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Stochastic Model for Manufacturing Cost Estimating

Abstract: The unit manufacturing cost (i.e., its estimator) for a given manufacturing program with stochastic demand and operation
yield is assumed to be a random variable, For a simple series production line the probability distribution of the unit manufacturing
cost has been derived by either the transform method, which uses Mellin and Laplace transforms, or the method of moments, which
uses either the Gram-Charlier series approximation or the Pearson system of frequency curves. The estimates and 90%,-confidence
intervals for the base manufacturing cost are computed for two device-component products. The model cost estimates are very close
to the actual values and the confidence intervals are sufficiently narrow to be useful in applying contingencies to the predictions.

Introduction

The economics of production and inventory control for
a variety of production processes is critically influenced
by the uncertainty of demand for goods as well as by the
uncertain nature of the yield of operations at various
stations or stages of the production process. Before under-
taking a manufacturing program it is essential to have an
estimate of the total program cost and the corresponding
unit cost. In many situations it is possible to express the
uncertainties associated with demand quantities, yield
of operations and cost components such as labor and
material in terms of suitable probability distributions.
We show that both program cost and unit cost are specific
functions of demand quantities, yield of operations and
the various cost components. Thus both program cost and
unit cost, regarded as functions of random variables, have
probability distributions that permit estimation at any
desired confidence level. In the planning stage it is possible
to evaluate the effect of alternative methods of production
with different costs of operation and different yield distribu-
tions on both the expected values and the confidence limits
associated with the program.

Essential to the construction of the stochastic model
for manufacturing cost estimating is the ability to derive
the probability distribution of any rational algebraic
function of random variables. If these random variables
are assumed to be mutually independent, the probability
distribution of a rational algebraic function of these
random variables can be derived by the ‘“transform”
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method, which utilizes Mellin and Laplace transforms.
Two theorems necessary for this purpose concerning the
relation between Laplace and Mellin transforms have
been proved under fairly general assumptions about the
probability distributions of the independent random
variables. However, if the random variables are correlated
and if the number of such variables is large, the direct
method of “moments” can be used to obtain the probabil-
ity distributions of rational algebraic functions of random
variables. This latter method has also been investigated
and general expressions for moments have been obtained.
Once the moments are available, either the Gram-Charlier
series approximation or standard statistical tables for
the Pearson system of frequency distributions can be
used to obtain the probability distributions. These methods
are outlined briefly and applied to the analysis of data.

In an environment of planned production, it is neces-
sary to incorporate “lead time” for various operations
into the expression for manufacturing cost. Appropriate
modification has been made for the case in which the
total lead time for all operations is less than one period
for cost estimation. In addition, in the actual production
environment several products usually share the cost of an
operation. Modification of our cost estimating procedure
has been explored for such situations.

Manufacturing data have been analyzed using this model
and comparison of results with actual cost indicates that
the probabilistic model yields estimates with confidence
intervals sufficiently narrow to be meaningful to the
decision maker. The results of the analysis are included
in the final section of this paper.
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Cost estimating model

The model applies to manufacturing processes involving
a series of operations. We assume that the product passes
through »n operations or gates (where gates are several
operations combined) and that it goes through each
operation only once. Because of the yield factor the
number of input units is greater than or equal to the
number of output units in each operation. An additional
assumption is that the yield value is zero with zero prob-
ability; there is no product reworking at any of the gates.
In many process-oriented manufacturing environments,
this is indeed the case. The modification of the model to
incorporate reworking only increases the complexity of the
manufacturing cost function without changing the analysis
qualitatively.

In the development of this model, the operation yield
is assumed to have either a uniform or a beta probability
distribution. Whereas the uniform probability density
implies minimum prior knowledge, the beta distribution
assumes specific prior knowledge and Bayesian estimation
of percent yield.! However, the applicability of this model
is not limited to these distributions; the fixed and variable
cost elements associated with each operation or gate in
the manufacturing cycle are allowed to be subject to
uncertainties characterized by any suitable probability
distribution.

The total manufacturing program cost in dollars per
unit of production has two major components, the base
manufacturing cost (BMC) and the support cost. Figure 1
indicates schematically a more detailed decomposition
of manufacturing cost. Our model is concerned primarily
with the estimation of BMC. We deal with the estimation
of BMC (per unit of final product) for the whole program

Figure 1 Manufacturing program cost elements.
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period. If the program period is partitioned into several
non-overlapping periods and we estimate BMC for each
of these periods, we can estimate BMC for the whole
program period. The principal components of BMC are

1. direct labor cost,

2. direct material cost and

3. burden cost that consists of base burden (standard
overhead for the whole plant), indirect labor cost, indirect
material cost, depreciation, department expenses, oc-
cupancy cost and maintenance and service costs, etc.,
associated with every operation.

These costs are expressed in terms of cost per unit for
the ith operation as L;, M; and B;, respectively.

The following notation is used in developing the mathe-
matical model:

B program BMC per acceptable finished unit,
B(r) = BMC per unit for time period ¢,

n = number of operations (or gates),

r, = final production required (number of acceptable
units from the last operation) and

Y; = yield of the ith operation, 0< Y;<1,i=1,2,++- | n.

The number of acceptable units entering the ith operation
is seen to be

rn(]liIi Yi)_l'

The burden cost (per unit) is written as

B, =e;, + rn_1<f1 Y,')fi,

where e; is the part of the burden cost that is proportional
to the number of unmits starting the ith operation and
f: is the fixed burden cost for the operation.

Under the assumption that no reworking is done at any
of the operations, B [or B(f) when appropriate] is given by

n

s v il )]
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e gl@al

B
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where

c; = L;+ M; +e,
Wn = rn_l Zfl
i=1

and r,, Y;, {; and ¢; are assumed to be random variables.

The expression for BMC is a rational algebraic function
of random variables. Specifically, the function involves
sums, products and quotients of random variables. Under
the assumption that these random variables are indepen-
dent, we use transform methods to obtain the probability
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distribution and moments of B. When the number of
operations is very large and the random variables are not
independent, it is preferable to obtain the moments of B
directly to derive the probability distribution.

o Transform method

The manufacturing cost function can be reduced to
arithmetic operations on independent random variables.
The basic results for these operations can be stated as
follows:

1. The Laplace transform of the density function of the
sum of statistically independent random variables is the
product of the Laplace transforms of the individual
density functions of the random variables. Let the random
variable Z be defined as the sum of » statistically in-
dependent random variables X;, Z = X, + X, + -« + X,
and let L,(s), Lx (s), *++ , Lx,(s) be the Laplace transforms
of the density functions of these random variables. Then

L(s) = LX,(S)LX,(S) <o+ Ly, (9). )

2. The Mellin transform of the density function of the
product of statistically independent random variables is
the product of the Mellin transforms of the individual
density functions of the random variables. Let the random
variable P be defined as the product of n statistically
independent random variables Y,, P = Y,Y, --- Y, and
let Mp(a), My (&), *++ , My (o) be the Mellin transforms
of the density functions of these random variables. Then

Mp(a) = My (My () *++ My,(a). 3

3. The Mellin transform of the density function of the
ratio of two statistically independent random variables is
given by the relation

M) = My(@My(2 — ), @

where R = X/Y and Mx(x), Mx(c) and M{(a) are the
Mellin transforms of the density functions of R, X and 7,
respectively.

To deal with rational algebraic expressions involving
the sum, the product and the ratio of random variables,
it is necessary to obtain the conversion of the Laplace
transform to the Mellin transform and vice-versa. Two
theorems” establishing the relation between the Laplace
and the Mellin transforms are the following:

Theorem 1

If L(s) is the Laplace transform of f(¢) such that all the
singularities and branch points of L(s) lic in the left half
of the complex s plane, the Mellin transform of f(¢) is

c+joo

M(@) = (7)) 'T(a) f L) (—s)™" ds,

Re a > 0. (5)

—jw
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In the special case in which the singularities of L(s) are
poles in the left half-plane, the Mellin transform of f(z) is

M(a) = T() Y [residues of L(s)(—s) " at poles of L(s)],
Rea > 0.

Theorem 2
If the Mellin transform of f(7) exists, the Laplace transform
of f(r) exists and is

e+ joo

1) = @n)” [ ME@TG — @)t da. (6)

Ve—jo

The manufacturing cost for the n-stage process has been
defined as W, + Z,, Eq. (1), where now

£ [lin)]

A simple recurrence relation for Z, is
Z, = (Z,., + ¢)/Y., where Z;=0. O

It is assumed that W, and Z, are statistically independent.
A general approach to the development of the proba-
bility law for the manufacturing cost proceeds as follows:

First, Z, = ¢,/Y;. Let My (@), M, () and My (o) be
the Mellin transforms of the density functions of these
three random variables. Then

My, (@) = M. () My 2 — ). ®

Next, Z, = (Z, + ¢;)/Y,. The Laplace transform of
the density function of Z; + ¢z is Ly, 4., (8) = Lz ()L, (8,
where L, (s) is obtained using Eq. (6). The Mellin trans-
form of the density function of Z; 4+ ¢, can now be
obtained by Eq. (5) and hence the Mellin transform of the
density function of Z, is

Mz () = Mz, (0)My,2 — o). ®

A straightforward continuation of this procedure is
used to develop the Mellin transform of the density func-
tion of Z,. Once M, («a) is computed, L, (s) can be
obtained using Eq. (5). Thus the Laplace transform of the
density function of the manufacturing cost is Ly (s)L z,(s).
This procedure is best suited to numerical computation;
it can be illustrated analytically, however, for small values
of n and as an example the expression for Ly (s)Lz (s) is
derived in the Appendix.

o Moments method

Under fairly general regularity conditions the probability
density function f(x) of a random variable can be ap-
proximated by a Gram-Charlier series of Type A,*

£6) = ax) Z @ (), (10)
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where a(x) = 2a) '"* exp (—1x°), the H,(x) are Hermite
polynomials and the a; are polynomials in the moments
about the mean of the random variable.

We let the sth moment about the mean of BMC be

U, = E{[B— E®B)'}], an

where B is the expectation operator, and

Ul = E(B") 12y

is the sth moment of B about the origin. Then

U= (j)E( Wiz (13)
r=0

If we assume that W, and Z, are mutually independent,
Eq. (13) becomes

v= 3 (j)E( WaE(Z:). (14
r=0

For any probability distribution with finite moments, the

moments about the mean and origin, Eqgs. (11) and (12)

respectively, are related according to

U, = ;) (—1)"(;) uU,_,; U°. (15)

A standard table of multinomials such as the one in
Ref. 4 can be used to compute U. Knowing the first
four moments, we can use the Pearson system of frequency
curves to obtain the probability distribution of BMC.
The estimation of the required constants is described in
Ref. 5. In evaluating the probabilities we can use various
tables® ® or the programs of Bargmann and Ghosh.” We
have taken this approach in addition to that of series
approximation in the analysis of manufacturing data.

If the manufacturing program has a multiperiod struc-
ture, B is regarded as B(¥) and BMC for the complete
cycle is obtained by summing over the time periods, i.c.,

Br= [ 200 5 n080. (16

t=1 t=1

The probability distribution of B, can be obtained in the
same way as that of B(z).

o Modifications

Lead time

The mathematical expression for BMC needs minor
modification if we take into account “lead time” for
various operations. Lead time can be important because
the yield of the operations, as well as the fixed and variable
cost elements, is predicted for each of the production
periods (e.g., quarterly, semi-annually, etc.) and there can
be significant changes in yield from one time period to
the next; the changes in fixed and variable cost components
for each operation are less dynamic in nature. By lead
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time we mean the number of days that an operation on a
batch of units started in some previous time period ex-
tends into the present time period. We obtain expressions
for BMC in any time period for the case in which the
combined lead time on all operations is less than one time
period. Derivations are essentially similar, but more com-
plex, when the total lead time exceeds one time period.
We assume that the daily production rate or the capacity
for any operation remains unchanged between successive
time periods. The main modification in the BMC formula
results from the need to relate production quantities to
the corresponding yields and cost components.

The lead times (in days) for the » operations are denoted
by Ay, hs, =+ , h,. Suppose we are concerned with a
particular production quantity r,(¢) at the nth or final
operation in the rth period. Let r,(t — 1) and r,(z + 1)
denote the requirements for the preceding and succeeding
periods, respectively, and let d(z — 1), d(¢) and d(zr + 1)
be the number of production days in the corresponding
time periods. By assumption,

b+ By + oo + hy < min [d — 1), d@&), d@z + D]

The total output r,(¢) of the nth operation in the rth
period consists of a part

r(Oh,/dB] = rOll — pH] an

that has to pass through all the operations in the (# — 1)th
period and a part

rn(t)[l - hn/d(t)] = rn(t)pn(t)

that passes through the nth operation in the zth period.
To yield this latter amount, the input to the nth operation
must be r,()p.()/ Y,(D).

If we define

Pty = 1= by yld®) — I,

then, analogously, the part r,p,(1 — p,-1)/Y. (where
the time-period argument has been suppressed) of the out-
put of the (n — 1)th operation passes through all the first
n — 1 operations of the (¢t — 1)th period and the part
7.PuDn-1/ Y, Dasses through the (n — 1)th operation in
the rth period. This association of the yield in different
time periods with the quantities produced can be extended
back to the first operation. For the general case we set

pia(®) = 1 — hi_l\:d(t) - Z h,.]—l,

i=1,2,--,nh =0. (18)

It remains now to associate operation costs with such
quantities. Recall that ¢; and f; represent the unit cost
and fixed cost of the ith operation. Then, based on the
nested decomposition of production quantities passing
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through n, n — 1, n — 2, - - operations and affecting
the nth-stage output in period 7, one can show that BMC
(per unit) is

B=[1— mm[; fule — 1)]
X {r.(O[1 — pu(D] + r.(t — Dp(t — D}
+ m[ > n(:)]
X ArOpu() + rult + D1 — po(e + DI}
1= 00 5 et o[ 1 ve- 0]}

> { IT it — 5]

i=1 f=i+1

X;cm(t - 1)[11:1 Yi(e — 1)]_1}
Efo o[l re] ) o9

The method of moments can be used to obtain the prob-
ability distribution of B.

Cost sharing

The basic problem is to assign the fixed cost of a shared
operation to the individual products. We illustrate the
-method for two products Pand Q. Letn,r,and Y; (i = 1,
2, -+ , n) be, respectively, the number of operations, the
quantity requirement and the yield of P. Similarly, let
m, r,and Z; (j = 1, 2, -+ , m) be the corresponding
items for Q. Consider a particular shared operation which
is the i’th operation for P and the j'th operation for Q.
Let f denote the fixed burden associated with this opera-
tion. The total input for this operation is

r(i', J) = rn<f1 Yi) + rm(ﬂ Z;>_ .

If the fixed burden f is prorated on the basis of input
quantity, the share of burden for P is

I:rnr(i’, n(H Yi-)_l]f,

with a similar expression for Q. The modification of the
BMC formula is straightforward.

Data analysis

Manufacturing data from the IBM Components Division
were analyzed using our stochastic model. Production
records for two device components involving twelve and
twenty-four operations, respectively, were used; for the
device having twelve operations the manufacturing data
relate to the period April through December, 1966, and
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for the other component the costs and yields refer to
one batch of production in 1968. In the manufacturing
environment, inventories are maintained at various opera-
tions and the data have been adjusted to allow for removal
of production to stock as well as additions from stock
to the production line.

o Twelve operations

Working back from the quantity of finished units out of
the twelfth operation, we generated the theoretical input
quantities for all the earlier operations using the observed
average yield for each operation. The actual range (/;, u;)
of the yield ¥, was known from the data and the yield
was assumed to vary uniformly in this range. To com-
pensate for minor differences between the theoretical and
actual input quantities at each stage, the unit cost ¢; for
each operation was allowed to have a uniform probability
distribution, but was restricted to be within 4=59, of the
observed cost. The inventory-adjusted data for a single-
period analysis and for a three-period analysis are given
in Table 1.

The expected value or estimator E(B) of the base
manufacturing cost is given in Table 2 as calculated with
our model using the moments method. Both the Pearson
frequency curves (based on four moments) and the Gram-
Charlier series (for six moments) were used to evaluate
the probability distribution. The first moment, which is
E(B), is the same in all cases and compares favorably
with the actual value of B. The 90%-confidence interval
is seen to be narrowed both by the Gram-Charlier de-
termination, because the six-moment series carries more
information about the distribution function, and by the
three-period analysis, because the input data could be
represented more realistically. The “best” value of E(B),
computed using u; for the yield and 0.95¢5™ for the
cost, is 44.621; the analogous “worst” value is 60.705.

o Twenty-four operations
The stochastic model was also applied to the analysis of
data for one batch of production of a different device
component. The purpose of this study was to show the
effect on the cost estimate of changes in the probability
distribution of the yield and, as such, only the unit cost
at each operation was considered. As in the first manu-
facturing program, the unit cost ¢; was allowed to have a
uniform probability distribution between 959, and 1059,
of the average observed c;. Two probability distributions
for B were obtained. In Case 1 each operation yield Y;
was assumed to have uniform probability density in the
range [; < Y; < u;. These data are given in Table 3.
In Case 2 the yields for operations 3, 13, 16, 23 and 24
were assumed to have beta probability distributions.

To derive the required beta distributions, another
(observed) value m; of the most likely yield of the ith
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Table 1 Inventory-adjusted data* for a twelve-operation manufacturing program.

Single period Three periods
April to December April to June July to September October to December

Operation riz = 1.087 X 108 rip = 0.663 X 10° riz = 0.202 X 105 rie = 0.222 X 105
Range of Average Fixed Range of Average Range of Average Range of Average
yield unit cost cost yield unit cost yield unit cost yield unit cost

li, u; ¢y fi X 1073 iy u; ¢ L, u; c; l;, ui c;
1 0.507,0.913 | 0.742566 2.117 0.710, 0.766 | 0.689102 | 0.850, 0.913 | 0.744763 | 0.507, 0.662 | 0.923448
2 0.603,0.811 | 0.532138 1.681 0.850, 0.881 | 0.498439 | 0.603, 0.878 | 0.605208 | 0.603, 0.878 | 0.605208
3 0.944, 0.986 | 0.737519 1.009 0.944, 0,983 | 0.656418 | 0.975,0.983 | 0.643722 | 0.977,0.986 | 1.097143
4 0.917,0.968 | 1.082945 2.005 0.722,0.954 | 1.804975 | 0.950,0.968 | 1.136260 | 0.917, 0.955 | 1.590702
5 0.983, 0.994 | 0.940457 3.317 0.983,0.987 | 0.835003 | 0.984,0.986 | 1.028571 | 0.987,0.994 | 1.073186
6 0.940, 0.990 | 1.238370 3.532 0.940,0.968 | 1.587255 | 0.975,0.980 | 1.163969 | 0.982,0.990 | 1.122476
7 0.912,0.980 | 1.059261 1.057 0.912,0.969 | 1.075663 | 0.969, 0.971 | 0.979653 | 0.962, 0.980 | 1.030350
8 0.957,0.990 | 0.573231 0.675 0.969, 0.990 | 0.619823 | 0.957,0.987 | 0.605208 | 0.972,0.989 | 0.501208
9 0.986,0.999 | 0.448993 1.134 0.986, 0.999 | 0.470742 | 0.998, 0.999 | 0.643722 | 0.993,0.997 | 0.408050
10 0.989, 0.999 | 0.798848 1.695 0.989, 0.996 | 0.639688 | 0.995,0.997 | 1.136260 | 0.997,0.999 | 0.885313
11 0.601, 0.841 | 5.130086 8.933 0.601,0.776 | 5.692240 | 0.727,0.841 | 1.028571 | 0.653,0.717 | 5.023981
12 0.941, 0.997 | 2.579089 0.391 0.943,0.997 | 1.694659 | 0.957,0.967 | 1.163969 | 0.941, 0.947 | 5.506383

* The cost data have been modified by an arbitrary scale factor.

Table 2 Summary of computed results for the twelve-opera-
tion data in Table 1.*

Table 3 Inventory-adjusted data for one production batch
of a twenty-four operation manufacturing program.*

909,-confidence
E(B) interval

Single | Three | Single Three
period | periods | period | periods

50.687 | 50.687 | 47.165,| 49.704,
54.836 | 52.520

Pearson curves

50.687 48.141,

53.541

Gram-Charlier series

* The observed value of B is 50.510.

operation was obtained in addition to /; and u;. Following
general practice, we used +(/; + 4m; + u,) and (u; — 1),
respectively, as estimates of the means and variances
of the beta distributions. The related parameters a,
and b, of the beta distributions are given in the footnote
of Table 3.

The first four central moments of the computed proba-
bility distribution of the base manufacturing cost for each
case are listed in Table 4 (obtained with the Pearson curves).
The values for the two cases are significantly different
and indicate the sensitivity of the probability distribution
of B to the assumptions about yield and operation cost
uncertainties.

C. T. ABRAHAM AND R. D. PRASAD

Average
unit cost Range of yield
Operation c; I, u,

1 458.06 0.957, 0.997
2 27.58 0.957, 0.997
3% 26.78 0.930, 0.980
4 9.50 0.955, 0.995
5 6.62 0.959, 0.999
6 10.32 0.935, 0.995
7 6.80 0.939, 0.999
8 9.56 0.952, 0.992
9 6.98 0.955, 0.995
10 9.65 0.956, 0.996
11 4.57 0.954, 0.994
12 49.32 0.955, 0.995
13t 14.75 0.940, 0.980
14 2.35 0.999, 1.000
15 35.42 0.957, 0.997
16t 25.72 0.930, 0.980
17 16.89 0.910, 0.960
18 76.73 0.947, 0.997
19 29.75 0.935, 0.985
20 63.93 0.950, 0.990
21 11.11 0.970, 0.990
22 43.42 0.970, 0.990
23% 17.01 0.155, 0.295
247 0.00 0.610, 0.790

* The final quantity 24 = 0.812 X 105,

t In Case 2 of the analysis the probability distribution of the yield was
changed from a uniform to a beta distribution; the parameters (ai, b)) of
the beta distributions for operations 3, 13, 16, 23 and 24 are (4.1900, 0.2000),
(3.2300, 0.1170), (4.1900, 0.2000), (1.4600, 5.0300) and (4.2000, 1.8000),
respectively.
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Table 4 Summary of computed results for the twenty-four
operation data in Table 3.*

Case 1 Case 2
Central Uniform probability Uniform and beta
moment densities probability densities
1 [= E(B)} 1359.34 1298.54
2 4.80036 X 105 1.20089 x 105
3 5.42264 X 108 0.94723 X 108
4 6.17326 X 102 0.15564 X 10w

* The observed value of B is 1268.63.

Appendix

The probability density function of the manufacturing
cost (when there are two operations) is obtained explicitly
under the following assumptions:

1. Let ¢; have a uniform probability distribution; the
density function is

Sled) = (O — Mi)il,

2. Let Y; have a beta probability distribution; the density
function is

fr) = Yy'(1 — ¥)" " '[Bla, b)Y,

<o <A

0<Y, <1
also a;, b; > 0 and B(a,, b)) = T(a)T(»)I(a: + b "

3. Let W, have a uniform probability distribution; the
density function is

fW)=(— 0",
4. Let ¢;, Y; and W, be statistically independent.

6< W, < 7.

The base manufacturing cost of a two-stage process is
B=W,+ Z,= W)+ (Z, + ¢}/ Y,

where Z; = ¢;/Y,. The Mellin transforms of ¢,, ¥, and
Z, are

M. (@)

I

A5 = w9l — w17,
My,(@) = Blay + a + 1, b)[Blay, b,)]"
and
Mz () = M, (@My,(2 — a)
A —wi Tl —a+1)

e Tlag+b —a++1)’

where 4, = T'(b)[(M — p)B(ay, bl)]-l-
The Laplace transform of the density function of Z;
can be obtained using Eq. (6),

= A4 (Al)

L9 = Cai” [ MaA@T( — 25" da. (A2

c—joe
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The integrand has simple poles ata = n,n = 1,2,3, -«-,
andae=a,+n+1,n= 0,1,2, -+ ; hence the integral is

L;.(s)
= > [residues of M, (0)T(1 — a)s* ']

_ S T —nt+ 1) N = (=9
B Al[; I'(a, + b —n+ 1) n (n — N

+ i F(_[h _ ﬂ) )\4;1+n+1 . “z]z,+n+1 Sn+a1(_1)n]
= T(b, — n) a +n+1 n!

P — — 1 aify 61+
= Al{—(ﬂl‘%lr)_s DY FQ — by, a2, —AS)

- ,utlllHF(l — b, a + 2, —‘,les)]

_Ma+1 1 _
+ I,(a1 ¥ b, + 1) g [F(Ch + by, ay, )\15)

- F(al + by, ay, —,U«ls)]} s (A?’)

where F(p, ¢, z) is a Kummer’s function.
The Laplace transform of the density function of ¢, is

L) = (€™ — e ™ — w)]
Then
LZ|+c,,(s) = LZ.(S)LC,(S)

and, using Eq. (5), we obtain

ct+ i

My ro(a) = (zrj)*lr(a)fc Lo ()(—9)"" ds

—je

= A[T0 — &\ — w))™

X {F(al - a)[¢(a1 - a, )\2)

— dla, — a, w)]

+ T(—=1 = )[¥(=1 — a, \)

— ¥(—1 —a, w)l}, (A4)
where
dlar — a, u)

= [[(—a, — 1)/T(b)]
X{us "N R = by a —aa 42, =N /)
— w0 R — by ay — e, a2, — /),
ola; — a, o)
= [[(=ar = 1)/T(b)]
XA TN L F(1 — by, an — a, a4 2, — A /A)

— uTLE( — by a — a, a0+ 2, —/we)l}, 349
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Y(—1 — a, )
= [T(a, + 1)/T(a; + b; + 1)]
X{ws " LFiay + by, —1 — o, a1, =N/ )
— sFias + by, —1 — a, a1, —u/w)l},
Y(—1 — a, \y)
= [T(a: + 1)/T(a; + b, + 1)]
XN LF(a + by, —1 — a, a5, —\/Ns)
— oFi(a + by, —1 — @, a1, —u/N)]}

and .F,(p, q, r, x) is a hypergeometric function.
The other Mellin transforms needed are

My, (@) = B(bs, @ + a — 1)[B(a,, b,)]”"  and
Mz (@) = Mz, (@)B(bs, ay — a + 1[Bas, by)]™

A,T(a;, — a + 1)
T — a)T(ay + by — a + 1)

X{I‘(a1 - a)[qb(al — O, )\2) - 4’(“1 —a, ,U«2)]
— T(—1 — a)[y(—=1 — o, \y)
— Y(—1 — a, u)l}, (A35)

where
Ay = A TB)(A2 — p2)B(as, bz)]_l-
The Laplace transform of the density function of Z, is

L;,(s) = 2m)~} fc_‘“"'“ M, (@T(1 — a)s* ™" da.

The integrand has simple poles at ¢ = a; -+ n, ¢ = a;, +
n+lande = nn=1,2,3--  in the right half-plane.
Hence
Ly,(s)
= > [residues of M,,(@)T(1 — a)s* ']
Xlplay — as — n — 1, A,)
— ¢la, — ay — n — 1, u,)]
~ (=2 —a, — n)[Y(—2 — a, — n, \y)
— ¥(—=2—a — n, p2)1}
S ' a, — ay — n 1)

n—1)

+ P(az+b2_a1_”)

X {C =1 = o )

- P(_l — a; — ”)[‘p(—al —1 —n, )\2)
— Y(~a, — 1 —n, Mz)]}

4 S M a, — n+ 1)

T(a; 4+ by — n + 1)
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X {F<a1 - ")[d’(‘h - n, )\2> - 4’(‘11 —n, p)]

- L 1 =

— (=1 —n, #2)]}>' (A6)

Correspondingly, although easier to obtain, the Laplace
transform of the density function of W, is

L) = ("' — & sty — 0. (A7)

Finally, the Laplace transform of the density function of
the base manufacturing cost B is given by

Lp(s) = Ly, (9)Lz,(5) (A8)

and the probability density itself can be obtained by
inverting the transform Lz(s).
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