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Stochastic Model for Manufacturing  Cost  Estimating 

Abstract: The  unit  manufacturing  cost (i.e., its  estimator) for a given manufacturing  program  with  stochastic  demand  and  operation 
yield is assumed to be a random  variable. For a simple  series  production  line the probability  distribution of the  unit  manufacturing 
cost has been  derived  by  either the transform  method, which  uses  Mellin and  Laplace  transforms,  or the method of moments,  which 
uses either the Gram-Charlier  series  approximation  or the Pearson  system of frequency  curves.  The  estimates  and  90%-confidence 
intervals  for  the  base  manufacturing  cost  are  computed  for  two  device-component  products. ’The  model  cost  estimates are very  close 
to the  actual values and  the confidence  intervals are sufficiently  narrow to be useful  in  applying  contingencies to the predictions. 

Introduction 
The economics of production and inventory control  for 
a variety of production processes is critically influenced 
by the uncertainty of demand for goods as well as by the 
uncertain nature of the yield of operations at various 
stations or stages of the production process. Before under- 
taking a manufacturing  program it is essential to  have  an 
estimate of the  total program cost and  the corresponding 
unit  cost. In many situations it is possible to express the 
uncertainties associated with demand  quantities, yield 
of operations and cost components such as  labor  and 
material  in  terms of suitable  probability  distributions. 
We show that  both program cost and unit  cost are specific 
functions of demand  quantities, yield  of operations and 
the various cost components. Thus  both  program cost and 
unit  cost, regarded as functions of random variables, have 
probability  distributions that permit estimation at  any 
desired confidence level. In the  planning  stage it is possible 
to evaluate the effect of alternative  methods of production 
with different costs of operation and different yield distribu- 
tions on  both  the expected values and  the confidence limits 
associated with the program. 

Essential to  the construction of the stochastic model 
for manufacturing  cost estimating is the ability to derive 
the probability  distribution of any rational algebraic 
function of random variables. If these random variables 
are assumed to be mutually independent, the probability 
distribution of a rational algebraic function of these 
random variables can be derived by the “transform” 
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method, which utilizes Mellin and Laplace  transforms. 
Two  theorems necessary for this  purpose concerning the 
relation between Laplace and Mellin transforms  have 
been proved under fairly general assumptions about  the 
probability distributions of the independent random 
variables. However, if the  random variables are correlated 
and if the number of such variables is large, the direct 
method of “moments”  can be used to  obtain  the probabil- 
ity distributions of rational algebraic functions of random 
variables. This latter method has also been investigated 
and general expressions for moments have been obtained. 
Once the moments are available, either the Gram-Charlier 
series approximation or  standard statistical tables for 
the Pearson system of frequency distributions can be 
used to  obtain  the probability  distributions. These methods 
are outlined briefly and applied to  the analysis of data. 

In  an environment of planned  production, it is  neces- 
sary to incorporate  “lead  time” for various  operations 
into  the expression for manufacturing  cost. Appropriate 
modification has been made  for  the case in which the 
total lead time for all  operations is less than  one period 
for cost estimation. In addition,  in  the  actual production 
environment several products usually share  the cost of an 
operation. Modification of our cost estimating procedure 
has been explored for such situations. 

Manufacturing data have been analyzed using this model 
and comparison of results with actual cost indicates that 
the probabilistic  model yields estimates with confidence 
intervals sufficiently narrow to be meaningful to the 
decision maker.  The results of the analysis are included 
in the final section of this paper. 343 

:OST ESTIMATINQ JULY 1969 

~ 

MANUFACTURING C 



344 

Cost  estimating  model 
The model applies to manufacturing processes involving 
a series of operations. We assume that  the product passes 
through n operations or gates (where gates are several 
operations combined) and  that it goes through each 
operation only once. Because of the yield factor the 
number of input units is greater than or equal to  the 
number of output units in each operation. An additional 
assumption is that  the yield value is zero with zero prob- 
ability; there is no product reworking at any of the gates. 
In many process-oriented manufacturing environments, 
this is indeed the case. The modification of the model to 
incorporate reworking only increases the complexity of the 
manufacturing cost function  without changing the analysis 
qualitatively. 

In the development of this model, the operation yield 
is assumed to have  either  a  uniform or a  beta probability 
distribution. Whereas the uniform probability density 
implies minimum prior knowledge, the beta distribution 
assumes specific prior knowledge and Bayesian estimation 
of percent yield.' However, the applicability of this model 
is not limited to these distributions; the fixed and variable 
cost elements associated with each operation or gate  in 
the  manufacturing cycle are allowed to be subject to 
uncertainties characterized by any suitable probability 
distribution. 

The  total manufacturing  program cost in  dollars per 
unit of production  has two major  components, the base 
manufacturing cost (BMC) and  the  support cost. Figure 1 
indicates schematically a  more detailed decomposition 
of manufacturing  cost. Our model is concerned primarily 
with the estimation of BMC. We deal with the estimation 
of BMC (per unit of final product) for  the whole program 

Figure 1 Manufacturing  program cost elements. 
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period. If the program  period is partitioned into several 
non-overlapping periods and we estimate BMC  for each 
of these periods, we can  estimate BMC  for  the whole 
program  period. The principal  components of BMC  are 

1. direct labor cost, 
2.  direct material  cost and 
3. burden cost that consists of base burden (standard 
overhead for the whole plant), indirect labor cost, indirect 
material  cost, depreciation, department expenses, oc- 
cupancy cost and maintenance and service costs, etc., 
associated with every operation. 

These costs are expressed in terms of cost per unit for 
the ith operation as L,, Mi and B,, respectively. 

The following notation is  used in developing the mathe- 
matical model: 

B = program BMC per acceptable finished unit, 
B(t) = BMC per unit for time period t ,  
n = number of operations (or gates), 
r,, = final production required (number of acceptable 

Y, = yield of the ith operation, O< Yi< 1, i= 1,2, - - , n. 
The number of acceptable units  entering  the ith operation 
is seen to be 

units from  the last  operation) and 

The burden cost (per unit) is written as 

where ei is the  part of the burden cost that is proportional 
to the number of units starting the ith operation and 
f i  is the fixed burden cost for  the operation. 

Under the assumption that  no reworking is done  at any 
of the operations, B [or B(t) when appropriate] is given by 

I 
where 

c i  = Li + M i  + ei, 
w,, = r,' f i  

and rn, Y,, f, and c; are assumed to be random variables. 
The expression for  BMC is a rational algebraic function 

of random variables. Specifically, the function involves 
sums, products and quotients of random variables. Under 
the  assumption that these random variables are indepen- 
dent, we use transform  methods to  obtain  the probability 

n 

i = l  
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distribution and moments of B. When the number of 
operations is very large and  the  random variables are not 
independent, it is preferable to obtain  the moments of B 
directly to derive the probability distribution. 

In the special case in which the singularities of L(s) are 
poles in the left half-plane, the Mellin transform off(t) is 

M(a) = I'(a)c [residues of L(s)(-s)-" at poles of L(s)l, 

R e a  > 0. 
Transform method 

The manufacturing cost function can be reduced to 
arithmetic  operations on independent random variables. 
The basic results for these operations can be stated  as 
follows: 

1. The Laplace transform of the density function of the 
sum of statistically independent random variables is the 
product of the Laplace  transforms of the individual 
density functions of the  random variables. Let the  random 
variable Z be  defined as the sum of n statistically in- 
dependent random variables X,, Z = X ,  + X, + - -. + X,, 
and let L&), L,>(S), - - , Lx,(s) be the Laplace  transforms 
of the density functions of these random variables. Then 

L Z W  = L x ,   W x , ( s )  * - - Lxn(4. (2 )  

2. The Mellin transform of the density function of the 
product of statistically independent random variables is 
the product of the Mellin transforms of the individual 
density functions of the  random variables. Let the  random 
variable P be  defined as  the product of n statistically 
independent random variables Yi ,  P = Y,  Y, - - - Y, and 
let Mp(ol), MITl(ol), - - , MY,(a) be the Mellin transforms 
of the density functions of these random variables. Then 

MP(4 = MYx(4MY*(a) . * *  MY,(oo. (3) 

3. The Mellin transform of the density function of the 
ratio of two statistically independent random variables is 
given  by the relation 

M R b )  = M&)MY(2 - a),  (4) 

where R = X / Y  and MR(a), Mx(a) and My(&) are  the 
Mellin transforms of the density functions of R ,  X and Y ,  
respectively. 

To deal with rational algebraic expressions involving 
the sum, the product and the ratio of random variables, 
it is necessary to  obtain  the conversion of the Laplace 
transform to  the Mellin transform and vice-versa. Two 
theorems' establishing the relation between the Laplace 
and  the Mellin transforms are the following: 

Theorem 1 
If L(s) is the Laplace transform of f ( t )  such that all  the 
singularities and branch  points of L(s) lie in the left half 
of the complex s plane, the Mellin transform of f ( t )  is 

M(a)  = (27rj)-'r(a) 1 L(s)(-s)-" ds, 
c +  j m  

c - i m  

Re a > 0 .  ( 5 )  
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Theorem 2 
If the Mellin transform off(t) exists, theLaplace transform 
of f ( t )  exists and is 

r ' +  j m  

,qs) = (2aj)-l M ( a ) r ( l  - da.  (6) 
b c - j m  

The manufacturing  cost for  the n-stage process has been 
defined as W, + Z,, Eq. (l), where now 

A simple recurrence relation for 2, is 

It is assumed that W,, and 2, are statistically independent. 
A general approach to the development of the  proba- 
bility  law for the  manufacturing  cost proceeds as follows: 

First, Z, = c , / Y l .  Let Mz,(a) ,  M, ,(a) and My, (a )  be 
the Mellin transforms of the density functions of these 
three random variables. Then 

Mz,(a) 1 Mc, (a )  MI,,@ - a). (8) 

Next, Z, = (2, $- c,)/Y,. The Laplace  transform of 
the density function of 2, + c, isLz,+,z(s) = LZ,(s)LC2(s), 
where L,,(s)  is obtained using Eq. (6). The Mellin trans- 
form of the density function of Z ,  + c, can now be 
obtained by Eq. ( 5 )  and hence the Mellin transform of the 
density function of Z:! is 

M z 2 ( a )  = Mz,+c,(a)MY2(2 - a). (9) 

A straightforward  continuation of this  procedure is 
used to develop the Mellin transform of the density func- 
tion of Z,. Once Mz,(a) is computed, LZn(s) can  be 
obtained using Eq. ( 5 ) .  Thus  the Laplace transform of the 
density function of the manufacturing cost is Lw,(s)LZ,(s). 
This  procedure is best suited to numerical computation; 
it can be illustrated analytically, however, for small values 
of n and  as  an example the expression for LIy,(s)LZ,(s) is 
derived in the Appendix. 

Moments method 
Under fairly general regularity conditions the probability 
density function f ( x )  of a random variable can be ap- 
proximated by a Gram-Charlier series of Type A,3 
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where a(x) = (2~)"" exp (- *x2), the H,(x) are Hermite 
polynomials and the ai are polynomials in the moments 
about  the mean of the random variable. 

We let the  sth moment about  the mean of BMC be 

us = E I P  - E(BII"J, (11) 

where E is the expectation operator, and 

U: = E(B")  (12) 

is the sth moment of B about  the origin. Then 

If we assume that W, and 2, are mutually independent, 
Eq. (13)  becomes 

For any probability distribution with finite moments, the 
moments about  the mean and origin, Eqs. (11) and (12) 
respectively, are related according to 

A standard  table of multinomials such as the one  in 
Ref. 4 can be used to compute Up. Knowing the first 
four moments, we can use the Pearson system of frequency 
curves to obtain the probability distribution of BMC. 
The estimation of the required constants is described in 
Ref. 5. In evaluating the probabilities we can use various 
tables6-' or  the programs of Bargmann and G h ~ s h . ~  We 
have taken this  approach  in  addition to  that of series 
approximation in the analysis of manufacturing data. 

If the manufacturing program has a multiperiod struc- 
ture, B is regarded as B(t) and BMC for  the complete 
cycle  is obtained by summing over the time periods, Le., 

B ,  = [ 2 r,(f)]-' 2 r,( f )B(t) .  (1 6 )  

The probability distribution of BT can be obtained in the 
same way as  that of B(t). 

t =1 t = 1  

Modifications 

Lead time 
The mathematical expression for BMC needs minor 
modification if we take into account "lead  time" for 
various operations. Lead time can be important because 
the yield  of the operations, as well as  the fixed and variable 
cost elements,  is predicted for each of the production 
periods (e.g., quarterly, semi-annually, etc.) and there can 
be significant changes in yield from one time period to 
the next; the changes in fixed and variable cost components 

346 for each operation are less dynamic in nature. By lead 
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time we mean the number of days that  an operation on a 
batch of units started in some previous time period ex- 
tends into the present time period. We obtain expressions 
for  BMC  in any time period for  the case in which the 
combined lead time on all operations is less than one time 
period. Derivations are essentially similar, but  more com- 
plex,  when the  total lead time exceeds one time period. 
We assume that  the daily production rate or  the capacity 
for any operation remains unchanged between  successive 
time periods. The main modification in the BMC formula 
results from  the need to relate production quantities to 
the corresponding yields and cost components. 

The lead times (in days) for  the n operations are denoted 
by h,, h,, - .- , hn. Suppose we  are concerned with a 
particular production quantity m(t) at  the nth or final 
operation  in the tth period. Let r,(t - 1) and r,(t + 1) 
denote the requirements for  the preceding and succeeding 
periods, respectively, and let d(t - I), d(t) and d(t + 1) 
be the number of production days in the corresponding 
time periods. By assumption, 

h, + h, + . - - + h, 5 min [d(t - l), d(t), d(t + 1)l. 

The  total  output m(t) of the nth operation in the tth 
period consists of a part 

r&Xh,/d(t)l = r,(t)[l - ~ ~ ( 0 1  (1 7) 

that has to pass through all the operations in the (t - 1)th 
period and  a part 

r,(t)[l - h,/d(tll = rn(t)p,(t) 

that passes through the nth operation  in the tth period. 
To yield this  latter  amount, the input to  the nth operation 
must be r&)dt)/Y,(t). 

If  we define 

P,-l(f) = 1 - k"t) - hnl-l, 

then, analogously, the  part rnp,(l - p,-,)/Yn (where 
the time-period argument has been suppressed) of the  out- 
put of the (n - 1)th operation passes through all the first 
n - 1 operations of the (t  - 1)th period and the  part 
r,p,pn-l/Y, passes through the (n - 1)th operation in 
the tth period. This association of the yield in different 
time periods with the quantities produced can be extended 
back to the first operation. For  the general case we set 

"1 

P ; - l ( t )  = 1 - hi - ' [4 fd  - 2 l = i  hi] 9 

i = 1, 2, 1 . .  , n; h, = 0. (1 8) 

It remains now to associate operation costs with  such 
quantities. Recall that ci and fi  represent the unit cost 
and fixed cost of the ith operation. Then, based on  the 
nested decomposition of production quantities passing 
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The method of moments can be used to  obtain  the  prob- 
ability distribution of  B. 

Cost sharing 
The basic problem is to assign the fixed cost of a  shared 
operation  to  the individual  products. We illustrate the 
method for two  products P and Q. Let n, r,, and Yi (i = 1, 
2, - , n) be, respectively, the number of operations, the 
quantity requirement and  the yield of P .  Similarly, let 
m, r ,  and Zi ( j  = 1, 2, - - - , rn) be the corresponding 
items for Q. Consider a particular  shared operation which 
is the i‘th operation for P and  the  j’th operation for Q. 
Let f denote the fixed burden associated with this opera- 
tion. The  total  input  for this operation is 

If the fixed burden f is prorated  on  the basis of input 
quantity, the  share of burden for P is 

with a similar expression for Q. The modification of the 
BMC formula is straightforward. 

Data analysis 
Manufacturing data  from  the IBM Components Division 
were analyzed using our stochastic model. Production 
records for two device components involving twelve and 
twenty-four operations, respectively, were used; for  the 
device having twelve operations the manufacturing data 
relate to  the period  April  through December, 1966, and 
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for  the  other component the costs and yields refer to 
one batch of production in 1968. In  the manufacturing 
environment, inventories are maintained at various  opera- 
tions and  the  data have been adjusted to allow for removal 
of production to stock as well as additions from stock 
to  the production line. 

Twelve  operations 
Working back from the quantity of finished units out of 
the twelfth operation, we generated the theoretical input 
quantities for all the earlier operations using the observed 
average yield for each operation. The  actual range (Zi, ui) 
of the yield Yi was known from  the  data  and  the yield 
was assumed to vary uniformly in this range. To com- 
pensate for minor differences between the theoretical and 
actual input quantities at each stage, the unit cost ci for 
each operation was allowed to have a  uniform  probability 
distribution, but was restricted to be within &5y0 of the 
observed cost. The inventory-adjusted data  for a single- 
period analysis and  for a three-period analysis are given 
in  Table 1. 

The expected value or estimator  E(B) of the base 
manufacturing cost is given in Table 2 as calculated with 
our model using the moments  method. Both the Pearson 
frequency curves (based on  four moments) and  the  Gram- 
Charlier series (for six moments) were used to evaluate 
the probability distribution. The first moment, which is 
E@), is the same in all cases and compares  favorably 
with the  actual value of B. The  90~o-coniidence interval 
is seen to be narrowed both by the Gram-Charlier de- 
termination, because the six-moment series carries more 
information about  the distribution  function, and by the 
three-period analysis, because the  input  data could be 
represented more realistically. The “best” value of E@), 
computed using ui for  the yield and 0.95 cYba for  the 
cost, is  44.621; the analogous  “worst” value is  60.705. 

Twenty-four operations 
The stochastic model was also applied to  the analysis of 
data  for one  batch of production of a different device 
component. The purpose of this  study was to show the 
effect on  the cost estimate of changes in  the probability 
distribution of the yield and, as such, only the unit cost 
at each operation was considered. As in  the first manu- 
facturing  program, the unit cost ci was allowed to have a 
uniform probability  distribution between 95% and 105% 
of the average observed ci. Two probability  distributions 
for B were obtained. In Case 1 each operation yield Yi 
was assumed to have uniform  probability density in  the 
range fi 5 Yi 5 ui. These data  are given in Table 3. 
In Case  2 the yields for operations 3, 13, 16, 23 and 24 
were assumed to have  beta  probability  distributions. 

To derive the required beta  distributions, another 
(observed) value mi of the most likely yield of the ith 347 
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Table 1 Inventory-adjusted data'k for a twelve-operation manufacturing program. 

Single  period Three  periods 

April fo December 
r12 = 1.087 X lo" 

April to June 
= 0.663 X lo5 

.fuIy to September 
rlB = 0.202 X los 

October to December 
rra = 0.222 x 105 Operation 

- 1 -  "~ 

Fixed 
cost 

f &  x 10-5 
"~ 

2.117 
1.681 
1.009 
2.005 
3.317 
3.532 
1.057 
0.675 
1.134 
1.695 
8.933 
0.391 

Range of 
yield 
li,  u7 

0.507,0.662 
0.603,0.878 
0.977,  0.986 
0.917,  0.955 
0.987,  0.994 
0.982, 0.990 
0.962,0.980 
0.972,O. 989 
0.993,0.997 
0.997,0.999 
0.653,0.717 
0.941,  0.947 

-~ 

Acerage 
unit cost 

C i  

0.923448 
0.605208 
1.097143 
1.590702 
1.073186 
1.122476 
1.080350 
0.501208 
0.408050 
0.885313 
5.023981 
5.506383 

Range of 
yield 
li, l i b  

0.850, 0.913 
0.603,0.878 
0.975,  0.983 
0.950, 0.968 
0.984,0.986 
0.975, 0.980 
0.969,  0.971 
0.957, 0.987 
0.998,0.999 
0.995,  0.997 
0.727,0.841 
0.957,  0.967 

- 

Average 
unit cost 

C i  

0.744163 
0.605208 
0.643722 
1.136260 
1.028571 
1.163969 
0.979653 
0.605208 
0.643722 
1.136260 
1.028571 
1.163969 

Acerage 
unit cost 

C, 
~- 

0.689102 
0.498439 
0.656418 
1.804975 
0.835003 
1.587255 
1.075663 
0.619823 
0.470742 
0.639688 
5.692240 
1.694659 

Range of 
yield 
I , ,  uz 

0.710,0.766 
0.850, 0.881 
0.944,  0.983 
0.722,  0.954 
0.983,0.987 
0.940,  0.968 
0.912,  0.969 
0.969,  0.990 
0.986,  0.999 
0.989,  0.996 
0.601,0.776 
0.943,0.997 

____ 

Range of 
yield 
L,  U i  

0.507, 0.913 
0.603,0.811 
0.944,0.986 
0.917, 0.968 
0.983,  0.994 
0.940,  0.990 
0.912,0.980 
0.957, 0.990 
0.986,0.999 
0.989,0.999 
0.601,  0.841 
0.941,  0.997 

Acerage 
unit cost 

C i  

0.742566 
0.532138 
0.737519 
1.082945 
0.940457 
1.238370 
1.059261 
0.573231 
0.448993 
0.798848 
5.130086 
2.579089 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

* The  cost  data  have  been  modified  by a n  arbitrary scale factor. 

Table 2 Summary of computed  results for the  twelve-opera- 
tion data in Table 1." 

Table 3 Inventory-adjusted data for one  production  batch 
of a twenty-four operation manufacturing program." 

Auerage 
unit cost 

c i  

458.06 
27.58 
26.78 
9.50 
6.62 

10.32 
6.80 
9.56 
6.98 
9.65 
4.57 

49.32 
14.75 
2.35 

35.42 
25.72 
16.89 
16.73 
29.75 
63.93 
11.11 
43.42 
17.01 
0.00 

90'%-confidence 
intercal 

Single 

53.541 
48.141, 

52.520 54.836 
49.704, 47.165, 

periods period 
Three 

- ~ _ _ -  

Range oj yield 
l i ,  1 * z  

0.957,  0.997 
0.957,  0.997 
0.930, 0.980 
0.955, 0.995 
0.959,  0.999 
0.955,  0.995 
0.959,  0.999 
0.952,  0.992 
0.955, 0.995 
0.956, 0.996 
0.954,  0.994 
0.955, 0.995 
0.940, 0.980 
0.999, 1.000 
0.957,  0.997 
0.930, 0.980 
0.910,  0.960 
0.947,  0.997 
0.935, 0.985 
0.950, 0.990 
0.970,  0.990 
0.970,  0.990 
0.155, 0.295 
0.610,  0.790 

- 
Operation 

Single  Three 
period  periods 

50.687 50.687 

50.687 

1 
2 
3 t  Pearson curces 

Gram-Charlier  series 

* The observed value of B is 50.510. 

11 
12 
13t 
14 
15 
16t 
17 
18 
19 
20 
21 
22 
23 t 
24'r 

operation was obtained  in addition  to li and ui. Following 
general practice, we used Q(Zi + 4mi + u i )  and +(ut - l z ) ,  
respectively, as estimates of the means and variances 
of the beta distributions. The related parameters a, 
and bi of the beta distributions are given in the  footnote 
of Table 3. 

The first four central  moments of the computed  proba- 
bility distribution of the base manufacturing cost for each 
case are listed in  Table 4 (obtained with the Pearson curves). 
The values for  the two cases are significantly different 
and indicate the sensitivity of the probability distribution 
of B to  the assumptions about yield and operation cost 
uncertainties. 

t In Case 2 of the  analysis  the  probability  distribution of the yield was 
* The final quantity 1 2 4  = 0.812 X 105. 

changed  from  a  uniform to a  beta  distribution;  the  parameters (a%, b,) of 

(3.2300, 0.1170). (4.1900, 0.2000), (1.4600, 5.0300) and (4.2000, 1.8000), 
the  beta  distributions  for  operations 3, 13, 16, 23 and 24 are (4.1900, 0.2000). 

respectively. 348 
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Table 4 Summary of computed  results for the  twenty-four The integrand has simple poles at ol = n, n = 1,2, 3, - * e ,  

operation data in Table 3." and a = al + n + 1 ,  n = 0, 1,2,  - - ; hence the integral is 

Case I Case 2 L Z , ( S )  
Cemtrul 

probability  densities = [residues of M z I ( a ) r ( l  - a)sa"] densities  moment 
Uniform and beta Uniform  probability 

1 [-  E(@] 

0.15564 X 6.17326 X 1012 4 
0.94723 X lo8 5.42264 X lo8 3 
1.20089 X 10j 4.80036 X lo5 2 
1298.54  1359.34 

* The observed value of B is 1268.63. 

Appendix 
The probability density function of the manufacturing 
cost (when there are two  operations) is obtained explicitly 
under the following assumptions: 

1.  Let ci have a uniform probability distribution; the 
density function is 

f ( C i >  = (Xi - P J 1 ,  1-1i i ci i xi .  

2. Let Yi have a beta probability distribution; the density 
function is 

f ( Y i )  = Yg.-'(l - Yi)hi-l[B(ai, b%)]-I, 0 5 Yi 5 1;  

also ai, bi > 0 and B(a,, bi) = I'(ai)I'(bi)[I'(ai + bi)]-'. 

3. Let Wz have  a uniform probability distribution; the 
density function is 

f(wz) = (Y - e)-', e 5 w2 5 Y. 
4. Let c, ,  Y,  and W, be statistically independent. 

The base manufacturing cost of a two-stage process is 

B = Wz + Z z  = W z  + (21 + c z ) / Y z ,  

where A ,  = r(bl)[(X1 - pl)B(al,  bl)]-'. 

can be obtained using Eq. (6), 

Lz,(s)  = (27rj)-' l-im Mzl(ol)r(l - ol)sU-' dol. (A2) 

The Laplace  transform of the density function of Z,  

e + ; -  

- F(a1 + bl ,  a , ,  , 643) 

where F(p, q, zj is a Kummer's function. 
The Laplace  transform of the density function of cz is 

L,~(S) = (e-'" - e-*X')[s(~2 - pz)l". 

Then 

L z , + c * ( 4  = Lz , ( s )Lc2( s )  

and, using Eq. (3, we obtain 

+ r(--1 - ol)[$(-l  - ha) 

- k q - - 1  - 01, 1-12)111 (A41 
where 

x {x,"-"'[XL;"1+12F',(1 - bl, a ,  - a , a ,  + 2 ,  -X,/A,) 
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+ sn+al- l r (aZ - a ,  - n + 1 )  
r ( a ,  + b, - a ,  - n) 

- r(--1 - a ,  - n)[$( -a l  - 1 - n ,  X,) 

- $(-al  - 1 - n, ~ d 1  

('46) 

Correspondingly,  although easier to  obtain,  the Laplace 
transform of the density function of W, is 

~ , ~ ( s )  = (e-88 - e-s'>[s(y - O)]". (A71 

Finally, the Laplace transform of the density function of 
the base  manufacturing  cost B is given by 

LBW = Lw,(s)Lz,(s)  ('48) 

and  the probability density itself can be obtained by 
inverting the  transform L&). 
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