company increases with the 
strength of its own sales force, as long as entry is profitable. 
Thus the optimal strategies for  the maximization of  ex- 
pected profit hold also for maximizing  expected profit 
margin. 

Upper and lower bounds on expected market share are 
obtained which, for each company, increase with the 
strength of its own sales force, but decrease as that of its 
opponent increases. Optimal strategies for both are  to 
saturate  the market. 

In  the evaluation of expected profit margin and ex- 
pected market share, expressions of the form 

occur, where k is a binomially distributed random variable 
with mean pN, and E is the expectation with respect to 
the distribution of k;  for discrete k 

E f W  = ELf(k)l = f(x> P[k = X I ,  (2) 

where the sum is over all possible values of x and P is the 
probability measure on the space over which k is defined. 
If 1b2/a21 < 1 ,  then (1) can be written as an infinite but 
convergent sum, 

If the coefficients also satisfy the condition Ib2/azl < 1/N,  
we let a = Nb2/a2, la[ < 1,  and show in the Appendix 
that the sum of the expectations in (3) can be evaluated 
exactly as a finite series: 
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Competitive  environment 
Let the first  seller  be  called the  Red company and the 
enterer the Blue company. 

We assume that  the selling process is a discrete opera- 
tion completed in a short time. The  Red company sells 
a product among s prospects; s prospects were available 
in preceding time periods and s prospects will also be 
available in succeeding time periods. The transition to 
sales with a variable number of prospects, dependent on 
the number of sales in the preceding period and on external 
market conditions, is straightforward. 

Let the sales unit of a company be defined as the number 
of hours required to sell the product to a prospect. By 
including the pro-rated  hours of  selling time wasted 
approaching people who are  not prospects, we can specify 
that every prospect will purchase one unit of the product 
with certainty if approached by a salesman. This definition 
presupposes that  the number of salesmen required to sell 
to s prospects is linear in s. This assumption can be justified 
if the product is unique and  the set of prospects is fairly 
well identified.  We assume sufficient coordination between 
salesmen so that  no two salesmen from  the same company 
approach the same prospect. Prospects are chosen at 
random  from the available set. 

Let the Red company possess n sales units. By hypothe- 
sis the  product is sold to n prospects. Clearly n 5 s. 
Let a be the unit manufacturing cost, c1 be the selling 
cost incurred by the sales unit and r be the unit revenue. 
Then, since each sales unit accounts for  the sale of one 
product, the unit profit is r - a - c1 and the total profit 
is n(r - a - cl). 

Now the Blue company enters into competition with 
the Red company. There are rn Blue sales units and the 
associated salesmen, like the Red salesmen, do not inter- 
fere with  each other. However, there is no communication 
between Red  and Blue salesmen, so it is possible for a 
prospect to be approached by no salesman, one Red 
salesman, one Blue salesman, or one  Red  and one Blue 
salesman. In  the first case no sale will be made, in the 
second and  third cases one sale by Red  and by Blue, 
respectively, and in the fourth case,  which  we call overlap, 
one sale will be made by  Blue  with probability p or by 
Red with probability q = 1 - p .  We assume that  the 
Red  and  the Blue products are undifferentiated and priced 
the same. The  prefaence of the purchaser depends on 
his  confidence in the Red  and Blue companies. Red is more 
favored by virtue of experience and  reputation, so p < q. 

When overlap occurs, the sales effort is greater on both 
sides  because the two salesmen are competing against 
each other and may have to repeat calls more frequently. 
Let c2 be the sales cost incurred by each  sales unit in 
overlap situations; thus c2 > cl. Here two sales units are 
expended to obtain  one sale, Let k be the number of over- 
laps among s prospects. From consideration of the equiv- 
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alent occupancy problem, k is a random variable with 
hypergeometric distribution 

If n cells out of s are occupied at random and if m cells are 
selected at random without replacement, then P,(k; m, n,  s) 
is the probability that exactly k occupied cells  will be 
selected. With this  distribution, E k  = mn/s. 

Company objectives 
The functions of interest to  Red  and  to Blue are profit, 
profit margin and  market share. The objectives of the 
companies may be the maximization of the expectation 
of  one or more of these functions, subject to constraints 
on  the others. Frequently, however, a company will not 
maximize a function because a concomitant of maximiza- 
tion could be rapid growth. This  rapid growth might be 
associated with large debt or with the anticipation of little 
or no growth in subsequent years and both of these con- 
sequences can be undesirable. When the objective of a 
company is not  the maximization of one of these functions, 
it may be the  attainment of a particular value of one of the 
functions. We do  not attempt to prescribe a management 
philosophy but, where the maximization of a  function is 
desired, we show the optimal strategies and, where the 
attainment of a target is sought, we show the relevant 
strategies. 

We consider the strategies of both companies with 
respect to objectives that are, in  turn,  the expectations 
of profit, profit margin and  market share. Blue’s strategy 
is determined by the choice of a value of m, Red’s by the 
choice of a value of n. If there are s prospects, no more 
than s units  can be sold by either  company; hence m 
and n are bounded from above by s. We  define saturation 
by Blue (or Red) as the choice of m (or n) equal to s. 
Clearly n is positive and m is positive if Blue chooses 
to enter the market or zero if Blue abstains from entry. 

The following notation is used: 

A = number of units sold, 
B = cost of manufacturing A units, 
C = cost of selling A units, 
D = revenue from the sale of A units, 
X = profit from the sale of A units, 
Y = profit margin from  the sale of A units and 
Z = market  share  from the sale of A units. 

Variables associated with  Blue and  Red  are subscripted 
B and R,  respectively: 

AB = m - k + p k  = nz - qk,  

BB = u A B  = a(m - q k ) ,  

CB = c , ( m  - k )  f c2k = mc, + k(cz - cl), 

De = r A ,  = r ( m  - q k ) ,  

XB DB - BB - CB 

= (r - a - cl)m - (rq - aq + c2 - cl)k,  

X B  y - ~ _ _  

- ( B B  + C B )  

- - (r - a - c l )m - (rq - aq + c2 - cl)k 
(a  f c,)m - (aq - c2 + c l )k  

and 

Dl3 ZB c _ ~  - - m - q k .  
D B f D R  m f n - k  

Similarly, 

A R  = n - p k ,  

BE = a(n  - p k ) ,  

CR = ncl + k(c2 - cl), 

DE = r(n - p k ) ,  

X, = (r  - a - cl)n - (rp - ap + cz - c l ) k ,  

Y E  = 
(r  - a - cl)n - (rp - up f cz - c l )k  

( a  + c1)n - (UP - cz f c l )k  
and 

2, = 
n - pk 

m f n - k  

In writing these expressions we have assumed that unit 
costs are  the same for both companies. Because k,  the 
number of sales overlaps among s prospects, is a random 
variable, X ,  Y and 2 are  random functions. 

Expected profit 
Using the hypergeometric distribution ( 3 ,  as a con- 
sequence of Ek = mn/s we obtain 

E X ,  = m[r - a - c1 - (rq - aq + cz - cl)n/sl, (6) 

which  is linear in m. We assume r - a - c1 > 0. The 
expected profit EX, is increasing in m if 

r - a - c1 > (rq - aq + cz - cl)n/s.  (7) 

Because r > a and cz > el, this inequality holds when 

n < (r - a - cl)s/(rq - aq + cz - cl) = v. (8) 

Thus, if n > v, Blue’s entry will not be profitable at any 
level.  If Red wishes to exclude Blue and inequality (8) 
is satisfied prior to Blue’s entry, Red can reverse the 
inequality by increasing n provided v/s < 1 or r- a < cz/p.  

Similarly the expected profit for  Red is 

EX,  = n[r - a - c1 - (rp - up + c2 - cl)m/sl, (9) 

which  is increasing in n when 

r - a - c1 > (rp - up + cz - cl)m/s. (10) 
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If inequality (10) can be reversed by Blue, Le., if  Blue 
can  act to exclude Red, then Blue is excludable by Red, 
for if r - a - c1 < (rp - up + cz - cl)m/s, then it 
follows that r - a < c2/q < cz/p.  

Prior  to Blue’s entry m = 0 and Red’s expected profit is 

E(X,I m = 0)  = n(r - a - cl). (1  1) 

If Blue is deterred by increasing n to n*,  n* > Y > n, 
Red’s expected profit is increased. Thus  Red does not 
lose by excluding Blue. If Blue is not deterred, accepting 
a n  unprofitable entry, Red’s expected profit is 

EX, = n*[r - a - c1 - (rp - up + cz - cl)m/s] .  (12) 

The change in expected profit for  Red is 

(n* - n)(r - a - cl) - (rp - ap f c2 - cl)n*m/s, (13) 

which is positive when 

m < (n* - n)(r - a - cl)s/[(rp - ap + cz - cl)n*]. (14) 

The right-hand  side of  (14) is maximized when n* = s 
and (13) is negative only if the inequality (14)  is reversed. 
By choosing n* = s, Red can maximize the minimal 
value of m required to reverse the inequality. Then Blue’s 
entry would cause a  diminution of Red’s expected profit 
only if 

n > s[(r - a)q - cJ(r  - a - cl). (1 5 )  

If  Blue  is rational, i.e., follows  a strategy of non- 
negative profit, EX, is maximized at n* = s, so Red can 
find no better strategy. If, however, Blue is irrational, 
choosing a losing strategy to spite Red, n* = s can be 
Red’s worst strategy although Blue loses more than Red. 
Blue may pick such a strategy if he  has more resources 
than  Red  and is  willing to suffer initial losses to drive 
Red  out of the market. Such a strategy belongs to a game 
of economic ~urv iva l ,~  which we shall not discuss in 
this context. We affirm here  a specific assumption of 
rationality-if  Blue  is excludable and  Red acts to exclude 
him, then Blue does not enter. 

From  the analysis of expected profit alone, it is optimal 
for  Red  to  saturate  the market, i.e., to choose n = s. 
Then if p > cz / ( r  - a),  Blue should also saturate  the 
market; but if p < cz / ( r  - a),  Blue should  not  enter. 
For p = cz/(r  - a)  any non-negative m 5 s yields the 
same profit. Expected profits derived from  the optimal 
strategies are 

E X ,  = s[(r - alp - czl i f P  > c2/(r - a) or 

10 

i 

(16) 
if p I c z / ( r  - a)  

and 

EX, = 
s[(r  - a)q - c2] if p > c z / ( r  - a)  or 

s(r - a - cl) if p < c 2 / ( r  - a ) ;  
(17) 

for p = cz/(r - a) Red’s expected profit has a value 
between the extremes. 

Red  and Blue, in the face of mutual  interaction, might 
want to maintain certain profit levels rather  than maximize 
them. For example, prior  to Blue’s entry Red’s expected 
profit is n(r - a .- cl). Not taking into consideration 
any change in n, Blue selects m for entry to yield expected 
profit m[r - a - c1 - (rq - aq + cz - cl)n/s]. This is 
possible if there exists a  solution m*, n* > 0 of the 
equations 

n*[r - a - c,  - (rp - up + c2 - cl)m*/s] 

= n(r - a - cl)  ( W  

and 

m*[r - a - c1 - (rq - aq + cz - cl)n*/s] 

= m[r - a - c1 - (rq - aq + cz - cl)n/s],  (18b) 

subject to m*, n* 5; s. If a  solution exists, n* > n from 
(18a) and therefore m* > m from (18b), provided the 
inequality (8) is satisfied for n*. 

If no n* satisfies (18), the best Red can do is to pick 
n* = s; then m* is determined by (18b). The best Blue 
can do is to choose the lesser of m* and s. Similarly, 
if no m* satisfies (18), the best Blue can do is to pick 
m* = s; then (18a)  fixes the value of n* and  Red should 
choose the lesser of n* and s. If, for any n* (or s) that 
Red picks, inequality (8) is not satisfied, then Blue should 
not enter. 

Expected profit margin 
We showed in the last section that  to maximize expected 
profit Red  has a strategy optimal  against any  rational Blue 
strategy, namely n == s, and Blue has a strategy which is 
optimal against n = s, namely m = s if p > c2/(r  - a)  
or m = 0 if p < c2/(r - a). In this section we show that 
the same strategies are also optimal in the case in which 
the objective is to maximize expected profit margin. 

For Blue the expected profit margin is 

EY, = E[ (. - a - C)m - (.9 - aq + c2 - c,)k 
( a  + c J m  - (aq  - c2 + c J k  I. 

(19) 

The  ratio of the expectation of the numerator to  that 
of the denominator represents an upper  bound [because 
YB(k) is a concave function of k ]  of EY,, i.e., 

which  is concave and decreasing in n. Thus  Red can 
bound Blue’s expected profit margin. 

To evaluate the right-hand side of (19), we first note 
that the  factorial  moments of the hypergeometric dis- 
tribution are 369 
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E k = - - ,  mn 
S 

Ek(k - 1) = 
nz(m - I)n(n - 1) 

[S(S - 0 1  

Ek(k - 1) * * . (k - j )  

m ( m  - 1) . . . ( m  - j ) n ( n  - 1) 1 . .  ( n  - j ) .  
[s(s - 1) . . . (s - j ) ]  

- - 

If n and s are large and j is small, the first j + 1 factorial 
moments are closely approximated by 

mn/s, 
m(m - l)n2/sz, 

which are  the factorial moments of the binomial dis- 
tribution, 

Each term of the series in (22), n/s  < 1, is a term of 
(24) weighted by (n/s) i ,  j = 1, 2, . * . , m; (n/s)' is de- 
creasing in j ,  so as m increases the series  decreases in 
magnitude. We can write the value of the series as 

B(m) cr (I) 
1 - a !  s ' 

where P(m) is a real number, 1 5 p < my and is increasing 
in m. Thus the expected profit margin for Blue can be 
expressed as 

EY, = 
r - a - c ,  

a + c1 

X [ l -  (r - a - cl)(a + c l ) ( l  - a) ( I ) B ( ~ ) ] .  s (25) 
~ ( c Z  - C , P )  

Clearly (25) is increasing in m .  

Similarly we can write 

EY,  = __-- 
r - a - c l  

a + c1 

Pb(k; m ,  n ,  s) = ( ; ) ( y ( ! ! ) m - k .  

Hence for sufficiently large n we use the binomial dis- 
tribution as a close approximation to  the hypergeometric 
distribution. 

The expectation EY, therefore takes the form [see 
Eqs. (3) and W I ,  

where a = (aq - cz -I- cl)/(a + cl) < 1. We  now show 
that  the magnitude of the series in (22) is decreasing in m 
for n/s < 1 and constant in m for n/s = 1. 

For n/s = 1, k takes the value m with probability one, 
i.e., P[k = m] = 1 .  Hence Ek t  = mt for all t and 

The finite series in (22) is also a valid representation, 
so for n/s  = 1 we obtain the identity 

X [ l -  r(c2 - clq) 
(r - a - c d ( a  + cJ(1 - a) 

which is increasing in n. If EYE is positive, n= s is optimal 
for  Red,  thus making EYE, Eq. (25), constant  in m and 
positive only if p > cz/(r  - a). If Blue is rational, m > 0 
implies p > c2/(r - a) and also q > cz/(r  - a) because 
q > p.  Thus EY,, Eq. (26), is positive and it follows 
immediately that  the optimal strategies of the preceding 
section are optimal for this section also. 

Expected market share 
It is intuitively obvious, regardless of the value of p ,  
that m must be greater than zero when  Blue's objective 
is the maximization of expected market share, even though 
profit may have to be sacrificed.  Blue's  expected market 
share is 

m + n - k  

The series in Eq. (27) can be  expressed as in Eq. (4) as 

The market share function 2, is concave or convex in 
k for q 5 m/(m + n), respectively, and is linear in k 
for q = m/(m + n). Therefore the value of for all positive integers m. 
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m(s - qn)/(ms + ns - mn) (29) 

is, respectively, a lower bound, an upper  bound or the 
exact value of EZ,, Eq. (27), according to the value of q. 
The bound (29) is decreasing in n; if it is an upper 
bound of Blue’s expected market  share, Red can limit it 
to  at most the value q2m/[m(q - p )  + sp] by choosing 
n 2 ps/q. Because  (29)  is increasing in rn, whether it is a 
lower or an upper bound, the best Blue can do regardless of 
Red’s strategy is to choose m = s. Red’s best strategy is to 
choose n = s because its market  share is the complement 
of  Blue’s. With both m and n equal to s, (29) is seen 
to be an upper  bound with value p. Under  this strategy 
P[k = s] = 1 and EZ, = p ;  the bound is the expectation 
itself. 

Summary 
The optimization of expected profit, profit margin and 
market share leads to a unique strategy for  Red  and  for 
Blue as long as Blue is not excludable. This strategy is 
m = n = s. If Blue is excludable the optimization of 
expected profit and profit margin is achieved by n = s 
and m = 0. This strategy also optimizes Red’s expected 
market  share. The strategies are equilibrium and Red’s 
strategy is dominating. One can  interpret the situation  as 
follows: Prior to Blue’s entry Red sells (free from external 
pressure) at a convenient level, not necessarily saturating 
the market. With Blue’s real or potential entry, Red will 
increase his sales efforts. If guided solely  by the criteria 
of profit, profit margin or market  share, the increased 
effort will  be planned to saturate the market as soon  as 
possible. If Blue  is contemplating entry at a certain level, he 
should expect to enter at a higher level to achieve the same 
profit. His best return, profitable entry, is also attained by 
saturating  the market. Hence the equilibrium result is 
strong competition in a  saturated market. 

Appendix 

Theorem 
For 0 < /a1 < 1 and k binomially distributed with 
mean pN, 

a p N   N (  N - I )  ‘E) = N”a + ( N  - a ) ( N  - 2a) 
+ . . .  

a N p N  N !  
+ ( N  - a) ( N  - Na) 

JULY 1969 

Proof 
Let m(z) be the moment generating function and P(z) be 
the probability generating function. Then (see Ref. 6) 

and 

Also let 

and 

thus we generate the sequence of derivatives 
m‘l’ - - e “ p l ’  

9 

( 2 )  - + e 2 . p 2 ’  m -  

m =  

If mi is the  jth moment and (m)? is the  jth factorial 
moment, then 

2 (A51 
( 3 )  e ” p l ’  + 3 e 2 ” p 2 ’  + e 3 z p ’  , etc. 

mi m”’ I z=” 

and 

(m)j = P ^ ( i )  

Multiplying the  jth row of (A7) by (a/Wt and summing 
over t .  we obtain 
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We now show by the method of induction that 

j 5 N .  (A10) 

Clearly, for j = 1 

Assume that 

then, using relations (8), we find 

or 

It follows from (A7) that 

N 
+ . . .  a 

+ ( N “ a ! )  * * e  ( N -  Na!) (m)N 

Finally, 

I 
= l o ,  

, / N ( N  - 1) ( N  - j + l ) ,  

j = 1, ... , N ,  (A14) 

j = N +  1,  * . .  , 

and  the Theorem (Al) is proved. 
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