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Thermal  Expansion  in a Constrained  Elastic  Cylinder 

Abstract: The  stress  developed in an  elastic  cylinder of finite length  undergoing  thermal  expansion  with one end clamped  is  expressed 
in  terms  of a series  expansion  of a biharmonic  function, appropriate derivatives  of  which  give the  displazements and stresses  within 
the cylinder.  The  coefficients  in  this  series are determined by a least-squares  fit to the boundary  conditions at the ends of the cylinder 
and  values of the stress  on  various  surfaces  are  found  as  functions of the height-to-radius ratio. All  components of the  stress  tensor 
become  infinite at the circumference on the clamped  end. A tabulation is included of quantities of interest in any cylindrical  problem 
in which the curved  surface  is a free  surface. 

Introduction 
There has been considerable interest in the problem of 
stress induced by thermal shrinkage or expansion in an 
elastic body with one  or more surfaces constrained. Such 
problems arise, for example, in  the encapsulation of  elec- 
tronic circuit components. The calculation of these 
stresses in a circular cylinder is the subject of this paper. 
The cylindrical symmetry reduces the problem to a two- 
dimensional one, offering the possibility of a tractable 
solution in terms of a series of biharmonic  functions. In 
previous work studies of rectangular plates have been 
carried out variationally' and studies of long  bars (con- 
strained on a long edge) have been made using series 
expansions.' The cylindrical geometry, although  permitting 
solution of a three-dimensional problem in two-dimen- 
sional  terms, leads to considerable mathematical com- 
plexity in the sense that  the terms  in the series for various 
stresses are not orthogonal  and  the coefficients must  be 
found by solving a set of linear  equations.  Certain  mathe- 
matical  constants involved in the solution are indepen- 
dent of the dimensions of the cylinder and can be given as 
functions of the elastic moduli. A considerably more ex- 
tensive tabulation of these  quantities than  has hereto- 
fore appeared3 is  given here. 

Theory 
The problem is to determine the displacements and stresses 
in a cylinder of radius R and height h that undergoes 
thermal expansion with one  end ( z  = h) clamped to a rigid, 
nonexpanding plate. The other  end ( z  = 0) and  the curved 
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surface or circumference ( I  = R) of the cylinder are free 
surfaces, i.e., no forces are applied. 

Let I( be the displacement of a point  in the cylinder in 
the  radial direction and w the displacement in  the z direc- 
tion. If we assume that all  quantities are independent 
of the angular  coordinate 0, the strains are 

and  the dilation is 

The cylinder temperature is assumed to be raised by a 
constant amount AT above the temperature at which no 
strain exists. If X and p are  the Lam6 constants at  the 
elastically isotropic cylinder, in  terms of which Young's 
modulus E and Poisson's ratio Y are expressed as 

the stress-strain relations  are4 

T,, = 2p~ , ,  + XA -. (3X + 2 p ) a A T ,  

Tss = 2 ~ ~ ~ 8 8  + XA -. (3X + 2 p ) a A T ,  

T,, = 2pcZz + XA - (3X + 2 p ) a A T ,  

T,, = 2w,, and 

T,s = T,s = 0 ,  323 
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where a is the linear coefficient of thermal expansion; there 
is a constant strain aAT in  each  principal  direction. 

The equations of  equilibrium are 

and 

These are subject to the following  boundary conditions: 
At z = h (on the plate) the cylinder  is  constrained to have 
zero  displacement, so that 

u(r, h) = w(r, h) = 0; (64 

at r = R and at z = 0 no forces are applied, so that 

T,,(R,  z)  = T, , (R,  z) = 0 and (6b) 

T z z ( r ,  0) = Trz(r ,  0) = 0.  (6 4 
Love4 has shown that problems of cylindrical  symmetry 

can  be  solved  in  terms of a single  biharmonic  function. 
For example,  let 

and define the following  expressions  (which are equivalent, 
but not identical, to those given  by Love): 

1 a2ip 
u =  

2p drdz ' 

The stresses  obtained in terms of ip from Eqs. (4) using 
Eqs.  (1) and (2) automatically  satisfy the equilibrium 
conditions,  Eqs. ( 9 ,  and the present  problem  is  reduced 
to constructing the function that satisfies the boundary 
conditions given in Eqs.  (6). 

We  begin this construction by expanding in a series of 
solutions of the biharmonic equation (7), each term of 
which automatically  satisfies the boundary  conditions on 
the circumference of the cylinder. The coefficients in this 
series are adjusted so that the remaining  boundary  condi- 
tions are satisfied  when the number of terms in the series 
becomes infinite;  inasmuch as the terms in the series are 
nonorthogonal, this adjustment  is  made  using a least- 
squares procedure. The coefficients  of certain  trivial 
solutions of the biharmonic equation are chosen so that 
the boundary conditions are satisfied in an average  sense 
and it turns out that the trivial  solutions  included  in Q, 

serve to remove the constant thermal stresses and to add a 
324 constant to the axial  displacement w. 
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We define the reduced  quantities 

X = r / R ,  

b = z / R ,  

1 = h / R ,  

and write 

= a# + a2f + b1xZ + bzx2{ + v(x, c). (10) 

The  first four terms are the trivial  solutions of the bihar- 
monic equation that are regular at x = 0 (the constant 
term and the term proportional to { have  been  omitted 
since  they  do not contribute to any  displacements or 
stresses) and 7 represents the nontrivial part of ip, which 
is still to be constructed. In terms of the coefficients 
a,, az, b, and bz the displacements are 

where the "terms  in 7" are obtained from Eqs. (8) with 
@ replaced by 7. 

Evaluation of coefficients 
The stresses all involve  derivatives of u and w, so it is  clear 
that the a, and b, terms in ip contribute constants to w and 
appear nowhere  else.  Without loss of generality we can 
choose b, = 0 and use al to !k the constant term in w. The 
terms in az and b2 produce a displacement  field  like that 
due to unconstrained thermal expansion,  i.e., constant 
strains with no shear; they add constants to the principal 
stresses and do not affect the shear stress. The boundary 
conditions require that T,, vanish on the circumference 
and that T,. vanish on  the free  end ( z  = 0). It follows, 
then, that 

We shall  choose r]  in such a way that its contribution 
to T,r(x,  {) automatically  vanishes when x = 1. It will 
then turn out that r]  makes no contribution to the 
average of T,, over the free end; thus Eqs. (11)  will  con- 
tain no terms in q. To satisfy  Eqs. (ll), as and bz must  be 
chosen to remove the thermal stress term -(3X + 2p) 
X aATfrom T,,and T,,. In this way Trr(l,[)is made  iden- 
tically  zero for all {, while TJx, 0) presumably  becomes 
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zero pointwise as the number of terms in the series for ?1 
becomes  infinite. The required values of a2 and bz are 

a2 = gR3(3X + 5p)aAT; bp = -R'potAT. (12) 

The displacements and stresses  now  become4 

u = RaATx - - __ , 1 d271 
2 p  drdz 

where we have rewritten a, so that  the constant contribu- 
tion to w is RaAT(B-I). The constant B is chosen so that 
the boundary condition on w is  satisfied on  the average : 

1' xw(x, I )  dx = 0. (14) 

Construction of q(x, r )  
We write q in the form 

q ( x ,  {) = 2pR'aAT 

X [ c  xJl(P8x)(A, sinh P. l  + C, cosh Par) 

+ JdP.x)(B. sinh P.f + D, cash Par)], ( 1 5 )  

where Jo and J,  are Bessel functions and A,, B,, C,, 0. and 
P, are constants to be determined. The quantities J,@x) 
Xexp (&or) and xJI@x)exp (&/3{) are well known solu- 
t i o n ~ ~  of the biharmonic equation (7). 

The boundary conditions (6b) on  the circumference of 
of the cylinder take  the form 

[y8 cosh P.T + 6, sinh Par] = 0, (1 6)  

where y, and 6, are known in terms of A,, B,, C. and 0,. 
By expanding this expression in powers of and using the 
linear independence of various powers of p ,  we obtain 
a series of homogeneous equations in y8 or 6,. We conclude 
that y8 and 6, must vanish if the determinant of coefficients 
is non-singular. This determinant is of van der Monde 
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form5 and we are  thus able to say that Eq. (16) implies 
y. = 6. = 0 if the p. (which are still to be determined) are 
such that 

n i > i  (P: - P 3  # 0 

and no pi is zero or, in other words, if no /3 is zero or  the 
same as  or  the negative of another 0. [All such cases are 
readily seen to be redundant: If any 0, is zero, the cor- 
responding terms in Eq. (15) are constants, which can be 
ignored. Similarly, if any 0. is the same as or  the negative 
of another, it can be eliminated from  the sum simply  by 
regrouping terms and redefining the coefficients A,, B,, 
C, and 0, in Eq. (1 5)j. 

We  now evaluate Trr and T,, on the circumference. De- 
fining 

L E Jo @J/JI@J (17) 

and using the result derived for y. and 6., we obtain  the 
following equations : 

These two sets of equations have nontrivial solutions only 
if 

8:(1 + .$3 = K2, (1 8) 

in  which  case 

Equation (18) is the characteristic equation determining 
the permissible  values of over which  we sum in Eq. ( 1 5 )  
to construct q. Since 1 5 K2 5 2 [see Eq. (9) and recall 
that  the value of Poisson'sqratiofis between 0 and +I, it is 
possible to show3 that  the p.'s are complex for all cases of 
interest. Furthermore, since Bessel functions are real 
functions and  are either symmetric or antisymmetric, 
it follows that, if p. satisfies Eq. (18), then PT, - 0, and 
-of also satisfy Eq. (18). (The asterisk denotes com- 
plex  conjugate.) According to  the discussion following 
Eq. (16), we must omit -pa and - Pf as well as p. = 0, 
so our sums extend over all  (and their conjugates) with 
positive real part that satisfy Eq. (18). 



The function now takes the form 

X ( A ,  cosh p.1 + C. sinh psi) = 0, (21d) 

all for 0 _< x 5 1 ; these  equations are, in order, the con- 
ditions that Tzz(x, 0), T,,(x, 0), w(x, 1) and u(x, 1) be  zero. 

The constant B, which  is to be found from Eq. (14),  can 
now be given  explicitly in terms of the A ,  and C, ; we ob- 
tain 

B = "2(K2 - 2) J1(PII) 
* 

X ( A ,  sinh Pa 1 + C, cosh P,Z) 

and &(x) becomes 

X ( A ,  sinh P.1 + C, cosh p.1). (2 1 c') 

It is  easily  verified that 

which guarantees that Eq.  (11)  is  satisfied.  The constants 
A, and C, are both complex; Eqs. (21a) and (21b) furnish 
relations between their real and imaginary parts rather 
than a requirement that they  be  zero. From the structure 
of Eqs. (21) it is clear that 

A% E A(@$) = [A(,&)]* 

and similarly for C,. Thus all the qb's of Eqs. (21), as well 
326 as 7 itself, are real  quantities. 
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Least-squara adjustment 
The coefficients A, anld C., have to be  determined  numeri- 
cally,  since there is not much  hope  of  solving Eqs. (21) 
analytically. Thus we have to approximate 7 by a finite 
number (say 2h9 of  terms. To choose the coefficients 
in the best  possible  way,  subject to this limitation, we 
minimize the error 

EN = I' X(& + 4; + 4: + 4:) dx (23) 

incurred  in  trying to satisfy the boundary conditions  with 
a finite  number of terms.  This  procedure is  necessary 
because the functions  appearing  in Eqs.  (21) are not 
mutually  orthogonal. 

The minimization  conditions 

+ V,, ,  sinh P a l  sinh P..l + /3J?.. W,,.), 
(25) 

N a a r  = P,"P:,( U a S 8  cosh P.1 sinh p..l 

+ V8*,  sinh P, 2 cosh f i a t  1) , 

e... = /3:@:.( Uasg sinh @.I sinh P..l 

+ Vas, cash P a l  cash @.#l  + @J8. X , . , ) .  

The matrices U, V, W' and X, which are linear  combinations 
of integrals of Bessel functions and are independent of 
1, are discussed further in the Appendix. It is  interesting to 
note that  the p8's and U, V, W and X depend  only on 
Poisson's ratio and 'can be tabulated as functions of this 
ratio without  reference to cylinder  dimensions.?  Such 
a tabulation would  be of use in solving  any  problem of 
cylindrical  symmetry in which the circumference  is a free 
surface.  Different boundary conditions on the ends of the 
cylinder  will  still  lead to a set of equations  like  (24), but 
with M, N and Q given  by  different linear  combinations 
of U, V, W and X. 

t Some values of B, are  presented  later in Table 1. 
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Application 

9 Computational procedure 
Our program consists of finding the roots of Eq. (18), 
solving Eqs. (24) for A,  and C,  and constructing 1) and 
any desired displacements and stresses using Eqs. (20) 
and (13). To compute the Bessel functions, the  standard 
downward-recurrence algorithm:  modified to handle com- 
plex arguments, was  used. One can show, using asymptotic 
(large argument) expansions of the Bessel functions, that 
the roots of Eq. (18) are given approximately3 by 

2($ - K 2 )  
2 ( 2 4  1 In  ST, 

which  is asymptotically exact for large s. [Equation (26) 
determines the value of /I1 to within 20/,.] The algorithm 
for computing PI uses the above expression as a first 
approximation and then iterates the calculation with 
Newton's method until ,f3. is determined to five significant 
figures. The values obtained in this way for  the first ten 
roots of Eq. (18), as well as the values of J1(P,) and E . ,  are 
given in Table 1 for values of K2 from 1 to 2 in steps of 0.1. 

Standard algorithms for solving linear equations can 
be used if Eqs. (24) are first rewritten as real equations 
for the real and imaginary parts of A, and C,. Problems 
with large numbers arising from cosh pal  or sinh PSI for 
large s (Re p. - ST) are best circumvented by solving for 
the quantities 

and 

instead of for A, and C. ; Eqs. (24) rewritten in terms of 
and +8 are much more  tractable than  the original 

equations  and  contain no terms that become exponentially 
large for large s. 

Numerical results 
Calculations using up  to 10 roots and their conjugates 
(i.e., up to 20 terms in the series for 7) were made  for 
K 2  = 1.32 and  for various values of I. Results for  the 
stresses on the top,  bottom  and side surfaces of the cylinder 
are shown in Figs. 1 through 5. All data  in these figures are 
based on calculations using 10 roots and their conjugates. 
The  actual computed stress curves show small oscillations 
around  the smoothed curves given in the figures; these 
oscillations are presumed to be due to the use  of a finite 
number of terms (much the same as in Fourier series) and 
were therefore omitted from  the figures. 
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Table 1 Real and imaginary parts of p a ,  JI(~.) and 5. 
Jo(p.)/JI(p.), s = 1, 2, 3, * . e, 10, where psi .  is a root of 
p*(1 + ,$2) = K2.Z 

0.518*E-OI 0.9611E 00 
0.71091-02 0.9868f 00 
O.256lE-02 0.9PIBE 00 

0.633OF-03 0.P917E 00 
O.LL68f-02 0.99641 00 

0138461-03 0.99811 00 
0.25091-03 0.99881 00 
0.1136E-03 0.99911 00 

0.91+bF-0* 0.999.E 00 
0.L251E-03 0.P9Q3E 00 

0.6321E-OL 0.9551E 00 
0.9086E-02 0.9816E 00 
0.300LE-02 0.99211 00 
0.1367f-02 0.99581 00 
0.7.09F-03 0.99731 00 
o.U l9E-01  0.998,F 00 
0.2'128E-03 O.9986E 00 
0.2009f-03 0.9989F 00 
0.146Lf-01 0.99911 00 
0.1075f-03 0.99931 00 

t Note that 8*, -S and --Be are also solutions of the equation. 
% The parameter K depends only on Poisson's ratio for the material: 

K* = 2(1 - v) .  327 

CONSTRAINED ELASTIC  CYLINDER 



328 

-0.5 - 

- 1.0 - 
h 

-3 
h 

ry -1.5- . v 

h 

;. -2.0 
- 

G 

-2.5 I I 1 I 1 I 1 1 I 
0 0.1 0.2 0.3 0.4 0.5. 0.6 0.7 0.8 0.9 1 

X 

Figure 1 Shear  stress  on  the  constrained  surface. 

2 -1.5 . 
h ;. -2.0 0.49,0.61,0.73 

hL -2.5 I I I I I I I I I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. 

1X 

Figure 3 Radial  stress on the  constrained  surface.  The  en- 
circled  point at x = 0.95 is the  computed  value of T,,  for 
N = 10; the exact solution  should  tend to “co as x + 1. 

The ~ ( x ,  t) series  is  very  slowly  convergent  near x = 1, 
{ = 1 (i.e.,  near the circumference on the constrained sur- 
face) and many  more  terms  would  have to be  included to 
improve  substantially the results  in this neighborhood. 
It appears, however, that  the stress T,, at x = 1 and S = I 
will tend to - as the number of terms becomes  suffici- 
ently  large (see Fig. 6). Since  only au/az and dw/dz are 
non-zero on the constrained  surface, it follows that TTr(l, r )  
must  also  tend to --co, although the computed  values 
of T,, show no clear  indication of this behavior for N less 
than 10  (see Fig. 3). A similar study of the maximum shear 
stress on the constrained  surface,  though  more  ambiguous, 
also suggests that Tr8(x, l)+ - a as x 4  1 if a sufficiently 
large  number of terms  is  included.  (The  presence of stress 
concentration points at the constrained  edges seems to be 
a general feature of problems of this type.’”)  Because of 
the lack of orthogonality between the various  functions 
in Eqs. (21), it is not obvious how the convergence  can  be 
improved. 

In the limit 1 = h / R  >> 1, all  stresses  vanish on the free 
surface ( z  = 0) and the stresses on the constrained  surface 
( z  = I) are much the same as shown  in  Figs. 1 to 3 for 
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Figure 2 Axial  stress  on  the  constrained  surface. 
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Figure 4 Radial  stress  on  the  free  end  surface. 

I = 0.73. The axial  stress Tzz( l ,  C) is  essentially  zero  unless 
z is  closer than about R to the constrained  end (i.e., < I), 
where it will  behave  approximately as shown in Fig. 5. 
The effects  of the constraints, in other words, are negligibly 
small  beyond an axial  distance R from the constrained 
end. 

The error eN,  defined in Eq. (23),is  shown as a function 
of N in Fig. 7. This error decreases  approximately as 

, suggesting that the solution is  asymptotically  exact 
as N +  a. Values  of T,,(x, 0), TJx, 0), w(x, I )  and ~ ( x ,  r )  
for N = 10 and 1 = 0.73 are shown in Fig. 8. These quanti- 
ties  should be  zero  when N = 00, so the figure  gives  some 
indication of the convergence that can  be obtained with 
20 terms in the series  (corresponding to 10 roots and their 
conjugates). 

~ - 3 / 2  

Appendix 
The matrices U, V, W and X were introduced  in Eqs. (25). 
Each of these  matrices  is  defined as an integral  over x of 
the functions obtained by squaring  each of Eqs. (21); 
U arises from the square of Eq. (21d), V from (21c), 
W from (21a) and X from (21b). 

J. P. JANAK IBM J. RES. DEVELOP. 



1=0.24 I 

I { / I  

Figure 5 Axial  stress  on  the  circumference. 

I 
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i 

Figure 6 Axial  stress at the  junction  line between cylinder 
and base as a function of the  number of terms  in  the 7 
series: I = 0.65. 

Figure 7 Least-squares error as a  function of the number of 
terms  in  the 7 series; 1 = 0.65. 

Figure 8 Radial dependence of (a)  the  shear  and axial stresses on the  free  end surface and  (b)  the radial and axial dis- 
placements on  the constrained  surface; 1 = 0.73 and N = 10. 
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If we define 

IL:’(ss’) = s’ xPJk(Psx)  J,(P,,x) dx ,  ( A  1) 

we find 

0 

uaa, = us,* = r::’(ss’) 

330 
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I ( ’ ) (  I )  = p (  I 10 ss 0 ,  s s) = [2p.z~:’(ss’)  

- J1(PJ J,(Pa,)(Pa, + P.228,)I/(P; - 0;~) 9 

z(3)( I )  = f ” (  ’) 
00 ss 00 ss 

+ 2 [ P * X ’ ( S S ’ )  - P s z a s s ’ ) l / ( P :  - P:,) 
and 

I , ,  (ss ) = I;:’(ss’) ( 3 )  ’ I 

+ 2 ~ , I : : ’ ( s s ’ )  - P*-l;;)(Si’)]/(fl: - a”.). 
Thus the matrices U, V, W and X can  be  constructed once 
a tabulation of P I ,  and J,@,) is available. These  ma- 
trices depend only on  the parameter K2 and  are independent 
of the dimensions of the cylinder. 
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