J. F. Janak

Thermal Expansion in a Constrained Elastic Cylinder

Abstract: The stress developed in an elastic cylinder of finite length undergoing thermal expansion with one end clamped is expressed
in terms of a series expansion of a biharmonic function, appropriate derivatives of which give the displacements and stresses within
the cylinder. The coefficients in this series are determined by a least-squares fit to the boundary conditions at the ends of the cylinder
and values of the stress on various surfaces are found as functions of the height-to-radius ratio. All components of the stress tensor
become infinite at the circumference on the clamped end. A tabulation is included of quantities of interest in any cylindrical problem

in which the curved surface is a free surface.

introduction

There has been considerable interest in the problem of
stress induced by thermal shrinkage or expansion in an
elastic body with one or more surfaces constrained. Such
problems arise, for example, in the encapsulation of elec-
tronic circuit components. The calculation of these
stresses in a circular cylinder is the subject of this paper.
The cylindrical symmetry reduces the problem to a two-
dimensional one, offering the possibility of a tractable
solution in terms of a series of biharmonic functions. In
previous work studies of rectangular plates have been
carried out variationally’ and studies of long bars (con-
strained on a long edge) have been made using series
expansions.” The cylindrical geometry, although permitting
solution of a three-dimensional problem in two-dimen-
sional terms, leads to considerable mathematical com-
plexity in the sense that the terms in the series for various
stresses are not orthogonal and the coefficients must be
found by solving a set of linear equations. Certain mathe-
matical constants involved in the solution are indepen-
dent of the dimensions of the cylinder and can be given as
functions of the elastic moduli. A considerably more ex-
tensive tabulation of these quantities than has hereto-
fore appeared® is given here.
Theory '
The problem is to determine the displacements and stresses
in a cylinder of radius R and height 4 that undergoes
thermal expansion with one end (z = /) clamped to a rigid,
nonexpanding plate. The other end (z = 0) and the curved
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surface or circumference (r = R) of the cylinder are free
surfaces, i.e., no forces are applied.

Let u be the displacement of a point in the cylinder in
the radial direction and w the displacement in the z direc-
tion. If we assume that all quantities are independent
of the angular coordinate 8, the strains are

Ju . u . aw
€r = T, 88 = T » 2z T o s

or r 4 (1)

1 {du aw
€, = €, = 2 (az + 8r> s €9 = €9 = O
and the dilation is
du u ow

A=¢, +ete =+ "+ (2)

The cylinder temperature is assumed to be raised by a
constant amount AT above the temperature at which no
strain exists. If A and u are the Lamé constants at the
elastically isotropic cylinder, in terms of which Young’s
modulus E and Poisson’s ratio v are expressed as

E = 3\ + 2w)/(\ + p) and v = /(N + ), 3)
the stress-strain relations are®

T,, = 2ue,, + AA — (3N + 2p)aAT,

Too = 2ueso + ANA — (3N + 2u)eAT,

T.. = 2pe.. + A — (3N + 2w)aAT, @
T.. = 2ue,, and

Trﬂ = Tzﬁ = 03
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where « is the linear coefficient of thermal expansion; there
is a constant strain AT in each principal direction.
The equations of equilibrium are

oT,. T.. — Top aT,,

ar + r + az 0 (Sa)
and

aT,. T, ar,,

il (b)

These are subject to the following boundary conditions:
At z = J (on the plate) the cylinder is constrained to have
zero displacement, so that

u(r, b)) = w(r, h) = 0; (6a)
at »r = R and at z = 0 no forces are applied, so that

T,,(R,z) = T,(R,z) = 0and (6b)
T..(r, 0) = T,(r, 0) = 0. (6¢)

Love* has shown that problems of cylindrical symmetry
can be solved in terms of a single biharmonic function.
For example, let

8 13 3V
v* E<—; - —) =0
® ar” + ror & 07 ® ™
and define the following expressions (which are equivalent,
but not identical, to those given by Love):

Lo _ Lo

T 2u ordz
- 2 ®)
1(>\+2u . aq>>

= — |22 v — —3 ).

YT W F 3z

The stresses obtained in terms of ® from Egs. (4) using
Egs. (1) and (2) automatically satisfy the equilibrium
conditions, Egs. (5), and the present problem is reduced
to constructing the function ® that satisfies the boundary
conditions given in Egs. (6).

We begin this construction by expanding & in a series of
solutions of the biharmonic equation (7), each term of
which automatically satisfies the boundary conditions on
the circumference of the cylinder. The coefficients in this
series are adjusted so that the remaining boundary condi-
tions are satisfied when the number of terms in the series
becomes infinite; inasmuch as the terms in the series are
nonorthogonal, this adjustment is made using a least-
squares procedure. The coefficients of certain trivial
solutions of the biharmonic equation are chosen so that
the boundary conditions are satisfied in an average sense
and it turns out that the trivial solutions included in &
serve to remove the constant thermal stresses and to add a
constant to the axial displacement w.

We define the reduced quantities

o~y
li
N

~
=

9)

I
bl
~
=

A+ 2u

K =
At

= 2(1 — v

and write

® = a® + &’ + b + bx’t + n(x, 0. 10)

The first four terms are the trivial solutions of the bihar-
monic equation that are regular at x = 0 (the constant
term and the term proportional to ¢ have been omitted
since they do not contribute to any displacements or
stresses) and y represents the nontrivial part of ®, which
is still to be constructed. In terms of the coefficients
ai, a2, b, and b, the displacements are

b .
— —2; x + terms in y,
uR

WZL{ a | 20+ 20b,
R* W+ u s\ + W)

3(12 2()\ + 2#)b2
+[>\+u+ s\ + w)

where the “terms in n” are obtained from Egs. (8) with
® replaced by 7.

]g‘} -+ terms in n,

o Evaluation of coefficients

The stresses all involve derivatives of u and w, so it is clear
that the @, and b, terms in ® contribute constants to w and
appear nowhere else. Without loss of generality we can
choose b, = 0 and use g, to fix the constant term in w. The
terms in as and b, produce a displacement field like that
due to unconstrained thermal expansion, i.e., constant
strains with no shear; they add constants to the principal
stresses and do not affect the shear stress. The boundary
conditions require that 7,, vanish on the circumference
and that 7,, vanish on the free end (z = 0). It follows,
then, that

fl xT,(x, 0) dx = fl T,.(1, §) df = 0. (11)

0

We shall choose 7 in such a way that its contribution
to T,.(x, {) automatically vanishes when x = 1. It will
then turn out that % makes no contribution to the
average of T,, over the free end; thus Eqgs. (11) will con-
tain no terms in 7. To satisfy Eqs. (11), @, and b, must be
chosen to remove the thermal stress term —(3\ + 2u)
X aATfromT,,and T,.. In this way T’,,(1, {) is made iden-
tically zero for all ¢, while T,,(x, 0) presumably becomes
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zero pointwise as the number of terms in the series for 4
becomes infinite. The required values of a, and b, are

a; = 1RGN + SweAT; by = — R°uaAT. 12)
The displacements and stresses now become*

1 &

u = RaATx — 2% 9oz’

w = RaAT(¢{ — 1+ B)

1 (x + 24 a%)
| —_ = v - 21
+ 20 \\ + & n 3z2 P

) A a"’n]
Trr = |53~ 1 N v2 - Sz s

9z [20\ T 13
2 199

o
T”—az_ZO\-{—u)vn—rar]’

o [ 3\ + 4u v a%]

T,. = - =
T a4 w T

roo2[Akn g ]
T a2+ w T el

where we have rewritten a, so that the constant contribu-
tion to w is ReAT(B—I). The constant B is chosen so that
the boundary condition on w is satisfied on the average:

fl xw(x, ) dx = 0. (14)

o Construction of n(x, {)
We write 7 in the form

7(x, §) = 2uR’aAT
X[ x3,(8,%)( 4, sinh B, + C, cosh B,{)

s

+ D 3,80 (B, sinh 8,¢ + D, cosh B,8)],  (15)

where J, and J, are Bessel functions and 4,, B,, C,, D, and
B. are constants to be determined. The quantities J,(Bx)
Xexp (£80) and xJ,(Bx)exp (£B¢) are well known solu-
tions* of the biharmonic equation (7).

The boundary conditions (6b) on the circumference of
of the cylinder take the form

> [y, cosh B,¢ + &, sinh B,¢] = 0, (16)

where v, and §, are known in terms of 4,, B,, C, and D,.
By expanding this expression in powers of { and using the
linear independence of various powers of {, we obtain
a series of homogeneous equations in+, or §,. We conclude
that+y, and 8, must vanish if the determinant of coefficients
is non-singular. This determinant is of van der Monde
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form® and we are thus able to say that Eq. (16) implies
v, = 8, = 0if the 8, (which are still to be determined) are
such that
16 =8 =0
t>1
and no f; is zero or, in other words, if no 3 is zero or the
same as or the negative of another 8. [All such cases are
readily seen to be redundant: If any 8, is zero, the cor-
responding terms in Eq. (15) are constants, which can be
ignored. Similarly, if any 3, is the same as or the negative
of another, it can be eliminated from the sum simply by
regrouping terms and redefining the coefficients A4,, B,
C, and D, in Eq. (15)].

We now evaluate T,, and T,, on the circumference. De-
fining

&= J, B 1B an

and using the result derived for v, and §,, we obtain the
following equations:

<g(j + Es)As - Bs = Oa

(—K— + gs)c, ~ D, =0,
stz -

S
<1 N+ uB/C T\ TP =0

These two sets of equations have nontrivial solutions only
if

B+ ) = K, (18)

in which case
I B (19)

Equation (18) is the characteristic equation determining
the permissible values of 8, over which we sum in Eq. (15)
to construct 5. Since 1 < K* < 2 [see Eq. (9) and recall
that the value of Poisson’s‘ratioiis between 0 and 3], it is
possible to show® that the 8,’s are complex for all cases of
interest. Furthermore, since Bessel functions are real
functions and are either symmetric or antisymmetric,
it follows that, if B, satisfies Eq. (18), then 8%, — 8, and
—@B%* also satisfy Eq. (18). (The asterisk denotes com-
plex conjugate.) According to the discussion following
Eq. (16), we must omit —8, and — B* as well as 8, = 0,
so our sums extend over all 8, (and their conjugates) with
positive real part that satisfy Eq. (18).
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The function » now takes the form

KZ
6. + Ea) JO(ﬁxx)]

n = 2uR°aAT Y [x 1.8 + (

X (A, sinh 8,§ + C, cosh B,§) (20)

and the remaining four boundary conditions become

dux) = D Bi A,

X [(% - E,)Jo(ﬁ,x) - le(Bax)] = 05 (21a)
$(x) = 2 BiC[xTo(Bx) — £:(80] = 0,  (21b)
o (K
¢c(x) =B + ; Bs[<65 - £s>JO(Bax) - le(Bsx)}

X (A4, sinh 8,1 + C, cosh 8,I) = 0, (21¢)

09 = —x + a0 — (£ e )ne |

X (A, cosh 8,1 + C, sinh 8,I) = O, (21d)

all for 0 < x < 1; these equations are, in order, the con-
ditions that T,.(x, 0), T,.(x, 0), w(x, ) and u(x, I) be zero.

The constant B, which is to be found from Eq. (14), can
now be given explicitly in terms of the 4, and C,; we ob-
tain

B = —2(K —2) Z 3.8

X (4, sinh 8,1 + C, cosh B,1) (22)
and ¢,(x) becomes
$.0) = 2 {2(2 — K)3.(8.)

+ B[(K &) - xL(&x)]}

X (4, sinh 8,1 + C, cosh 8,0). (21¢)

It is easily verified that

f0‘ x[(p% - Eﬂv)JO(Ba") - xe(Bax):l dx = 0,

which guarantees that Eq. (11) is satisfied. The constants
A, and C, are both complex; Egs. (21a) and (21b) furnish
relations between their real and imaginary parts rather
than a requirement that they be zero. From the structure
of Egs. (21) it is clear that

A7 = ABY) = [ABI]*

and similarly for C,. Thus all the ¢’s of Egs. (21), as well
as 7 itself, are real quantities.

o Least-squares adjustment
The coefficients 4, and C, have to be determined numeri-
cally, since there is not much hope of solving Egs. (21)
analytically. Thus we have to approximate » by a finite
number (say 2N) of terms. To choose the coefficients
in the best possible way, subject to this limitation, we
minimize the error
1

ey = f x(¢a + ¢ + 62 + o2) dx (23)
incurred in trying to satisfy the boundary conditions with
a finite number of terms. This procedure is necessary
because the functions appearing in Egs. (21) are not
mutually orthogonal.

The minimization conditions

ey _ ey
a4, — ac,

0

lead to the linear equations

2N

> (M, A, + N..C,) = T, cosh 8,1,

(24)
2N

> (Nyodur + QuiC.) = T, sinh B,1,

8'=1

in which

4 + K2>
BB >

M,, = BiB:.(U,,. cosh B,I cosh B,.1
+ V,,/ sinh ﬂ,l sinh B,'I + 6363’ Wss')s
N,.. = B82.(U,,. cosh 8,Isinh B,.1

I‘,, = JI(BJ)(KZEA‘ -

(25)

+ V,.r sinh B8,/ cosh 8,.1),
Q.. = BiB(U,,. sinh B,! sinh B,.1
+ V.ar cosh B,1 cosh B,:1 + 8,0, X.a:).

The matrices U, V, W and X, which are linear combinations
of integrals of Bessel functions and are independent of
1, are discussed further in the Appendix. It is interesting to
note that the 8,’s and U, V, W and X depend only on
Poisson’s ratio and can be tabulated as functions of this
ratio without reference to cylinder dimensions.} Such
a tabulation would be of use in solving any problem of
cylindrical symmetry in which the circumference is a free
surface. Different boundary conditions on the ends of the
cylinder will still fead to a set of equations like (24), but
with M, N and Q given by different linear combinations
of U, V, W and X.

1 Some values of g, are presented later in Table 1.
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Application

o Computational procedure

Our program consists of finding the roots of Eq. (18),
solving Egs. (24) for 4, and C, and constructing n and
any desired displacements and stresses using Egs. (20)
and (13). To compute the Bessel functions, the standard
downward-recurrence algorithm,’ modified to handle com-
plex arguments, was used. One can show, using asymptotic
(large argument) expansions of the Bessel functions, that
the roots of Eq. (18) are given approximately® by

- In 4s7 i— K9
B & om 4sm + 25w

_d I—M

2 (2sm)* (26)

In 4s7,

which is asymptotically exact for large s. [Equation (26)
determines the value of 3; to within 29,.] The algorithm
for computing 3, uses the above expression as a first
approximation and then iterates the calculation with
Newton’s method until 8, is determined to five significant
figures. The values obtained in this way for the first ten
roots of Eq. (18), as well as the values of J,(8,) and ,, are
given in Table 1 for values of K* from 1to2 in steps of 0.1.

Standard algorithms for solving linear equations can
be used if Egs. (24) are first rewritten as real equations
for the real and imaginary parts of 4, and C,. Problems
with large numbers arising from cosh 8,/ or sinh 8,/ for
large s (Re B8, ~ sm) are best circumvented by solving for
the quantities

¥, = A, cosh B,/ + C, sinh 8,/
and
¢s = (A.n - Cs) exp (_ﬁsl) Sil’lh Bala

instead of for 4, and C,; Egs. (24) rewritten in terms of
¥, and ¢, are much more tractable than the original
equations and contain no terms that become exponentially
large for large s.

o, Numerical results

Calculations using up to 10 roots and their conjugates
(i.e., up to 20 terms in the series for n) were made for
K*® = 1.32 and for various values of /. Results for the
stresses on the top, bottom and side surfaces of the cylinder
are shown in Figs. 1 through 5. All data in these figures are
based on calculations using 10 roots and their conjugates.
The actual computed stress curves show small oscillations
around the smoothed curves given in the figures; these
oscillations are presumed to be due to the use of a finite
number of terms (much the same as in Fourier series) and
were therefore omitted from the figures.
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Table 1 Real and imaginary parts of 8,, Ji(8:) and & =

Jo(B:) /11(Be), s = 1, 2, 3, -

pr(1 + &) = K21

-, 10, where 8,1 is a root of

BETA
™

0,2811E Ol ~0,1340€ 01
046095€ 01 -0.1634E 01
0.9289F 01 -0.1827¢ O
C,1246E 02 -0,1964E 0L
0.15626 02 =0,2076E 01
0.1877€ 02 -0.2165€ Ol
0.2192E 02 -0.2242€ 01
0,2507€ 02 -0.2308E 01
©,28226 02 =0.2366E 01
0431376 02 -0,2419€ 01

0,2790E Ol ~0.1348E QL
0.6086E 01 =~0,1435€ 01
0,9283¢ 01 -0,1827F 01
0.1245E 02 -0,1966E€ 01
0.1562€ 02 -0.207&F QL
0.1877€ 02 =0.2165E 01
0.2192E 02 -D,2242€ 01
0.25076 02 -0,2308E 01
0,2822E 02 -0.2366E Ol
0.3136E 02 -0.2419¢F 01

0.2768E 01 -0,1351E Of
0,60786 01 =-0.1636E 01
0.9278€ 01 -0,1828E 01
0,1245E 02 =0,1967€ 01
0.1561E 02 ~-D.2078E O1
0,1877E 02 -0,2166E O}
0.2192E 02 -0,2242€ 01
0,2507€ 02 ~0,2308€ 01
0.2822€ 02 ~0.2366E 01
0.3136E 02 ~0.2419E 01

0.2746E 01 -D.1357€ OLF
0.6069E 01 ~0.1637E 01
0,9272¢ 0L -0, 1428 01
0.1245E 02 -0.1967€ 0L
0,1561E 02 -0.2076E 01
0.1B76€ 02 =0.2166E 01
0.2192E 02 -0,2242E 01
0.2507€ 02 -0.2308E Ol
0.2821F 02 -0.2366€ 01
0.3136E 02 -0,2419€ O

0.2722€ 01 -0,1362E O
G.6060F 01 -0.1638E 01
0.9267€ 01 =-0.1828E 01
0.12648 02 -0,1967€ O
0.1561E 02 -0,2076E 01
0.1876E 02 -0.2166E Ol
0.2191€ 02 -0.2242E O1
0,2506E 02 -0,2308€ 0L
0.2821F 02 -0,236T€ OL
0,3136E 02 =0,2419E 01

042698 Ol -0.1367E 0L
0.6051E Ol -0,1638€ 01
0.9261F Ol -0.1829E 01
0.1244E 02 -0.1967E 01
0.1560E 02 =0.2076€ 0L
041876€ 02 =042186E 01
0.2191€ 02 -0,2242E 01
0,2506E 62 -0.2308E 0L
0.2821E 02 -0.2347E QL
0.3136E 02 -0.2419E 01

0.2672E 01 -0.1372€ 01
0.60426 Ol  -0,1639E OL
0.9256E 01 -0,1B829€ 01
0.1263E 02 -0,1968F 01
0.1560E 02 -0.2077E Ol
O.1B76E 02 -0,2166E 01
0,2191F 02 =0,2242E 01
0.2506€ 02 -0.2308E Ol
0.2821€ 02 =-0.2367€ 01
0.3136E 02 ~0.2419€ 01

0.2645€ 01 =-0.1377E 01
0,6033E OL -041639€ 01
0.9250F 01 -0.182%E 01
0,1243F 02 -0.1968E 01
Ce1560F 02 -0.2077E Ol
0,1675€ 02 =-0.2166E 01
0,2191E 02 ~0.2242€ 01
0.2506E 02 -0.2308E QL
0.2821€ 02 -0,2367¢ Ol
0,3135€ 02 =0,2419€ 01

C.2617FE 01 -0.1381E 01
0.6024E 01 -0.1639F OL
0,9244€ 01 -0.1829€ O1
0,1263F 02 -0,1968€ 01
0.1559E 02 -0,2077€ O1
0,1875F 02 -0.2166E 01
0,2190E 02 -0,2242E OL
0.2506E 02 ~-D.2308E OL
0.2B21€ 02 -0,2367€ Ol
0.31358 02 =0.2419E 01

0.2588E 01 -0.1385€ 0Ol
0,6015E 01 =0,1639E OL
0.9239E 0! -0.1829E 0L
0.1242€ 02 ~0.1968€ 01
0.1559E 02 -0,2077€ OL
D.1875E 02 -0.2166E 01
0.2190E 02 ~0,2242€ Ol
0,250%8 02 -0,230BE Q1
0,2B20E 02 ~0.2367F 01
0.3135E 02 -0.2619E OL

042557 01 -0.1389E QL
0.6306E 01 ~0.1639E 01
0.9233E 01 -0.1829E OL
0.1262€ 02 -0,1968€ 01
0.1559F 02 -0,2077E 01
0.18756 02 =0,2166E 01
0.2190E 02 ~-0,2243€ O1
0.2505€ 02 ~0.2308F O
0.2820F 02 -0,2367E 01
0.3135E 02 -0.2419€ Ot

JILBETAY x1
E 1] RE ™

KExz=l, O
0.6420€ 00 D.5762E 00 044140E~01 0,9679E 00
~0.5956E 00 -0.5547E 00 0.6360£-02 0.9891€ OC
0.5835€ 00 0.5550E 00 0.2125€-02 0.998€ 00
-0.5780F 00 -0,5583€ 00 0.9714E=03 0.9970E 00
0.5749€ 00 0.5574E 00 0.5265€-03 0,9981E 00
-045730E 00 -0.5582€ 00 0.3191E-03 0,9984E 00
0.5716E 00 0.5589€ 00 0.2095€~03 0,9990F 0G
~0,5706E 00 -0,5595€ 00 0,2445€-03  0.9992E 00
0.5698F 00  0.5599E 00 0.1043E-03  D.9994E 00

-0.5692€ 00 -0.5602E 00 0.7717E-04 0,9995E 00

K*#2z],1

0,6576€ 00  0,5716E 00 0.4650E~01 0,9648€ 00
-0.5015€ 00 -~0.55L1E 00 0.7030€-02 0,988Q0E 00
0.5871€ 00  0,5525€ 0O 0.2363E-02 0.9943E 00
~0.5806E 00 =0,5544E 00 0,1070E-02 0.9967E 00
0.5763€ Q0  0,5558F 00 Q.5813E-03  0.99T9E 00
~0.5746E 00 ~0.5569E 00 0.35186-03  0,9985€ 00
0,5730€ 00  0,5577F 00 0.2294E~03 0.9989E 00
-0.5718E 00 ~0.5584E 00 0.1585E-03 0,999 00
0,5709€ 00  0,5590E 00 0.1147E-03  0,9993E 00
-0.5701F 00 =-0,5594E 00 0.8500£-06 0,9994€ 00
KE¥2x1,2
0.6733E 00 0.5863E 00 0.5184E-01 0.9617E 00
~0.6072E 00 =0,5474E 00 0.7T09E-02 0.9868F 00
0.5908E 00 0.55Q00€ 00 0.2563E~02 0.993BE 00
-0.5831E 00 ~0.5524f 00 0a1168E-02 0, 9964E 00
0.,5789€ 00 0.55428 00 ©.6330E-03 0.9977E 00
-0,5763E 00 -0.5555E 00 0.3846€-03 0,9984E 00
0.5744€ 00 0.5566E 00 0+2509E-03 0.9988E 00
-0.5730E 00 ~0,5574E 00 0.1736E-03 0,9991E 00
0,5T19¢ 00 0,5580E 00 0.1253E-03 0.9993E 00
~0.5711E 00 ~0.5586€ 00 Qa9348E-04 0.99%4E D0
K&¥2x143
0.6897¢ 00 0.5603E 00 0457426-01 0, 9587€ .00
-0.6128€ 00 =-0.5436E 00 0.83956-02 0.9857€ 00
0.5941f 00  0,.5473E 00 0.27826-02 0,9932€ 00
~0.5857¢ 00 =-0,5503€ 09 Q.1268E-02 0.9961E OO
0.5809E 00  0.5525€ 00 0,6856E-03 0.9975E 00
-D.5779€ DO -0.5541E 00 0a4161E-03 0.9982E 00
0457576 00  0.5554€ 00 0.2T17E-03 0.9987E 00
-0.5742€ 00 -0.5563E 00 0.1870E-03 D.9990E 00
0.5730E 00 0.5571F 00 0.1354E-03 0,9992€ 00
-0.5720€ 00 -0.5ST8E 00 0.10256-03  0.9994E 0O
KE*Zal,6
0.7064E 00 0.5533E 00 0.6327E-01  0,9557E 00
~0,6184E 00 ~0.5395E 00 0.90B6E-02 0.9844E 00
0,5975€ 00  0.5446E 00 0.3002E-02 0,9927€ 00
-0.5882E 00 -D.5483F 00 0.1367E-02 0,9958E 00
0.5829€ 00 0,5509E 00 0.7409E-03 0.9973E 00
~0,5795E 00 -0,5527E 00 0.44T9E-03 0.9981F 0C
0,5T71E 00  0.5542E 00 0.2928£-03  0.9986E 00
~0,5754E 00 =-0.5553E 00 0s2009€-03 0.9989 DO
0.5740E 00  0,5562E 0O 0,1461E-03 0,9991E 00
~0.5730E 00 -0.5569E 00 041075E-03 0,9993€ 00
K#®2al,5
0,7236E 00 0,5454E 00 0+6940E-01 0.9528€ 00
=0.6239E 00 -0.5353€ 00 0.9787E~02 0.9B34E 00
0,6009€ 00  0.5418E 00 043225E-02 0.9922€ 00
-0.5906E 00 ~0,5462E 00 0.1465E-02 0.9955E 00
0,584B8E 00  0.5492E 00 0.7937E-03 0.9971E 00
-0.5BL1E 00 -0,5513E 00 0e#BOTE~03 0.9979E 00
0.5785E Q0  0,5529E 00 0¢31426-03 0,9985€ 00
~0.5766€ 00 -0,5542€ 00 0s2187£-03 0.9988E 00
0,5751€ Q0 0.5552E 00 0.15726-03 0.9991E€ 00
-0.5739E Q0 ~0,5560E 00 0.1176E=03 0,9993E 00
Ke*2=1,6
0.76126 00 0.5364E 00 0,7586E~01 0495006 00
~0.6294€ 00 -0.5310€ 00 041049E~01  0.9823F 00
026043 00 0,5390F 00 0,3446E-02 D.9917E 0O
~0.5931E 00 ~0.5443E 00 0.1566E-02 0.9952€ 00
0.5868F 00  0,5475€ 00 0,8679€-03  0,9959E 00
~0,5827€ 00 ~0.5499E 00 0.5123E-03 0. 9978E 00
0.5799 00 «5517E 00 0,3349E-03  0.9984F 00
~0e5TTTE 00 -0,5532€ 00 0,2314€-03 0,9988E 00
0,5761£ 00 0.5543E 00 0.1673E~03 0.999GE 00
~0.5749E 00 -0.5552E 00 0,1249€-03  0.9992£ Q0
Ke%2=1,7
0.7591E 00  0.5262E 00 0,8266E-01 0,9472E 00
“046348E 00 -0.5265E 00 0,1121€-01 0.9811E 00
0,6077€ 00  0,5361E 00 0.3671E-02 0,9911E 00
~0.5955€ 00 -0.5419E 00 0,1666E-02 0.9949E QO
0,5887¢ 00  0,5658€ 00 0+9023E-03  0,9967E 00
~0+5843E 00 -0,5485E 00 0,5650E-03 0.9977E Q0
0.5812E 00  0.5505E 00 0.3563E-03 0.9983E 00
~0,5789E 00 -0,5521E 0Q 0,24656-03 0.9987€ QO
0,5772E 00  0.5533E 00 0,1780€-03 0,9990E 00

~0,5758€ 00 =-0,5543E 00 0.1308E-03  0,9991€ 00

Ke42=1,8
0.7774E 00  0.514«8E 00 0.8983E-01 0.9445E 00
~0.6602E 00 -0.5218F 00 041194E-01  C.9B00E 00
0.6110E 00  0.5331F 00 0,38956-02 0.9906E 00
~0+5980€ 00 -0.5397E 00 0,1766E-02 049946 0O
0.5906€ 00  0.5441E 00 0,9550E-03 0.9965E 00
~0s5858E 00 =-0,5470E 00 0.57756-03 D.9975E 00
0.5825E 00  0,5693E 00 0.3767E-03 0.9982E 00
~0.5801E 00 =-0,5510F 00 0,2607€~03 D, 9I9BSE 0O
0.5782E 00 0.5523F 00 0.1884E-03 0,9989€ 00

~0,5766E 00 -0,5533F 00 0.1315€-03 0.,9991F 00

K#42=1,9

0,7960E 00 0.5020€ 00 C.9742E-0L 0.9419E Q0
~0.6455E 00 -0.5169E 00 0,1267E-01 0.9788F 00
0.6142€ 0O 0.5301E 00 Ce4121E~02 0,9901E 00
~0.6004E 00 -0.5375E 00 0,1867E-02 0.9943€ 0O
0,5925€ 00  0.5623E 00 0.1010E-02 0.9963€ 00
-0.5874E 00 =-0,5457E 00 0.6127€-03 0,9974E 0O
0,5838E 00 0,5480€ 00 0.3951E-03 0.9981E 00
~045B12E 00 =0,5498E 00 0.26926-03 0,9985E 00
0,5792E 00  0.5513E 00 0,1920E-03 0,9983€ 09

-0.5776E 00 =-0,5525E 00 0.1419€-03  0,9990E Q0

Ke#2=2,0

0,8148E 00  0,4874E 0Q 0.1055€ Q0 Q.9394E 00
-0,6507E 00 -0.5119E 00 0.1340E-01 0.9776E 00
0.617SE 00  0.5270f 00 0.4348E-02 0.9895E 00
~0.6027€ 09 ~0.5353E 00 0.19676-02 0.99%O0F 00
0,5944€ 00  0,5405E 00 0.1065€=02 0.9961€ 00
~0.5890E 00 ~0,5441E 00 0464226-03  0.9973E 00
Q,56852E 00  0.5669€ 00 0.42646E~03  0.9980E 0O
-0.5824E 00 =-0,5488E 00 0.2890E-03 0.9984F 00
0.5803¢ 00  0,5504E 00 0.20686-03 0.9988€ 00

-0.5785€ 00 -0.5516E 00 0.1525E-03  0,9990F 00

1 Note that 8*, —8 and

--8* are also solutions of the equation.

+ The parameter K depends only on Poisson’s ratio for the material:

K2 =21 —»p).
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Figure 1 Shear stress on the constrained surface.
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Figure 2 Axial stress on the constrained surface.
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Figure 3 Radial stress on the constrained surface. The en-
circled point at x = 0.95 is the computed value of T,, for
N = 10; the exact solution should tend to —o as x — 1.

The n(x, {) series is very slowly convergent near x = 1,
¢ = I (i.e., near the circumference on the constrained sur-
face) and many more terms would have to be included to
improve substantially the results in this neighborhood.
It appears, however, that the stress T, at x = land { = [
will tend to — « as the number of terms becomes suffici-
ently large (see Fig. 6). Since only du/dz and dw/dz are
non-zero on the constrained surface, it follows that 7°,.(1, [)
must also tend to —, although the computed values
of T,, show no clear indication of this behavior for N less
than 10 (see Fig. 3). A similar study of the maximum shear
stress on the constrained surface, though more ambiguous,
also suggests that T, ,(x, )— — « as x— 1 if a sufficiently
large number of terms is included. (The presence of stress
concentration points at the constrained edges seems to be
a general feature of problems of this type.''?) Because of
the lack of orthogonality between the various functions
in Eqgs. (21), it is not obvious how the convergence can be
improved.

In the limit / = k/R>> 1, all stresses vanish on the free
surface (z = 0) and the stresses on the constrained surface
(z = I) are much the same as shown in Figs. 1 to 3 for

x

Figure 4 Radial stress on the free end surface.

! = 0.73. The axial stress T,.(1, {) is essentially zero unless
z is closer than about R to the constrained end (i.e., { < 1),
where it will behave approximately as shown in Fig. 5.
The effects of the constraints, in other words, are negligibly
small beyond an axial distance R from the constrained
end.

The error ey, defined in Eq. (23),is shown as a function
of N in Fig. 7. This error decreases approximately as
N2, suggesting that the solution is asymptotically exact
as N— o, Values of T,,(x, 0), T,.(x, 0), w(x, [) and u(x, [)
for N = 10 and / = 0.73 are shown in Fig. 8. These quanti-
ties should be zero when N = o, so the figure gives some
indication of the convergence that can be obtained with
20 terms in the series (corresponding to 10 roots and their
conjugates).

Appendix

The matrices U, V, W and X were introduced in Egs. (25).
Each of these matrices is defined as an integral over x of
the functions obtained by squaring each of Egs. (21);
U arises from the square of Eq. (21d), V from (2ic),
W from (21a) and X from (21b).
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Figure 5 Axial stress on the circumference.
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Figure 6 Axial stress at the junction line between cylinder
and base as a function of the number of terms in the 7
series; | = 0.65.

N

Figure 7 Least-squares error as a function of the number of
terms in the 5 series; I = 0.65.

Figure 8 Radial dependence of (a) the shear and axial stresses on the free end surface and (b) the radial and axial dis-

placements on the constrained surface; / = 0.73 and N = 10.
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If we define
1) = [ 2u636. ax (A1)
we find
U = Uy = Igy(ss)
- (’; + s,>1§§’(ss') - (35— + & ) B(s's)
+ (’; +s,>(63 + s,,)lii’(ss% (A2)
Vi = Vory = L7 (ss)
~ (& e - (£ - )mren
+ () - e )i
e A CARN ) (a3
W = Woo = IV (ss)
~(2-e)uren - (2 -6 )me
P2 -a)(Z e )menma g
Xew = Xy = 157 (s8) — £ 130 (s8")
~ £ I (") A &£ 1T (s57). (A5)

The quantities I’ can all be obtained by direct in-
tegration and one finds

150 (ss”) = §i(B,) 1:(B) (Butar
1{})(55,) Jl(Ba) Jl(B!’)(ﬁl'Es’

I

— Bu£)/ (B — B2,
6355)/(63 - 63'),

I3 (ss) = I§9(s's) = [2B,160 (s5")

- Jl(ﬁa)Jl<Ba’)(Ba’ + Bagsgn’)]/(ﬁz - 53'),
163 (ss") = I$(ss")

+ 208, 167 (ss") — B. 115 (ss)1/(B: — Bi)
and

IP(ss’) = I (ss")
+ 2[B, 157 (ss") — B, 115 (ss)]/(Bs — B3).

Thus the matrices U, V, W and X can be constructed once
a tabulation of 8,, {, and J,(8,) is available. These ma-
trices depend only on the parameter K° and are independent
of the dimensions of the cylinder.
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